Multi-value Rule Sets for Interpretable Classification with Feature-Efficient Representations

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex »Metadata »Paper »Reviews »Supplemental »


Tong Wang


We present the Multi-value Rule Set (MRS) for interpretable classification with feature efficient presentations. Compared to rule sets built from single-value rules, MRS adopts a more generalized form of association rules that allows multiple values in a condition. Rules of this form are more concise than classical single-value rules in capturing and describing patterns in data. Our formulation also pursues a higher efficiency of feature utilization, which reduces possible cost in data collection and storage. We propose a Bayesian framework for formulating an MRS model and develop an efficient inference method for learning a maximum a posteriori, incorporating theoretically grounded bounds to iteratively reduce the search space and improve the search efficiency. Experiments on synthetic and real-world data demonstrate that MRS models have significantly smaller complexity and fewer features than baseline models while being competitive in predictive accuracy.