A Bayesian Nonparametric View on Count-Min Sketch

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Diana Cai, Michael Mitzenmacher, Ryan P. Adams

Abstract

The count-min sketch is a time- and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation. In particular, we take a nonparametric approach and consider tokens generated from a Dirichlet process (DP) random measure, which allows for an unbounded number of unique tokens. Using properties of the DP, we show that it is possible to straightforwardly compute posterior marginals of the unknown true counts and that the modes of these marginals recover the count-min sketch estimator, inheriting the associated probabilistic guarantees. Using simulated data with known ground truth, we investigate the properties of these estimators. Lastly, we also study a modified problem in which the observation stream consists of collections of tokens (i.e., documents) arising from a random measure drawn from a stable beta process, which allows for power law scaling behavior in the number of unique tokens.