
Supplementary Document for “LAG: Lazily Aggregated
Gradient for Communication-Efficient Distributed Learning”

In this supplementary document, we present the missing proofs of the lemmas and theorems in the main sub-
mission document.

A Proof of Lemma 2

Using the smoothness of L(·) in Assumption 1, we have that

L(θk+1)− L(θk) ≤
⟨
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⟩
+

L

2
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Plugging (6) into
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Using 2a⊤b = ∥a∥2 + ∥b∥2 − ∥a− b∥2, we can re-write the inner product in (26) as⟨
−
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∥∥∥∥∥ ∑
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where (a) follows from the LAG update (6).

Combining (26) and (27), and plugging into (25), the claim of Lemma 2 follows.

B Missing steps between (9) and (12)

If we choose α = 1/L in Lemmas 1 and 2, it follows that

∆k
GD(θ

k) := − 1

2L

∥∥∥∇L(θk)
∥∥∥2

∆k
LAG(θ

k) := − 1
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.
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(29)

We aim to show that by properly selecting α, the following relationship holds

∆k
LAG(θ

k)

|Mk| ≤ ∆k
GD(θ

k)

|M| . (30)
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After rearranging terms, (30) is equivalent to∥∥∥∥∥ ∑
m∈Mk

c
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m

)
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(
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2

≤ |Mk
c |

|M| ∥∇L(θk)∥2. (31)

Note that since we have∥∥∥∥∥ ∑
m∈Mk

c
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if we can further show that ∑
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|M| (33)

then we can prove that (30) holds.

However, directly checking (33) at each worker is expensive since i) obtaining ∥∇L(θk)∥2 requires information
from all the workers; and ii) each worker does not know Mk

c . Hence, we approximate ∥∇L(θk)∥2 by

∥∇L(θk)∥2 ≈ 1

α2

D∑
d=1

ξd
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∥∥∥2 (34)

and relax Mk
c to M. Plugging them into (33), we have∥∥∥∇Lm

(
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m
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∥∥∥2 (35)

which constitute the choice of our trigger condition (12).

C Proof of Lemma 3

Using the definition of Vk in (13), it follows that

Vk+1− Vk =L(θk+1)− L(θk) +
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where (a) uses (8) in Lemma 2.

Decomposing the square distance as∥∥∥θk+1 − θk
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(37)

where (b) follows from Young’s inequality. Plugging (37) into (36), we arrive at (it requires L
2
− 1

2α
+ β1 ≥ 0)
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L

2
− 1

2α
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)
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2
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∥∥∥2
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∥∥∥2
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Using (
∑N

n=1 an)
2 ≤ N

∑N
n=1 a

2
n, it follows that∥∥∥∥∥ ∑

m∈Mk
c

(
∇Lm

(
θ̂
k

m

)
−∇Lm

(
θk)) ∥∥∥∥∥

2

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

∥∥∥∇Lm

(
θ̂
k

m

)
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(
θk)∥∥∥2 (39a)

(c)

≤
∣∣∣Mk

c

∣∣∣ ∑
m∈Mk

c

L2
m

∥∥∥θ̂k

m − θk
∥∥∥2 (39b)

(d)

≤ |Mk
c |2

α2|M|2
D∑

d=1

ξd

∥∥∥θk+1−d − θk−d
∥∥∥2 (39c)

where (c) follows the smoothness condition in Assumption 1, and (d) uses the trigger condition (12a) if we
derive from (39a) to (39c), uses (12b) if we derive from (39b) to (39c).

Plugging (39) into (38), we have

Vk+1 − Vk

≤
((

L

2
− 1

2α
+ β1

)
(1 + ρ)α2 − α

2

)∥∥∥∇L(θk)
∥∥∥2

+

D−1∑
d=1

(((
L

2
− 1

2α
+ β1

)(
1 + ρ−1)α2 +

α

2

)
ξd
∣∣Mk

c

∣∣2
α2|M|2 − βd + βd+1

)∥∥∥θk+1−d− θk−d
∥∥∥2

+

(((
L

2
− 1

2α
+ β1

)(
1 + ρ−1)α2 +

α

2

)
ξD
∣∣Mk

c

∣∣2
α2|M|2 − βD

)∥∥∥θk+1−D − θk−D
∥∥∥2 . (40)

After defining some constants to simplify the notation, the proof is then complete.

Furthermore, if the stepsize α, parameters {βd}, and the trigger constants {ξd} satisfy

0 ≤ L

2
− 1

2α
+ β1;

(
L

2
− 1

2α
+ β1

)
(1 + ρ)α2 − α

2
≤ 0 (41a)((

L

2
− 1

2α
+ β1

)(
1 + ρ−1)α2 +

α

2

)
ξd
∣∣Mk

c

∣∣2
α2|M|2 − βd + βd+1 ≤ 0, ∀d = 1, . . . , D − 1 (41b)((

L

2
− 1

2α
+ β1

)(
1 + ρ−1)α2 +

α

2

)
ξD
∣∣Mk

c

∣∣2
α2|M|2 − βD ≤ 0 (41c)

then Lyapunov function is non-increasing; that is, Vk+1 ≤ Vk.

Choice of critical parameters. We discuss several choices of parameters that satisfy (41).

• If β1 = 1−αL
2α

so that L
2
− 1

2α
+ β1 = 0, after rearranging terms, (41) is equivalent to

α ≤ 1

L
; ξd ≤ 2α(βd − βd+1)|M|2

|Mk
c |2

, ∀d ∈ [1, D − 1]; ξD≤ 2αβD|M|2

|Mk
c |2

. (42)

• If β1 ̸= 1−αL
2α

, after rearranging terms, (41) is equivalent to

1

L+ 2β1
≤ α ≤ 1 + (1 + ρ)−1

L+ 2β1
; (43a)

ξd ≤ 2α(βd − βd+1)|M|2

((1 + ρ−1)(2αβ1 + αL− 1) + 1) |Mk
c |2

, ∀d = 1, . . . , D − 1 (43b)

ξD≤ 2αβD|M|2

((1 + ρ−1)(2αβ1 + αL− 1) + 1) |Mk
c |2

. (43c)

i) If ρ → 0 and β1 → 0, (43a) becomes 1/L ≤ α ≤ 2/L.
ii) If α = 1/L and β1 > 0, (43b) and (43c) reduce to

ξd ≤ 2α(βd − βd+1)|M|2

(2αβ1(1 + ρ−1) + 1)|Mk
c |2

and ξD≤ 2αβD|M|2

(2αβ1(1 + ρ−1) + 1) |Mk
c |2

. (44)

Since (42) is in a simpler form, we will use this choice in the subsequent iteration and communication analysis.
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D Proof of Theorem 1

Using Lemma 3, it follows that (with c̃(α, β1) :=
L
2
− 1

2α
+ β1)

Vk+1 − Vk

≤−
(α
2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−

(
βD −

(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1 −

(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

(a)

≤−
(
αµ−2c̃(α, β1) (1 + ρ)µα2)(L(θk)−L(θ∗)

)
−

(
βD −

(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1−

(
c̃(α, β1)

(
1 + ρ−1)α2+

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2 (45)

where (a) uses the strong convexity in Assumption 2, implying [9, Appendix B]

2µ
(
L(θk)− L(θ∗)

)
≤
∥∥∥∇L(θk)

∥∥∥2 . (46)

With the definition of c(α; {ξd}) as

c(α; {ξd}) := min
k

min
d=1,...,D−1

{
αµ−2c̃(α, β1) (1 + ρ)µα2, 1−

(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

) ξD
∣∣Mk

c

∣∣2
α2βD|M|2 ,

1− βd+1

βd
−
(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

) ξd
∣∣Mk

c

∣∣2
α2βd|M|2

}
(47)

from (47), we have

Vk+1 − Vk
(b)

≤ − c(α; {ξd})

(
L(θk)− L(θ∗) +

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2)

=− c(α; {ξd})Vk. (48)

Rearranging terms in (45), we can conclude that

Vk+1 ≤ (1− c(α; {ξd}))Vk. (49)

The Q-linear convergence of Vk implies the R-linear convergence of L(θk)−L(θ∗). The proof is complete.

Iteration complexity. Since the linear rate constant in (49) is in a complex form, we discuss the iteration
complexity under a set of specific parameters (not necessarily optimal). Specifically, we choose

ξ1 = . . . = ξD := ξ <
1

D
and α :=

1−Dξ/η

L
and βd :=

(D − d+ 1)ξ

2αη
, ∀d = 1, · · · , D (50)

where η is a constant. Clearly, (50) satisfies the condition in (42).

Plugging (50) into (47), we have (cf. c̃(α, β1) = 0)

Γ := 1− c(α; {ξd}) = max
k

max
d=1,...,D

{
1− 1−Dξ/η

κ
,
η
∣∣Mk

c

∣∣2
|M|2

,
D − d+ η

∣∣Mk
c

∣∣2 / |M|2

D − d+ 1

}
. (51)

If we choose η :=
√
Dξ such that

η|Mk
c |2

|M|2 < 1, we can simplify (51) as

Γ = max
k

{
1− 1−

√
Dξ

κ
,
D − 1 +

√
Dξ
∣∣Mk

c

∣∣2 / |M|2

D

}
(a)
= 1− 1−

√
Dξ

κ
. (52)
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where (a) holds since we choose D ≤ κ. With the linear convergence rate in (52), we can derive the iteration
complexity as

VK

V0
≤
(
1− 1−

√
Dξ

κ

)K

≤ ϵ

=⇒K log

(
1− 1−

√
Dξ

κ

)
≤ log (ϵ)

=⇒ log

(
1

ϵ

)
≤ K log

(
1− 1−

√
Dξ

κ

)−1 (b)

≤ K
κ

1−
√
Dξ

− 1

=⇒K ≥ κ

1−
√
Dξ

log
(
ϵ−1) (53)

where (b) uses log(1 + x) ≤ x, ∀x > −1. Therefore, we can conclude that ILAG(ϵ) =
κ

1−
√
Dξ

log
(
ϵ−1
)
.

E Proof of Lemma 4

The idea is essentially to show that if (18) holds, then for any iteration k, the worker m will not violate
the trigger conditions in (12) so that does not communicate with the server at the current iteration, if it has
communicated with the server at least once during the previous consecutive d iterations.

Suppose at iteration k, the most recent iteration that the worker m did communicate with the server is iteration
k − d′ with 1 ≤ d′ ≤ d. Thus, we have θ̂

k−1

m = θk−d′ , which implies that

L2
m

∥∥∥θ̂k−1

m − θk
∥∥∥2 = L2

m

∥∥∥θk−d′ − θk
∥∥∥2

= d′L2
H

2(m)

d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(a)

≤ ξd
α2|M|2

d′∑
b=1

∥∥∥θk+1−b − θk−b
∥∥∥2

(b)

≤
∑d′

b=1 ξb
∥∥θk+1−b − θk−b

∥∥2
α2|M|2 +

∑D
b=d′+1 ξb

∥∥θk+1−b − θk−b
∥∥2

α2|M|2

= RHS of (12b) (54)

where (a) follows since the condition (18) is satisfied, so that

H
2(m) ≤ ξd

dα2L2M2
≤ ξd

d′α2L2M2
(55)

and (b) follows from our choice of {ξd} such that for 1 ≤ d′ ≤ d, we have ξd ≤ ξd′ ≤ . . . ≤ ξ1 and∥∥θk+1−b − θk−b
∥∥2 ≥ 0. Therefore, the trigger condition (12b) does not activate, and the worker m does

not communicate with the server at iteration k. With an additional step that ∥∇Lm(θ̂
k−1

m ) −∇Lm(θk)∥2 ≤
L2

m∥θ̂
k−1

m −θk∥2, we can also prove that if θ̂
k−1

m = θk−d′ , the trigger condition (12a) does not activate either.

Note that the above argument holds for any 1 ≤ d′ ≤ d, and thus if (18) holds, the worker m communicates
with the server at most every other d iterations.

F Proof of Proposition 5

The condition of communication reduction given in (18) is equivalent to

H
2(m) ≤ ξd

α2L2|M|2d := γd. (56)

Together with the definition of heterogeneity score function in (19), given γd, the quantity h (γd) essentially
lower bounds the percentage of workers that communicate with the server at most every other d iterations; that
is at most K/(d+ 1) times until iteration K.

To calculate the communication complexity of LAG, we split all the workers into D + 1 subgroups:
M0 - every worker m that does not satisfy H2(m) < γ1;
· · ·
Md - every worker m that does satisfy H2(m) < γd but does not satisfy H2(m) < γd+1;
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Figure 6: The area of the light blue polygon lower bounds the quantity ∆C̄(h; ξ) in (60). It is
generated according to γd := 1/(dγ1) and D=10.

· · ·
MD - every worker m that does satisfy H2(m) < γD .

The above splitting is according to our claims in Lemma 4, which splits all the workers without overlapping.
The neat thing is that for workers in each subgroup Md, we can upper bound its communication rounds until
the current iteration. Hence, the total communication complexity of LAG is upper bounded by

CLAG(ϵ) =
∑

m∈M

Communication rounds of workerm

=

D∑
d=0

Total communication rounds of workers inMd

=

D∑
d=0

|Md| × ILAG(ϵ)

d+ 1

(a)

≤
(
1− h (γ1)+

1

2

(
h (γ1)− h (γ2)

)
+. . .+

1

D + 1
h (γD)

)
M ILAG(ϵ)

=

(
1−

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γd)︸ ︷︷ ︸

∆C̄(h;{γd})

)
M ILAG(ϵ) :=

(
1−∆C̄(h; {γd})

)
M ILAG(ϵ) (57)

where (a) uses the definition of subgroups {Md} and the function h(γ) in (19).

If we choose the parameters as those in (50), we can simplify the expression of (57) and arrive at

CLAG(ϵ) ≤
(
1−∆C̄(h; ξ)

) Mκ

1−
√
Dξ

log(ϵ−1) (58)

where ∆C̄(h; {γd}) is written as ∆C̄(h; ξ) in this case, because γd := ξ
(1−

√
Dξ)2M2d

, ∀d.

On the other hand, even with a larger stepsize α = 1/L, the communication complexity of GD is CGD(ϵ) :=
Mκ log(ϵ−1). Therefore, if we can show that

1−∆C̄(h; ξ)
1−

√
Dξ

≤ 1 ⇐⇒
√

Dξ ≤ ∆C̄(h; ξ) (59)

then it is safe to conclude that the communication complexity of LAG is lower than that of GD. Using the
nondecreasing property of h, we have that (cf. the area of the light blue polygon in Figure 6)

∆C̄(h; ξ)∈
[
Dh(γD)

D + 1
,
Dh(γ1)

D + 1

]
⊆
[
0,

D

D + 1

]
(60)

where we use the fact that 0 ≤ h(γ) ≤ 1. Since for any ξ ∈ (0, 1/D), there exists a function h such that
∆C̄(h; ξ) achieves any value within [0, D/(D + 1)]. Therefore, we can conclude that if ξ ≤ D

(D+1)2
so that

√
Dξ ≤ D/(D + 1), there always exists h(γ) or a distributed learning setting such that CLAG(ϵ) < CGD(ϵ).

G Proof of Theorem 2

Before establishing the convergence in the convex case, we present a critical lemma.
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Lemma 6 Under Assumptions 1-2, the sequences of Lyapunov functions {Vk} satisfy

(
Vk)2≤(∥∥∥∇L(θk)

∥∥∥2+ D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2)(∥∥∥θk−θ∗

∥∥∥2+ D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2)

:= Vk
(1) × Vk

(2) (61)

where Vk
(1) and Vk

(2) denote the two terms upper bounding
(
Vk
)2

, respectively.

Proof: Define two vectors as

ak :=
[
∇⊤L(θk),

√
β1

∥∥∥θk − θk−1
∥∥∥ , . . . ,√βD

∥∥∥θk+1−D − θk−D
∥∥∥]⊤ (62a)

bk :=
[
(θk − θ∗)⊤,

√
β1

∥∥∥θk − θk−1
∥∥∥ , . . . ,√βD

∥∥∥θk+1−D − θk−D
∥∥∥]⊤ . (62b)

The convexity of L(θ) implies that

L(θk)− L(θ∗) ≤ ⟨∇L(θk),θk − θ∗⟩. (63)

Recalling the definition of Vk in (13), it follows that

Vk = L(θk)− L(θ∗) +

D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2

≤ ⟨ak,bk⟩ ≤ ∥ak∥∥bk∥ (64)

and squaring both sides of (64) leads to(
Vk
)2

≤

(∥∥∥∇L(θk)
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2)(∥∥∥θk−θ∗

∥∥∥2+ D∑
d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2) (65)

from which we can conclude the proof.

Now we are ready to prove Theorem 2. Lemma 3 implies that

Vk+1 − Vk ≤−
(α
2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−

(
βD −

(̃
c(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1 −

(̃
c(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

≤− c(α; {ξd})

(∥∥∥∇L(θk)
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2)

=− c(α; {ξd})V
k
(1) (66)

where the definition of c(α; {ξd}) is given by

c(α; {ξd}) := min
k

{
α

2
−c̃(α, β1) (1 + ρ)α2, 1−

(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

) ξD
∣∣Mk

c

∣∣2
α2βD|M|2 ,

1− βd+1

βd
−
(
c̃(α, β1)

(
1 + ρ−1)α2 +

α

2

) ξ
∣∣Mk

c

∣∣2
α2βd|M|2

}
. (67)

On the other hand, without strong convexity, we can bound Vk
(2) as

Vk
(2) :=

∥∥∥θk−θ∗
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2 ≤ R (68)

where the constant R in the last inequality exists since L(θ) is coercive in Assumption 2 so that L(θ∗) ≤
L(θk) < ∞ implies ∥θk∥ < ∞ thus

∥∥θk−θ∗∥∥ < ∞ and
∥∥θk−θk−1

∥∥ < ∞.

Plugging (66) and (26) into (61) in Lemma 6, we have(
Vk
)2

≤ Vk
(1)Vk

(2) ≤ R

c(α; {ξd})
(Vk − Vk+1). (69)

18



Using the fact that the non-increasing property of Vk in Lemma 3, we have that

Vk+1Vk ≤
(
Vk
)2

≤ R

c(α; {ξd})
(Vk − Vk+1). (70)

Dividing Vk+1Vk on both sides of (70) and rearranging terms, we have

c(α; {ξd})
R

≤ 1

Vk+1
− 1

Vk
. (71)

Summing up (71), it follows that

Kc(α; {ξd})
R

≤ 1

VK
− 1

V0
≤ 1

VK
(72)

from which we can conclude the proof.

H Proof of Theorem 3

Lemma 3 implies that

Vk+1 − Vk ≤−
(α
2
− c̃(α, β1) (1 + ρ)α2

)∥∥∥∇L(θk)
∥∥∥2

−

(
βD −

(̃
c(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξD ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−D − θk−D
∥∥∥2

−
D−1∑
d=1

(
βd − βd+1 −

(̃
c(α, β1)

(
1 + ρ−1)α2 +

α

2

)ξd ∣∣Mk
c

∣∣2
α2|M|2

)∥∥∥θk+1−d− θk−d
∥∥∥2

≤− c(α; {ξd})

(∥∥∥∇L(θk)
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2) (73)

Summing up both sides of (73), we have

c(α; {ξd})
K∑

k=1

(∥∥∥∇L(θk)
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2) ≤ V1 − VK+1. (74)

Taking K → ∞, we have that

c(α; {ξd}) lim
K→∞

K∑
k=1

(∥∥∥∇L(θk)
∥∥∥2+ D∑

d=1

βd

∥∥∥θk+1−d − θk−d
∥∥∥2) ≤ V1 (75)

where the last inequality holds since the Lyapunov function (13) is lower bounded by Vk ≥ 0, ∀k, and V1 < ∞.
Given the choice of α and {ξd} in (41), the constant in (75) is c(α; {ξd}) > 0, and thus two terms in the LHS
of (75) are summable, which implies that

∞∑
k=1

∥∥∥θk+1 − θk
∥∥∥2 < ∞ (76)

and likewise that
∞∑

k=1

∥∥∥∇L(θk)
∥∥∥2 < ∞. (77)

Using the implications of summable sequences in [1, Lemma 3], the theorem readily follows.

I Communication complexity in (non)convex cases

In the general smooth (possibly nonconvex) case, we compare the communication complexity between LAG
and GD, in terms of achieving ϵ-gradient error; e.g., mink=1,··· ,K

∥∥∇L(θk)
∥∥2 ≤ ϵ. Denote CN−GD(ϵ) as the

communications cost by nonconvex GD to achieve ϵ-gradient error; and CN−LAG(ϵ) denotes the communica-
tions cost by LAG in nonconvex cases. In such case, we can establish the following result.

Proposition 7 (communication complexity in general case) Under Assumption 1, with γd, h(γ), and
∆C̄(h; {γd}) defined as in Proposition 5, the communication complexity of LAG is bounded by

CN−LAG(ϵ) ≤
(
1−∆C̄(h; {γd})

) CN−GD(ϵ)

(1−
∑D

d=1 ξd)
. (78)
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Choosing the parameters as (16), if the heterogeneity function h(γ) satisfies that there exists γ′ such that
γ′ < h(γ′)

(D+1)DM2 , then we have that

CN−LAG(ϵ) < CN−GD(ϵ). (79)

Proof: Choosing βd := 1
2α

∑D
τ=d ξτ in the Lyapunov function (13), we have

Vk := L(θk)− L(θ∗) +

D∑
d=1

(
∑D

j=d ξj)

2α
∥θk+1−d − θk−d∥2 (80)

Using Lemma 2, we arrive at

Vk+1 − Vk ≤ −α

2

∥∥∥∇L(θk)
∥∥∥2+(L

2
− 1

2α
+

∑D
d=1 ξd

2α

)∥∥∥θk+1 − θk
∥∥∥2 . (81)

If the stepsize is chosen as α = 1
L
(1−

∑D
d=1 ξd), we have

Vk+1 − Vk ≤ −α

2

∥∥∥∇L(θk)
∥∥∥2 . (82)

Summing up both sides from k = 1, . . . ,K, and initializing θ1−D = · · · = θ0 = θ1, we have

K∑
k=1

∥∥∥∇L(θk)
∥∥∥2 ≤ 2

α
V1 =

2

α
(L(θ1)− L(θ∗)) =

2L

1−
∑D

d=1 ξd
(L(θ1)− L(θ∗)) (83)

which implies that

min
k=1,··· ,K

∥∥∥∇L(θk)
∥∥∥2 ≤ 2L

(1−
∑D

d=1 ξd)K
(L(θ1)− L(θ∗)) (84)

With regard to GD, it has the following guarantees [33]

min
k=1,··· ,K

∥∥∥∇L(θk)
∥∥∥2 ≤ 2L

K
(L(θ1)− L(θ∗)). (85)

Thus, to achieve the same ϵ-gradient error, the iteration of LAG is (1 −
∑D

d=1 ξd)
−1 times than GD. Similar

to the derivations in (57), since the LAG’s average communication rounds per iteration is (1 −∆C̄(h; {γd}))
times that of GD, we arrive at (78).

If we choose ξ1 = ξ2 = . . . = ξD = ξ, then α = 1−Dξ
L

, and γd = ξ/d

α2L2M2 , d = 1, 2, . . . , D. As h(·) is
non-decreasing, if γD ≥ γ′, we have h(γD) ≥ h(γ′). With the definition of ∆C̄(h; {γd}) in (20), we can get

∆C̄(h; {γd}) =
D∑

d=1

(
1

d
− 1

d+ 1

)
h (γd) ≥

D∑
d=1

(
1

d
− 1

d+ 1

)
h (γD) ≥ D

D + 1
h(γ′). (86)

Therefore, the total communications are reduced if(
1− D

D + 1
h(γ′)

)
· 1

1−Dξ
< 1 (87)

which is equivalent to h(γ′) > (D + 1)ξ. The condition γD ≥ γ′ requires

ξ/D ≥ γ′(1−Dξ)2|M|2. (88)

Obviously, if ξ > γ′D|M|2, then (88) holds. In summary, we need

γ′ <
ξ

DM2
<

h(γ′)

(D + 1)DM2
. (89)

Therefore, we need the function h to satisfy the property: there exists γ′ such that (89) holds.

J Simulation Details

This section provides simulation details of the linear regression and logistic regression tasks.
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Dataset # features (d) # samples (N ) worker index
Housing 13 506 1,2,3
Body fat 14 252 4,5,6
Abalone 8 417 7,8,9

Table 4: A summary of real datasets used in the linear regression tests.

Dataset # features (d) # samples (N ) worker index
Ionosphere 34 351 1,2,3
Adult fat 113 1605 4,5,6

Derm 34 358 7,8,9

Table 5: A summary of real datasets used in the logistic regression tests.

J.1 Details for linear regression

For linear regression task, consider the square loss function at worker m as

Lm(θ) :=
∑

n∈Nm

(
yn − x⊤

n θ
)2

(90)

where {xn, yn, ∀n ∈ Nm} are data at worker m.

Real datasets. Performance is tested on the following benchmark datasets [2]; see a summary in Table 4.

• Housing dataset [3] contains 506 samples (xn, yn) with yn representing the median value of house price,
which is affected by features in xn such as crime rate and weighted distances to Boston employment centers.

• Body fat dataset contains 252 samples (xn, yn) with yn describing the percentage of body fat, which is
determined by underwater weighing and various body circumference measurements in xn.

• Abalone dataset contains 417 samples (xn, yn) with yn for the age of abalone and xn for the physical
measurements of abalone, e.g., sex, height, and shell weight.

J.2 Details for logistic regression

For logistic regression, consider the binary logistic regression problem

Lm(θ) :=
∑

n∈Nm

log
(
1 + exp(−ynx

⊤
n θ)

)
+

λ

2
∥θ∥2. (91)

where λ = 10−3 is the regularization constant.

Real datasets. Performance is tested on the following real datasets; see a summary in Table 5.

• Ionosphere dataset [4] is to predict whether it is a “good” radar return or not – it is “good” if the features in
xn show evidence of some type of structure in the ionosphere.

• Adult dataset [5] contains samples that predict whether a person makes over 50K a year based on features in
xn such as work-class, education, and marital-status.

• Derm dataset [6] is for differential diagnosis of erythemato-squaxous diseases, which is determined by clini-
cal and histopathological attributes in xn such as erythema, family history, focal hypergranulosis and melanin
incontinence.

Synthetic datasets for both linear and logistic regression tasks are generated as follows. For each worker, we
generate 50 samples xn ∈ R50 from the standard Gaussian distribution, and rescale the data to mimic the
increasing smoothness constants L1, · · · , LM as

[L1, . . . , L9] = [4, 6.76, 12.67, 25.97, 57.06, 131.92, 316.03, 775.26, 1931.57]. (92)

and for the uniform smoothness constants L1 = LM = 4.

Due to the limited space in the manuscript, this section will present the parameters used in the logistic regres-
sion test on the Gisette dataset. The task is a binary classification which discriminates between to confusable
handwritten digits: the four and the nine. The dataset was taken from [7] which was constructed from the
MNIST data [8]. After random selecting subset of samples and eliminating all-zero features, it contains 2000
samples xn ∈ R4837. We randomly split this dataset into nine workers.

As those in Section 4, for LAG-WK, we choose ξd = ξ = 1/D with D = 10, and for LAG-PS, we choose
more aggressive ξd = ξ = 10/D with D = 10 in all the tests. Stepsizes for LAG-WK, LAG-PS, and GD
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are chosen as α = 1/L; to optimize performance and guarantee empirical stability, stepsizes for Cyc-IAG and
Num-IAG are α = 1/(ML). The regularization parameter is set to λ = 10−4.
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