
Appendix: Loss Functions for Multiset Prediction

Sean Welleck1,2, Zixin Yao1, Yu Gai1, Jialin Mao1, Zheng Zhang1, Kyunghyun Cho2,3

1New York University Shanghai
2New York University

3CIFAR Azrieli Global Scholar
{wellecks,zixin.yao,yg1246,jialin.mao,zz,kyunghyun.cho}@nyu.edu

A Definitions

We review definitions of multiset and exact match, and present multiset versions of precision, recall,
and F1. For a comprehensive overview of multisets, refer to [5, 3].

Multiset A multiset is a set that allows for multiple instances of elements. Multisets are unordered,
i.e. {x, x, y} and {x, y, x} are equal. We now introduce the formal definition and convenient ways of
representing a multiset.

Formally, a multiset is a pair Y = (C, µ), where C = {c1, ..., cp} is a ground set, and µ : C → N≥0
is a multiplicity function that maps each ci ∈ C to the number of times it occurs in the multiset. The
multiset cardinality is defined as |Y| =

∑
c∈C µ(c).

A multiset can be enumerated by numbering each element instance and representing the multiset
as a size |Y| set: Y = {c(1)1 , c

(2)
1 , ..., c

(µ(c1))
1 , c

(1)
2 , ..., c

(µ(c2))
2 , ..., c1p, ..., c

(µ(cp))
p }. This allows for

notation such as
∑
c∈Y .

An additional compact notation is Y = {y1, y2, ..., y|Y|}, where each yi is an auxiliary variable
referring to an underlying element c ∈ C of the ground set.

For instance, the multiset Y = {cat, cat, dog} can be defined as Y = (C, µ), where C =
{c1 = cat, c2 = dog, c3 = fish}, µ(cat) = 2, µ(dog) = 1, µ(fish) = 0, and can be written as
Y = {c(1)1 = cat, c(2)1 = cat, c(1)2 = dog} or Y = {y1 = cat, y2 = cat, y3 = dog}.
For multiset analogues of common set operations (e.g. union, intersection, difference), and the notion
of a subset, see [5, 3].

Exact Match (EM) Two multisets exactly match when their elements and multiplicities are the
same. For example, {x, y, x} exactly matches {y, x, x}, while {x, y, x} does not exactly match
{z, y, z} or {x, y}.

Formally, let Ŷ = (C, µŶ), Y = (C, µY) be multisets over a common ground set C. Then Ŷ and
Y exactly match if and only if µŶ (c) = µY (c) for all c ∈ C. The evaluation metric EM(Ŷ,Y) is 1
when Ŷ and Y exactly match, and 0 otherwise.

Note that exact match is the same as multiset equality, i.e. Ŷ = Y , as defined in [3].

Precision Precision gives the ratio of correctly predicted elements to the number of predicted
elements. Specifically, let Ŷ = (C, µŶ), Y = (C, µY) be multisets. Then

Prec(Ŷ,Y) =
∑
y∈Ŷ Iy∈Y

|Ŷ|
.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

The summation and membership are done by enumerating the multiset. For example, the multisets
Ŷ = {a, a, b} and Y = {a, b} are enumerated as Ŷ = {a(1), a(2), b(1)} and Y = {a(1), b(1)},
respectively. Then clearly a(1) ∈ Y but a(2) 6∈ Y .

Formally, precision can be defined as

Prec(Ŷ,Y) = 1−
∑
c∈C max

(
µŶ (c)− µY (c), 0

)
|Ŷ|

where the summation is now over the ground set C. Intuitively, precision decreases by 1
|Ŷ| each time

an extra class label is predicted.

Recall Recall gives the ratio of correctly predicted elements to the number of ground-truth elements.
Recall is defined analogously to precision, as:

Rec(Ŷ,Y) =
∑
y∈Ŷ Iy∈Y

|Y|
.

Formally,

Rec(Ŷ,Y) = 1−
∑
c∈C max

(
µY (c)− µŶ (c), 0

)
|Y|

.

Intuitively, recall decreases by 1
|Y| each time an element of Y is not predicted.

F1 The F1 score is the harmonic mean of precision and recall:

F1(Ŷ,Y) = 2 · Prec(Ŷ,Y) · Rec(Ŷ,Y)
Prec(Ŷ,Y) + Rec(Ŷ,Y)

.

B Proof of Remark 1

Proof. Note that the precision with ŷ<t is defined as

Prec(ŷ<t,Y) =
∑
y∈ŷ<t Iy∈Y

|ŷ<t|
.

Because ŷ ∼ π∗(ŷ<t, x,Yt) ∈ Yt,

Prec(ŷ≤t,Y) =
1 +

∑
y∈ŷ<t Iy∈Y

1 + |ŷ<t|
.

Then,

Prec(ŷ≤t,Y)− Prec(ŷ<t,Y) =
1− Prec(ŷ<t,Y)

1 + |ŷ<t|
≥ 0,

because 0 ≤ Prec(ŷ<t,Y) ≤ 1 and |ŷ<t| ≥ 0. The equality holds when Prec(ŷ<t,Y) = 1.

Similarly, we start with the definition of the recall:

Rec(ŷ<t,Y) =
∑
y∈ŷ<t Iy∈Y

|Y|
.

Because ŷ ∼ π∗(ŷ<t, x,Yt) ∈ Yt,

Rec(ŷ≤t,Y) =
1 +

∑
y∈ŷ<t Iy∈Y

|Y|
.

Since the denominator is identical,

Rec(ŷ≤t,Y)− Rec(ŷ<t,Y) =
1

|Y|
≥ 0.

2

C Proof of Remark 2

Proof. When t = 1,
Prec(ŷ≤1,Y) = 1,

because ŷ1 ∼ π∗(∅, x,Y1) ∈ Y . From Remark 1, we know that

Prec(ŷ≤t,Y) = Prec(ŷ<t,Y),

when Prec(ŷ<t,Y) = 1. By induction, Prec(ŷ≤|Y|,Y) = 1.

From the proof of Remark 1, we know that the recall increases by 1
Y each time, and we also know

that
Rec(ŷ≤1,Y) =

1

|Y|
,

when t = 1. After |Y| − 1 steps of executing the oracle policy, the recall becomes

Rec(ŷ≤|Y|,Y) =
1

|Y|
+

|Y|∑
t′=2

1

|Y|
= 1.

D Proof of Remark 4

Proof. Given a multiset Y with |Y| ≤M , define C = {c(m)
i |1 ≤ i ≤ |C|, 1 ≤ m ≤M}, where c(m)

i
is interpreted as the m’th instance of class ci. Writing Y in enumerated form it is clear that Y ⊂ C.
Let t range from 1 to |Y| and define Yt as in Definition 1.

Now, define the oracle policy as a distribution over C, according to Definition 2:

π
(t)
∗ (y = c

(m)
i |ŷ<t, x,Yt) =

{
1
|Yt| , if c(m)

i ∈ Yt
0, otherwise

.

Therefore,

H
(
π
(t)
∗

)
= −

|C|∑
i=1

M∑
m=1

π
(t)
∗ (y = c

(m)
i) log π

(t)
∗ (y = c

(m)
i)

= −
∑
c∈Yt

1

|Yt|
log

1

|Yt|

=
1

|Yt|
∑
c∈Yt

log |Yt|

= log |Yt|

where 0 log 0 is defined as 0 in the first step.

Now, observe that |Yt| > |Yt+1| since ŷt ∼ π(t)
∗ is in Yt with probability 1 and Yt+1 ← Yt\{ŷt} by

definition. Hence

H
(
π
(t)
∗

)
= log |Yt| > log |Yt+1| = H

(
π
(t+1)
∗

)
.

E Model Descriptions

Model An input x is first processed by a tower of convolutional layers, resulting in a feature volume
of size w′ × h′ with d feature maps, i.e., H = φ(x) ∈ Rw′×h′×d. At each time step t, we resize the
previous prediction’s embedding emb(ŷt−1) ∈ R(w′)(h′) to be a w′ × h′ tensor and concatenate it
with H , resulting in H̃ ∈ Rw′×h′×(d+1). This feature volume is then fed into a stack of convolutional

3

Figure 1: Graphical illustration of a predictor used throughout the experiments.

LSTM layers. The output from the final convolutional LSTM layer C ∈ Rw′×h′×q is spatially
average-pooled, i.e., c = 1

w′h′

∑w′

i=1

∑h′

j=1 Ci,j,· ∈ Rq. This feature vector c is then turned into a
conditional distribution over the next item after affine transformation followed by a softmax function.
When the one-step variant of aggregated distribution matching is used, we skip the convolutional
LSTM layers, i.e., c = 1

w′h′

∑w′

i=1

∑h′

j=1Hi,j,· ∈ Rd.

See Fig. 1 for the graphical illustration of the entire network. See Table 1 for the details of the
network for each dataset.

Preprocessing For MNIST Multi, we do not preprocess the input at all. In the case of MS COCO,
input images are of different sizes. Each image is first resized so that its larger dimension has 600
pixels, then along its other dimension is zero-padded to 600 pixels and centered, resulting in a
600x600 image.

Training The model is trained end-to-end, except ResNet-34 which remains fixed after being
pretrained on ImageNet. For all the experiments, we train a neural network using Adam [2] with a
fixed learning rate of 0.001, β of (0.9, 0.999) and ε of 1e-8. The learning rate was selected based
on the validation performance during the preliminary experiments, and the other parameters are the
default values. For MNIST Multi, the batch size was 64, and for COCO was 32. For the selection
strategy experiments, 5 runs with different random seeds were used.

Table 1: Network Architectures

Data MNIST Multi MS COCO

CNN

conv 5× 5 feat 10

ResNet-34

max-pool 2× 2
conv 5× 5 feat 10

max-pool 2× 2
conv 5× 5 feat 32

max-pool 2× 2

emb(ŷt−1) 81 361

ConvLSTM conv 3× 3 feat 32 conv 3× 3 feat 512
conv 3× 3 feat 32 conv 3× 3 feat 512

Feedforward Alternative While we use a recurrent model in the experiments, the multiset loss can
be used with a feedforward model as follows. A key use of the recurrent hidden state is to retain the
previously predicted labels, i.e. to remember the full conditioning set ŷ1, ..., ŷt−1 in p(yt|ŷ1, ..., ŷt−1).
Therefore, the proposed loss can be used in a feedforward model by encoding ŷ1, ..., ŷt−1 in the input
xt, and running the feedforward model for |Ŷ| steps, where |Ŷ| is determined using a termination
policy or the Special Class method detailed below. Note that compared to the recurrent model, this
approach involves additional feature engineering.

Termination Policy Alternative: Special Class An alternative strategy to support predicting
variable-sized multisets is to introduce a special item to the class set, called 〈END〉, and add it to the

4

final free label multiset Y|Y|+1 = {〈END〉}. Thus, the parametrized policy is trained to predict this
special item 〈END〉 once all the items in the target multiset have been predicted. This is analogous to
NLP sequence models which predict an end of sentence token [4, 1], and was used in [6] to predict
variable-sized multisets.

F Additional Experimental Details

F.1 Baseline Loss Functions

F.1.1 L1-step

The corresponding loss function for the one-step distribution matching baseline introduced in 3.1.1,
L1-step, is:

L1-step(x,Y, θ) =
∑
c∈C

q∗(c|x) log qθ(c|x) + λ(l̂θ(x)− |Y|)2,

where λ > 0 is a coefficient for balancing the contributions from the two terms.

F.1.2 Lseq

First define a rank function r that maps from one of the unique items in the class set c ∈ C to a
unique integer. That is, r : C → Z. This function assigns the rank of each item and is used to order
items yi in a target multiset Y . This results in a sequence S = (s1, . . . , s|Y|), where r(si) ≥ r(sj)
for all j > i, and si ∈ Y .

With this target sequence S created from Y using the rank function r, the sequence loss function is
defined as

Lseq(x,S, θ) = −
|S|∑
t=1

log πθ(st|s<t, x).

Minimizing this loss function is equivalent to maximizing the conditional log-probability of the
sequence S given x.

F.1.3 Ldm

In distribution matching, we consider the target multiset Y as a set of samples from a single,
underlying distribution q∗ over the class set C. This underlying distribution can be empirically
estimated by counting the number of occurrences of each item c ∈ C in Y . That is,

q∗(c|x) =
1

|Y|
∑
y∈Y

Iy=c,

where I is the indicator function.

Similarly, we can construct an aggregated distribution computed by the parametrized policy, here de-
noted as qθ(c|x). To do so, the policy predicts (y1, ..., y|Y|) by sampling from a predicted distribution
q
(t)
θ (yt|y<t, x) at each step t. The per-step distributions q(t)θ are then averaged to form the aggregate

distribution qθ.

Learning is equivalent to minimizing a divergence between q∗ and qθ. The Lpdm baseline uses

Lpdm(x,Y, θ) = ‖q∗ − qθ‖p,

where q∗ and q are the vectors representing the corresponding categorical distributions, and p = 1 in
the experiments. The LKL

dm baseline uses KL divergence:

LKL
dm(x,Y, θ) = −

∑
c∈C

q∗(c|x) log qθ(c|x).

5

F.1.4 LRL

Instead of assuming the existence of an oracle policy, this approach solely relies on a reward function
r designed specifically for multiset prediction. The reward function is defined as

r(ŷt,Yt) =
{

1, if ŷt ∈ Yt
−1, otherwise

The goal is then to maximize the sum of rewards over a trajectory of predictions from a parametrized
policy πθ. The final loss function is

LRL = −Eŷ∼πθ

[
T∑
t=1

r(ŷ<t,Yt)− λH(πθ(ŷ<t, x))

]
(1)

where the second term inside the expectation is the negative entropy multiplied with a regularization
coefficient λ. The second term encourages exploration during training. As in [6], we use REIN-
FORCE [7] to stochastically minimize the loss function above with respect to πθ. This loss function
is optimal in that the return, i.e., the sum of the step-wise rewards, is maximized when both the
precision and recall are maximal (= 1).

F.2 Input-Dependent Rank Function

For the Lseq baseline, a domain-specific, input-dependent rank function can be defined to transform
the target multiset into a sequence. A representative example is an image input with bounding box
annotations. Here, we present two input-dependent rank functions in such a case.

First, a spatial rank function rspatial assigns an integer rank to each item in a given target multiset Y
such that

rspatial(yi|x) < rspatial(yj |x),
if posx(xi) < posx(xj) and posy(xi) < posy(xj),

where xi and xj are the objects corresponding to the items yi and yj .

Second, an area rank function rarea decides the rank of each label in a target multiset according to the
size of the corresponding object inside the input image:

rarea(yi|x) < rarea(yj |x), if area(xi) < area(xj).

The area may be determined based on the size of a bounding box or the number of pixels, depending
on the level of annotation.

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] D. Singh, A. M. Ibrahim, T. Yohanna, and J.N Singh. An overview of the applications of multisets.
Novi Sad Journal of Mathematics, 37(3):73–92, 2007.

[4] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[5] Apostolos Syropoulos. Mathematics of Multisets, pages 347–358. Springer, Berlin, Heidelberg,
2001.

[6] Sean Welleck, Kyunghyun Cho, and Zheng Zhang. Saliency-based sequential image attention
with multiset prediction. In Advances in neural information processing systems, 2017. to appear.

[7] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

6

	Definitions
	Proof of Remark 1
	Proof of Remark 2
	Proof of Remark 4
	Model Descriptions
	Additional Experimental Details
	Baseline Loss Functions
	L1-step
	Lseq
	Ldm
	LRL

	Input-Dependent Rank Function

