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1 Detailed Algorithms

Algorithm 1: Compute N-step Q-values

Input : Trajectories Tm = {stm, atm, rtm, st+1
m |t = 0, 1, 2, ..., T − 1}

Parametric value function Qθ
Output :QNP(T , ·)
for m := 1,M do

s0:T−1, a0:T−1, r0:T−1 = Tm
V (sT−1) := maxaQθ(s

T−1, a)
for t := T − 2, 0 do

for ∀a ∈ A do
if at = a then

QNP(s
t, a) := rt + γV (st+1)

else
QNP(s

t, a) := Qθ(s
t, a)

end
end
V (st) := QNP(s

t, at)
end

end
return QNP(·, ·)

∗denotes equal contribution.
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Algorithm 2: Trajectory-Centric Planning
Input : Trajectories Tm = {smt , amt , rmt , smt+1|t = 0, 1, 2, ..., T − 1}

Parametric value function Qθ
Output :QNP(T , ·)
for m := 1,M do

sm0:T−1, a
m
0:T−1, r

m
0:T−1 = Tm

V (smT−1) := maxaQθ(s
m
T−1, a)

for t := T − 2, 0 do
for ∀a ∈ A do

if amt = a then
QNP(s

m
t , a) := rmt + γV (smt+1)

else
QNP(s

m
t , a) := Qθ(s

m
t , a)

end
end
VNP(s

m
t ) := maxaQNP(s

m
t , a)

end
end
return QNP(·, ·)

Algorithm 3: Kernel-Based Reinforcement Learning
Input :Query state-action pair (ŝ, â)

Replay buffer Da = {sak, rak , s′ak |k = 1, 2, ...,m}∀a ∈ A
Number of value iteration steps limit
Pairwise similarity function κ

Output :Q(ŝ, â)
for k0 := 1,m do

for a0 := 1, A do
for k := 1,m do

for a := 1, A do
P (s′a0k0 , a, s

a
k) := κ(s′a0k0 , s

a
k)

end
end

end
end
∀a, k : V0(s

′a
k ) := 0

for i := 1, limit do
for a0 := 1, A do

for k0 := 1,m do
Vi(s

′a0
k0

) := maxa
∑m
k=0 P (s

′a0
k0
, a, sak)[r

a
k + γVi−1(s

′a
k )]

end
end

end
return

∑m
k=0 κ(ŝ, s

â
k)[rk + γVlimit(s

′â
k )]

2



2 Simple example

The task is to collect a given number of coins in the minimum number of steps possible, that can be
thought as a very simple variant of the travel salesman problem. At the beginning of each episode,
the agent and the coins are placed at a random location of a grid with size 5× 13. An example of the
environment with random initial location for the agent (cyan square) and the coins (yellow square) is
shwon in Figure 1. The purple squares correspond to walls. The agent can take four possible actions
{left, right, up, down} and receives a reward of 1 when collecting a coin and a reward of −0.01 at
every step. If the agent takes an action that would it move into a wall, it stays at its current position.
We restrict the maximum length of an episode to 500 steps.

Figure 1: Simple maze example, with two coins.

3 Atari Experiment Details

100×
Scoreagent − Scorerandom

Scorehuman − Scorerandom
. (1)

Human normalised scores are 100 for human level performance and 0 for a random agent.

For our Atari experiments, we used all the preprocessing steps used in DQN except for termination
of life loss. Our DQN implementation is slightly different from the original DQN implementation.
DQN runs a single environment and does one batch of replay every 4 agent steps (i.e. every 16
frames). We run 4 environments in parallel and do replay every agent step, this means that the ratio
of replay to number of frames seen is roughly the same as in the original DQN implementation. In
the figures in the main paper this is denoted as DQN(ours). We found this change to be beneficial in
terms of runtime, as it allows us to batch the observations before passing them to the neural network.
Also our evaluation procedure differs in so far that the original DQN implementation trains the agent
for 1 Million frames and then evaluates the scores over 500 thousand frames to get a score, we just
accumulate episode scores during training and report the average in the last training period. We found
this speeds up the computation, while not majorly impacting scores. We list all our hyper-parameters
in Table (1). Here ’no training period’ denotes the number of frames before we start using replay. We
only apply EVA once the replay buffer is fully occupied, i.e. after 500k steps (or 2M frames). We are
using Adam as an optimizer with all settings being the tensorflow default, except for the learning rate.
As in DQN we are using a target network, however we update every 50 steps. We found this to better
for us in combination with Adam.
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Temperature 1e-05
Insert period 20
k 5
λ 0.5
M 10
T 50
No training period 40000
Learning rate 0.0001
Replay buffer capacity 500000
Value buffer size 2000
Training batch size 48
Target network period 50
Number of parallel environments 4
Filter sizes [8, 4, 3]
Filter strides [4, 2, 1]
Channels [16, 32, 32]
Number of fully connected activations [256]

Table 1: Hyperparameters used on the Atari experiments.

4 Additional Baselines

We want to highlight that EVA should not be seen as an alternative to variants of DQN, but rather
as a strategy that could be easily combined with any of them. In fact, since EVA provides a way of
exploiting the replay buffer to improve data efficiency, it can be plugged in any existing algorithm
that uses this device. All that said, a comparative experiment is useful to provide intuition on the
proposed method, so here we provide a preliminary comparison to other DQN enhancements. Figure
3 shows results for Double DQN (DDQN) and DDQN trained with prioritized replay (DDQN+PR).2
We observe that EVA+DQN significantly outperforms DDQN in early stages of training, but achieves
a lower final score. Inspired in CLS, EVA is supposed to be particularly helpful in terms of data
efficiency, which we find satisfying. Although these comparisons are interesting in themselves, we
emphasize that the most meaningful comparisons would be between DDQN and EVA+DDQN and
between DDQN+PR and EVA+DDQN+PR. DDQN+PR achieved higher performance than either
approach in isolation, and we are confident that EVA will boost the performance of both DDQN and
DDQN+PR as well, as using the replay buffer to augment the behavior policy should not interfere
with the modified parameter updates used by DDQN nor the skewed data distribution induced by
PR. We believe that showing the complementary effects of EVA with other algorithms is a worthy
pursuit for future work, but we want to emphasize that this paper is focused on conceptual clarity in
presenting EVA, and so such additional experiments are out of scope.

2These curves were provided by the authors of the original papers, but unfortunately they did not provide
curves for PR alone.
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Figure 2: Learning Curves for all atari games.
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Figure 3: Performance on the Atari suite for DQN, EVA (λ = 0.4), Double DQN and double DQN
with prioritized replay.
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