
Context-Dependent Upper-Confidence Bounds for
Directed Exploration

Raksha Kumaraswamy1, Matthew Schlegel1, Adam White1,2, Martha White1
1Department of Computing Science, University of Alberta; 2DeepMind

{kumarasw, mkschleg}@ualberta.ca, adamwhite@google.com, whitem@ualberta.ca

Abstract

Directed exploration strategies for reinforcement learning are critical for learning
an optimal policy in a minimal number of interactions with the environment. Many
algorithms use optimism to direct exploration, either through visitation estimates
or upper-confidence bounds, as opposed to data-inefficient strategies like ε-greedy
that use random, undirected exploration. Most data-efficient exploration methods
require significant computation, typically relying on a learned model to guide
exploration. Least-squares methods have the potential to provide some of the
data-efficiency benefits of model-based approaches—because they summarize past
interactions—with the computation closer to that of model-free approaches. In
this work, we provide a novel, computationally efficient, incremental exploration
strategy, leveraging this property of least-squares temporal difference learning
(LSTD). We derive upper-confidence bounds on the action-values learned by
LSTD, with context-dependent (or state-dependent) noise variance. Such context-
dependent noise focuses exploration on a subset of variable states, and allows for
reduced exploration in other states. We empirically demonstrate that our algorithm
can converge more quickly than other incremental exploration strategies using
confidence estimates on action-values.

1 Introduction

Exploration is crucial in reinforcement learning, as the data gathering process significantly impacts
the optimality of the learned policies and values. The agent needs to balance the amount of time
taking exploratory actions to learn about the world, versus taking actions to maximize cumulative
rewards. If the agent explores insufficiently, it could converge to a suboptimal policy; exploring too
conservatively, however, results in many suboptimal decisions. The goal of the agent is data-efficient
exploration: to minimize how many samples are wasted in exploration, particularly exploring parts of
the world that are known, while still ensuring convergence to the optimal policy.

To achieve such a goal, directed exploration strategies are key. Undirected strategies, where random
actions are taken such as in ε-greedy, are a common default. In small domains these methods are
guaranteed to find an optimal policy [35], because the agent is guaranteed to visit the entire space—
but may take many many steps to do so, as undirected exploration can interfere with improving
policies in incremental control. In this paper we explore the idea of constructing confidence intervals
around the agent’s value estimates. The agent can use these learned confidence intervals to select
actions with the highest upper-confidence bound ensuring actions selected are of high value or whose
values are highly uncertain. This optimistic approach is promising for directed exploration, but as yet
there are few such methods that are model-free, incremental and computationally efficient.

Directed exploration strategies have largely been explored under the framework of “optimism in
the face of uncertainty” [13]. These can generally be categorized into count-based approaches
and confidence-based approaches. Count-based approaches estimate the “known-ness” of a state,

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

typically by maintaining counts for finite state-spaces [16, 6, 36, 37, 43] and extensions on counting
for continuous states [14, 10, 26, 19, 33, 15, 32, 21]. Confidence interval estimates, on the other
hand, depend on variance of the target, not just on visitation frequency for states. Confidence-based
approaches can be more data-efficient for exploration, because the agent can better direct exploration
where the estimates are less accurate. The majority of confidence-based approaches compute
confidence intervals on model parameters, both for finite state-spaces [12, 47, 16, 6, 2, 3, 9, 43, 29]
and continuous state-spaces [11, 27, 8, 1, 28]. There is early work quantifying uncertainty for value
estimates directly for finite state-spaces [22], describing the difficulties with extending the local
measures of uncertainty from the bandit literature to RL, since there are long-term dependencies.

These difficulties suggest why using confidence intervals directly on value estimates for exploration
in RL has been less explored, until recently. More approaches are now being developed that maintain
confidence intervals on the value function for continuous state-spaces, by maintaining a distribution
over value functions [8, 31], or by maintaining a randomized set of value functions from which to
sample [46, 31, 30, 34, 25]. Though significant steps forward, these approaches have limitations
particularly in terms of computational efficiency. Delayed Gaussian Process Q-learning (DGPQ)
[8] requires updating two Gaussian processes, which is cubic in the number of basis vectors for
the Gaussian process. RLSVI [31] is relatively efficient, maintaining a Gaussian distribution over
parameters with Thompson sampling to get randomized values. Their staged approach for finite-
horizon problems, however, does not allow for value estimates to be updated online, as the value
function is fixed per episode to gather an entire trajectory of data. Moerland et al. [25], on the
other hand, sample a new parameter vector from the posterior distribution each time an action is
considered, which is expensive. The bootstrapping approaches can be efficient, as they simply have
to store several value functions, either for training on a bootstrapped subset of samples—such as in
Bootstrapped DQN [30]—or for maintaining a moving bootstrap around the changing parameters
themselves, for UCBootstrap [46]. For both of these approaches, however, it is unclear how many
value functions would be required, which could be large depending on the problem.

In this paper, we provide an incremental, model-free exploration algorithm with fast converging upper-
confidence bounds, called UCLS: Upper-Confidence Least-Squares. We derive the upper-confidence
bounds for Least-Squares Temporal Difference learning (LSTD), taking advantage of the fact that
LSTD has an efficient summary of past interaction to facilitate computation of confidence intervals.
Importantly, these upper-confidence bounds have context-dependent variance, where variance is
dependent on state rather than a global estimate, focusing exploration on states with higher-variance.
Computing confidence intervals for action-values in RL has remained an open problem, and we
provide the first theoretically sound result for obtaining upper-confidence bounds for policy evaluation
under function approximation, without making strong assumptions on the noise. We demonstrate
in several simulated domains that UCLS outperforms DGPQ, UCBootstrap, and RLSVI. We also
empirically show the benefit of using UCLS to a simplified version that uses a global variance
estimate, rather than context-dependent variance.

2 Background

We focus on the problem of learning an optimal policy for a Markov decision process, from on-
policy interaction. A Markov decision process consists of (S,A,Pr, r, γ) where S is the set of
states; A is the set of actions; Pr : S × A × S → [0,∞) provides the transition probabilities;
r : S × A × S → R is the reward function; and γ : S × A × S → [0, 1] is the transition-based
discount function which enables either continuing or episodic problems to be specified [45]. On each
step, the agent selects action At in state St, and transitions to St+1, according to Pr, receiving reward
Rt+1

def
= r(St, At, St+1) and discount γt+1

def
= γ(St, At, St+1). For a policy π : S × A → [0, 1],

where
∑
a∈A π(s, a) = 1 ∀s ∈ S, the value at a given state s, taking action a, is the expected

discounted sum of future rewards, with actions selected according to π into the future,

Qπ(s, a) = E
[
Rt+1 + γt+1

∑
a∈A

π(St+1, a)Q
π(St+1, a)

∣∣∣St = s,At = a
]

For problems in which Qπ can be stored in a table, a fixed point for the action-values Qπ exists for a
given π. In most domains, Qπ must be approximated by Qπw, parametrized by w ∈ W ⊂ Rd.

In the case of linear function approximation, state-action features x(st, at) are used to approximate
action-values Qπw(st, at) = x(st, at)

>w. The weights w can be learned with a stochastic approx-
imation algorithm, called temporal difference (TD) learning [39]. The TD update [39] processes

2

samples one at a time, w = w + αδtzt, with δt
def
= Rt+1 + γt+1x

>
t+1w − x>t w for xt

def
= x(St, At).

The eligibility trace zt = xt+γt+1λzt−1 facilitates multi-step updates via an exponentially weighted
memory of previous feature activations decayed by λ ∈ [0, 1] and z0 = 0. Alternatively, we can
directly compute the weight vector found by TD using least-squares temporal difference learning
(LSTD) [5]. The LSTD solution is more data-efficient, and can avoid the need to tune TD’s stepsize
parameter α > 0. The LSTD update can be efficiently computed incrementally without approximation
or storing the data [5, 4], by maintaining a matrix AT and vector bT ,

AT
def
=

1

T

T−1∑
t=0

zt(xt − γt+1xt+1)> bT
def
=

1

T

T−1∑
t=0

ztRt+1 (1)

The value function approximation at time step T is the weights that satisfy the linear system ATw =
bT . In practice, the inverse of the matrix A−1 is maintained using a Sherman-Morrison update, with
a small regularizer η added to the matrix A to guarantee invertibility [41].

One approach to ensure systematic exploration is to initialize the agent’s value estimates optimistically.
The action-value function must be initialized to predict the maximum possible return (or greater)
from each state and action. For example, for cost-to-goal problems, with -1 per step, the values can
be initialized to zero. For continuing problems, with constant discount γc < 1, the values can be
initialized to Gmax = Rmax/(1− γc), if the maximum reward Rmax is known. For fixed features that
are non-negative and encode locality—such as tile coding or radial basis functions—the weights w
can be simply set to Gmax, to make Qw optimistic.

More generally, however, it can be problematic to use optimistic initialization. Optimistic initialization
assumes the beginning of time is special—a period when systematic exploration should be performed
after which the agent should more or less exploit its current knowledge. Many problems are
non-stationary—or at least benefit from a tracking approach due to aliasing caused by function
approximation—and benefit from continual exploration. Further, unlike for fixed features, it is
unclear how to set and maintain initial values at Gmax for learned features, such as with neural
networks. Optimistic initialization is also not straightforward for algorithms like LSTD, which
completely overwrite the estimate w on each step with a closed-form solution. In fact, we have found
that this issue with LSTD has been obfuscated, because the regularizer η has inadvertently played a
role in providing optimism (see Appendix A). Rather, to use optimism in LSTD for control, we need
to explicitly compute upper-confidence bounds.

Confidence intervals around action-values, then, provide another mechanism for exploration in
reinforcement learning. Consider action selection with explicit confidence intervals around mean
estimates Q̂w(St, At), with estimated radius Û(St, At). The action selection is greedy w.r.t. to these
optimistic values, argmaxa Q̂w(St, a) + Û(St, a), which provides a high-confidence upper bound
on the best possible value for that action. The use of upper-confidence bounds on value estimates for
exploration has been well-studied and motivated theoretically in online learning [7]. In reinforcement
learning, there have only been a few specialized proofs for particular algorithms using optimistic
estimates [8, 31], but the result can be expressed more generally by using the idea of stochastic
optimism. We extract the central argument by Osband et al. [31] to provide a general Optimistic
Values Theorem in Appendix B. In particular, similar to online learning, we can guarantee that
greedy-action selection according to upper-confidence values will converge to the optimal policy,
if the confidence interval radius shrinks to zero, if the algorithm to estimate action-values for a
policy converges to the corresponding actions and if upper-confidence estimates are stochastically
optimal—remain above the optimal action-values in expectation.

Motivated by this result, we pursue principled ways to compute upper-confidence bounds for the
general, online reinforcement learning setting. We make a step towards computing such values
incrementally, under function approximation, by providing upper-confidence bounds for value
estimates made by LSTD, for a fixed policy. We approximate these bounds to create a new algorithm
for control—called Upper-Confidence-Least-Squares (UCLS).

3 Estimating Upper-Confidence Bounds for Policy Evaluation using LSTD

Consider the goal of obtaining a confidence interval around value estimates learned incrementally by
LSTD for a fixed policy π. The value estimate is x>w for state-action features x for the current state
and action. We would like to guarantee, with probability 1− p for a small p > 0, that the confidence

3

interval around this estimate contains the value x>w∗ given by the optimal w∗ ∈ W . To estimate
such an interval without parametric assumptions, we use Chebyshev’s inequality which—unlike other
concentration inequalities like Hoeffding or Bernstein—does not require independent samples.

To use this inequality, we need to determine the variance of the estimate x>w; the variance of the
estimate, given x, is due to the variance of the weights. Let w∗ be fixed point solution for the
projected Bellman operator for the λ-return—the TD fixed point, for a fixed policy π. To characterize
the noise for this optimal estimator, let νt be the TD-error for the optimal weights w∗, where

rt+1 = (xt − γxt+1)>w∗ + νt with E[νtzt] = 0. (2)

The expectation is taken across all states weighted by the sampling distribution, typically the stationary
distribution dπ : S → [0,∞) or in the off-policy case the stationary distribution of the behaviour
policy. We know that E[νtzt] = 0, by the definition of the Projected Bellman Error fixed point.

This noise νt is incurred from the variability in the reward, the variability in the transition dynamics
and potentially the capabilities of the function approximator. A common assumption—when using
linear regression for contextual bandits [20] and for reinforcement learning [31]—is that the variance
of the target is a constant value σ2 for all contexts x. Such an assumption, however, is likely to
produce larger confidence intervals than necessary. For example, consider a one-state world with
two actions, where one action has a high variance reward and the other has a lower variance reward
(see Appendix A, Figure 4). A global sample variance will encourage both actions to be taken many
times. For data-efficient exploration, however, the agent should take the high-variance action more,
and only needs a few samples from the low-variance action.

We derive a confidence interval for LSTD, in Theorem 1. We also derive the confidence interval
assuming a global variance in Corollary 1, to provide a comparison. We compare to using this global-
variance upper-confidence bound in our experiments, and show that it results in significantly worse
performance than using a context-dependent variance. Note that we do not assume AT is invertible;
if we did, the big-O term in (3) below would disappear. We include this term for preciseness of the
result—even though we will not estimate it—because for smaller T , AT is unlikely to be invertible.
However, we expect this big-O term to get small quickly, and be dominated by the other terms. In our
algorithm, therefore, we ignore the big-O term.

Theorem 1. Let ν̄T
def
= 1

T

∑T−1
t=0 ztνt and wT = A+

TbT where A+
T is the pseudoinverse of AT .

Let ε∗T
def
= (A+

TAT − I)w∗ reflect the degree to which AT is not invertible; it is zero when AT

is invertible. Assume that the following are all finite: E[A+
T ν̄T + ε∗T], V[A+

T ν̄T + ε∗T] and all
state-action features x. With probability at least 1− p, given state-action features x,

x>w∗ ≤ x>wT +
√

p+1
p

√
x>E[A+

T ν̄T ν̄
>
T A+>

T]x +O
(
E[(x>ε∗T)2]

)
(3)

Proof: First we compute the mean and variance for our learned parameters. Because rt+1 =
(xt − γxt+1)>w∗ + νt,

wT =

(
1
T

T−1∑
t=0

zt(xt − γxt+1)>

)−1(
1
T

T−1∑
t=0

ztrt+1

)

= A+
T

(
1
T

T−1∑
t=0

zt((xt − γxt+1)>w∗ + νt)

)

= A+
TATw∗ + A+

T

(
1
T

T−1∑
t=0

ztνt

)
= w∗ + A+

T ν̄T + ε∗T

This estimate has a small amount of bias, that vanishes asymptotically. But, for a finite sample,

E

[
A+
T

(
1
T

T−1∑
t=0

ztνt

)]
6= E[A+

T]E

[
1
T

T−1∑
t=0

ztνt

]
= 0.

Further, because AT may not be invertible, there is an additional error ε∗T term which will vanish
with enough samples, i.e., once AT can be guaranteed to be invertible.

4

For covariance, because

wT − E[wT] =
(
w∗ + A+

T ν̄T + ε∗T
)
− E

[
w∗ + A+

T ν̄T + ε∗T)
]

= A+
T ν̄T + ε∗T − E

[
A+
T ν̄T + ε∗T

]
the covariance of the weights is

V[wT] = V
[
A+
T ν̄T + ε∗T

]
The goal for computing variances is to use a concentration inequality. Chebyshev’s inequality1 states
that for a random variable X , if the E[X] and V[X] are bounded, then for any ε ≥ 0:

Pr
(
|X − E[X]| < ε

√
V[X]

)
≥ 1− 1

ε2

If we set ε =
√

1/p, then this gives

Pr
(
|X − E[X]| <

√
1
p

√
V[X]

)
≥ 1− p

Now we have characterized the variance of the weights, but what we really want is to characterize the
variance of the value estimates. Notice that the variance of the value-estimate, for state-action x is

V[x>wT |x] = E[x>wTw>T x|x]− E[x>wt|x]2

= x>
(
E[wTw>T]− E[wT]E[wT]>

)
x

= x>V[wT]x

Therefore, the variance of the estimate is characterized by the variance of the weights. With high
probability,∣∣x>wT − x>w∗

∣∣ =
∣∣x>(wT − E[wT]) + x>(E[wT]−w∗)

∣∣
≤
∣∣x>(wT − E[wT])

∣∣+
∣∣x>(E[wT]−w∗)

∣∣
≤ 1
√
p

√
x>V

[
A+
T ν̄T + ε∗T

]
x +

∣∣x>E[A+
T ν̄T + ε∗T]

∣∣ (4)

=
1
√
p

√
x>
(
E
[
A+
T ν̄T ν̄

>
T A+>

T + Σ∗T
]
− µ∗Tµ

∗>
T

)
x +

√
x>µ∗Tµ

∗>
T x (5)

where Equation 4 uses Chebyshev’s inequality, and the last step is a rewriting of Equation 4 using the
definitions µ∗T

def
= E[A+

T ν̄T + ε∗T] and Σ∗T
def
= A+

T ν̄T ε
∗>
T + ε∗T (A+

T ν̄T)> + ε∗T ε
∗>
T .

To simplify (5), we need to determine an upper bound for the general formula c
√
a2 − b2 + b where

a ≥ b ≥ 0. Because p < 1, we know that c =
√

1/p ≥ 1. Therefore, the extremal points for b, b = a
and b = 0, both result in an upper bound of ca. Taking the derivative of the objective, gives a single
stationary point in-between [0, a], with b = a√

c2+1
. The value at this point evaluates to be a

√
c2 + 1.

Therefore, this objective is upper-bounded by a
√
c2 + 1.

Now for a2 = x>E
[
A+
T ν̄T ν̄

>
T A+>

T + Σ∗T
]
x, the term involving x>E [Σ∗T] x should quickly

disappear, since it is only due to the potential lack of invertibility of AT . This term is equal to
E
[
2(x>A+

T ν̄T)(x>ε∗T) + (x>ε∗T)2
]
, which results in the additional O(E[(x>ε∗T)2]) in the bound.

�

Corollary 1. Assume that νt are i.i.d., with mean zero and bounded variance σ2. Let z̄T =
1
T

∑T−1
t=0 zt and assume that the following are finite: E[ε∗T], V[ε∗T], E[A+

T z̄T z̄>TA+>
T] and all state-

action features x. With probability at least 1− p, given state-action features x,

x>w∗ ≤ x>wT + σ
√

p+1
p

√
x>E[A+

T z̄T z̄>TA+>
T]x +O

(
E[(x>ε∗T)2]

)
(6)

1Bernstein’s inequality cannot be used here because we do not have independent samples. Rather, we
characterize behaviour of the random variable w, using variance of w, but cannot use bounds that assume w is
the sum of independent random variables. The bound with Chebyshev will be loose, but we can better control
the looseness of the bound with the selection of p and the constant in front of the square root.

5

Proof: The result follows similarly to above, with some simplifications due to global-variance:

E
[
A+
T ν̄T

]
= E

[
E
[
A+
T ν̄T

∣∣∣S0,, ST

]]
= E

[
A+
T

1
T

T−1∑
t=0

ztE
[
νt

∣∣∣S0,, ST

]]
= 0

E[A+
T ν̄T ν̄

>
T A+>

T] = σ2E[A+
T z̄T z̄>TA+>

T]
�

4 UCLS: Estimating upper-confidence bounds for LSTD in control

In this section, we present Upper-Confidence-Least-Squares (UCLS)2, a control algorithm, which
incrementally estimates the upper-confidence bounds provided in Theorem 1, for guiding on-policy
exploration. The upper-confidence bounds are sound without requiring i.i.d. assumptions; however,
they are derived for a fixed policy. In control, the policy is slowly changing, and so instead we will be
slowly tracking this upper bound. The general strategy, like policy iteration, is to slowly estimate both
the value estimates and the upper-confidence bounds, under a changing policy that acts greedily with
respect to the upper-confidence bounds. Tracking these upper bounds incurs some approximations;
we identify and address potential issues here. The complete psuedocode for UCLS is given in the
Appendix (Algorithm 2).

First, we are not evaluating one fixed policy; rather, the policy is changing. The estimates AT and bT
will therefore be out-of-date. As is common for LSTD with control, we use an exponential moving
average, rather than a sample average, to estimate AT , bT and the upper-confidence bound. The
exponential moving average uses AT = (1− β)AT−1 + βzT (xt − γxt+1)>, for some β ∈ [0, 1].
If β = 1/T , then this reduces to the standard sample average; otherwise, for a fixed β, such as
β = 0.01, more recent samples have a higher weight in the average. Because an exponential average
is unbiased, the result in Theorem 1 would still hold, and in practice the update will be more effective
for the control setting.

Second, we cannot obtain samples of the noise νt = rt+1 + γt+1x
>
t+1w

∗ − x>t w∗, which is the
TD-error for the optimal value function parameters w∗ (see Equation (2)). Instead, we use δt as a
proxy. This proxy results in an upper bound that is too conservative—too loose—because δt is likely
to be larger than νt. This is likely to ensure sufficient exploration, but may cause more exploration
than is needed. The moving average update

ν̄t = ν̄t−1 + βt(δtzt − ν̄t−1) (7)

should also help mitigate this issue, as older δt are likely larger than more recent ones.

Third, the covariance matrix C estimating E[A−1

T ν̄T ν̄
>
T A−1

T] could underestimate covariances, de-
pending on a skewed distribution over states and depending on the initialization. This is particularly
true in early learning, where the distribution over states is skewed to be higher near the start state;
a sample average can result in underestimates in as yet unvisited parts of the space. To see why,
let a = A−1

T ν̄T . The covariance estimate Cij = E[aiaj] corresponds to feature i and j. The agent
begins in a certain region of the space, and so features that only become active outside of this region
will be zero, providing samples aiaj = 0. As a result, the covariance is artificially driven down
in unvisited regions of the space, because the covariance accumulates updates of 0. Further, if
the initialization to the covariance Cii is an underestimate, a visited state with high variance will
artificially look more optimistic than an unvisited state.

We propose two simple approaches to this issue: updating C based on locality and adaptively
adjusting the initialization to Cii. Each covariance estimate Cij for features i and j should only be
updated if the sampled outer-product is relevant, with the agent in the region where i and j are active.
To reflect this locality, each Cij is updated with the aiaj only if the eligibility traces is non-zero for i
and j. To adaptively update the initialization, the maximum observed a2

i is stored, as cmax, and the
initialization c0 to each Cii is retroactively updated using

Cii = Cii − (1− β)cic0 + (1− β)cicmax

2We do not characterize the regret of UCLS, and instead similarly to policy iteration, rely on a sound update
under a fixed policy to motivate incrementally estimating these values as if the policy is fixed and then acting
according to them. The only model-free algorithm that achieves a regret bound is RLSVI, but that bound is
restricted to the finite horizon, batch, tabular setting. It would be a substantial breakthrough to provide such a
regret bound, and is beyond the scope of this work.

6

where ci is the number of times Cii has been updated. This update is equivalent to having initialized
Cii = cmax. We provide a more stable retroactive update to Cii, in the pseudocode in Algorithm 2,
that is equivalent to this update.

Fourth, to improve the computational complexity of the algorithm, we propose an alternative,
incremental strategy for estimating w, that takes advantage of the fact that we already need to
estimate the inverse of A for the upper bound. In order to do so, we make use of the summarized
information in A to improve the update, but avoid directly computing A−1 as it may be poorly
conditioned. Instead, we maintain an approximation B ≈ A−> that uses a simple gradient descent
update, to minimize ‖A>Bxt − xt‖22. If B is the inverse of A>, then this loss is zero; otherwise,
minimizing it provides an approximate inverse. This estimate B is useful for two purposes in the
algorithm. First, it is clearly needed to estimate the upper-confidence bound. Second, it also provides
a pre-conditioner for the iterative update w = w + G(b−Aw), for preconditioner G. The optimal
preconditioner is in fact the inverse of A, if it exists. We use G = B> + ηI for a small η > 0
to ensure that the preconditioner is full rank. Developing this stable update for LSTD required
significant empirical investigation into alternatives; in addition to providing a more practical UCLS
algorithm, we hope it can improve the use of LSTD in other applications.

5 Experiments

We conducted several experiments to investigate the benefits of UCLS’ directed exploration against
other methods that use confidence intervals for action selection, to evaluate sensitivity of UCLS’s
performance with respect to its key parameter p, and to contrast the advantage contextual variance
estimates offer over global variance estimates in control. Our experiments were intentionally con-
ducted in small—though carefully selected—simulation domains so that we could conduct extensive
parameter sweeps, hundreds of runs for averaging, and compare numerous state-of-the-art exploration
algorithms (many of which are computationally expensive on larger domains). We believe that such
experiments constitute a significant contribution, because effectively using confidence bounds for
model free-exploration in RL is still in its infancy—not yet at the large-scale demonstration state–with
much work to be done. This point is highlighted nicely below as we demonstrate that several recently
proposed exploration methods fail on these simple domains.

5.1 Algorithms

We compare UCLS to DGPQ [8], UCBootstrap [46], our extension of LSPI-Rmax to an incremental
setting [19] and RLSVI [31]. In-depth descriptions of each algorithm and implementation details
can be found in the Appendix. These algorithms are chosen because they either keep confidence
intervals explicitly, as in UCBootstrap, or implicitly as in DGPQ and RLSVI. In addition, we included
LSPI-Rmax as a natural alternative approach to using LSTD to maintain optimistic value estimates.

We also include Sarsa with ε-greedy, with ε optimized over an extensive parameter sweep. Though
ε-greedy is not a generally practical algorithm, particularly in larger worlds, we include it as a
baseline. We do not include Sarsa with optimistic initialization, because even though it has been a
common heuristic, it is not a general strategy for exploration. Optimistic initialization can converge
to suboptimal solutions if initial optimism fades too quickly [46]. Further, initialization only happens
once, at the beginning of learning. If the world changes, then an agent relying on systematic
exploration due to its initialization may not react, because it no longer explores. For completeness
comparing to previous work using optimistic initialization, we include such results in Appendix G.

5.2 Environments

Sparse Mountain Car is a version of classic mountain car problem Sutton and Barto [40], only
differing in the reward structure. The agent only receives a reward of +1 at the goal and 0 otherwise,
and a discounted, episodic γ of 0.998. The start state is sampled from the range [−0.6,−0.4] with
velocity zero. This domain is used to highlight how exploration techniques perform when the reward
signal is sparse, and thus initializing the value function to zero is not optimistic.

Puddle World is a continuous state 2-dimensional world with (x, y) ∈ [0, 1]2 with 2 puddles: (1)
[0.45, 0.4] to [0.45, 0.8], and (2) [0.1, 0.75] to [0.45, 0.75] - with radius 0.1 and the goal is the region
(x, y) ∈ ([0.95, 1.0], [0.95, 1.0]). The agent receives a reward of−1−400∗d on each time step, where
d denotes the distance between the agent’s position and the center of the puddle, and an undiscounted,
episodic γ of 1.0. The agent can select an action to move 0.05 + ζ, ζ ∼ N(µ = 0, σ2 = 0.01).

7

UCLS

RLSVIε-Greedy

UCBootstrap

LSPI-Rmax

DGPQ
Steps per
Episode
x*10^3

Negated
Total

Reward
2^x

5 10 30 5 10 25Episodes Steps (x*10^3)

Sparse Mountain Car Puddle World River Swim

UCLS

LSPI-Rmax
RLSVI

UCLS

RLSVI

ε-Greedy

UCBootstrap

LSPI-Rmax

UCBootstrap

10

2

4

12

Total
Reward

10^x

4

1

6

5
50 100 350Episodes

Optimal

(better
perf.)

(better
perf.)

(better
perf.)

DGPQ

Figure 1: A comparison of speed of learning in Sparse Mountain Car, Puddle World and River Swim.
In plots (a) and (b) lower on y-axis are better, whereas in (c) curves higher along y-axis are better.
Sparse Mountain Car and Puddle World are episodic problems with a fixed experience budget. Thus
the length of the lines in plots (a) and (b) indicate how many episodes each algorithm completed over
50,000 steps, and the height on the y-axis indicates the quality of the learned policy—lower indicates
better performance. Note RLSVI did not show significant learning after 50,000 steps. The RLSVI
result in Puddle World uses a budget of 1 million.

The agent’s initial state is uniformly sampled from (x, y) ∈ ([0.1, 0.3], [0.45, 0.65]). This domain
highlights a common difficulty for traditional exploration methods: high magnitude negative rewards,
which often cause the agent to erroneously decrease its value estimates too quickly.

River Swim is a standard continuing exploration benchmark [42] inspired by a fish trying to swim
upriver, with high reward (+1) upstream which is difficult to reach and, a lower but still positive
reward (+0.005), which is easily reachable downstream. We extended this domain to continuous states
in [0, 1], with a stochastic displacement of 0.1 when taking an action up or down, with low-probability
of success for up. The starting position is sampled uniformly in [0, 0.1], and γ = 0.99.

5.3 Experimental Setup

We investigate a learning regime where the agents are allowed a fixed budget of interaction steps with
the environment, rather than allowing a finite number of episodes of unlimited length. Our primary
concern is early learning performance, thus each experiment is restricted to 50,000 steps, with an
episode cutoff (in Sparse Mountain Car and Puddle World) at 10,000 steps. In this regime, an agent
that spends a significant time exploring the world during the first episode may not be able to complete
many episodes, the cutoff makes exploration easier given the strict budget on experience. Whereas,
in the more common framework of allowing a fixed number of episodes, an agent can consume many
steps during the first few episodes exploring, which is difficult to detect in the final performance
results. We average over 100 runs in River Swim and 200 runs for the other domains . For all the
algorithms that utilize eligibility traces we set λ to be 0.9. For algorithms which use exponential
averaging, β is set to 0.001, and the regularizer η is set to be 0.0001. The parameters for UCLS
are fixed. RLSVI’s weights are recalculated using all experienced transitions at the beginning of
an episode in Puddle World and Sparse Mountain Car, and every 5,000 steps in River Swim. The
parameters of competitors, where necessary, are selected as the best from a large parameter sweep.

All the algorithms except DGPQ use the same representation: (1) Sparse Mountain Car - 8 tilings
of 8x8, hashed to a memory space of 512, (2) River Swim - 4 tilings of granularity 32, hashed to a
memory space of 128, and (3) Puddle World - 5 tilings of granularity 5x5, hashed to a memory space
of 128. DGPQ uses its own kernel-based representation with normalized state information.

5.4 Results & Analysis

Our first experiment simply compares UCLS against other control algorithms in all the domains.
Figure 1 shows the early learning results across all three domains. In all three domains UCLS achieves
the best final performance. In Sparse Mountain Car, UCLS learns faster than the other methods,
while in River Swim DGPQ learns faster initially. UCBootstrap and UCLS learn at a similar rate in
Puddle World, which is a cost-to-goal domain. UCBootstrap, and bootstrapping approaches generally,
can suffer from insufficient optimism, as they rely on sufficiently optimistic or diverse initialization
strategies [46, 30]. LSPI-Rmax and RLSVI do not perform well in any of the domains. DGPQ does
not perform as well as UCLS in Puddle World, and exhibits high variance compared with the other
methods. In Puddle World, UCLS goes on to finish 1200 episodes in the alloted budget of steps,

8

Steps (x*10^4)1 2 5
1

2

4

Total
Reward
(10^x)

10-5

10-1
Optimal

Suboptimal Random

1 2 5
1

2

4

Total
Reward
(10^x)

10-5
Optimal

Suboptimal Random

10-1

Steps (x*10^4)

UCLS GV-UCB

Figure 2: The effect of the
confidence parameter p on
the policy, in River Swim,
using context-dependent vari-
ance (UCLS) and global vari-
ance (GV-UCB). The values
for p are {10−5, [1, 2, . . . , 9] ×
10−3, 10−2, 10−1}.

whereas in River Swim both UCLS and DGPQ get close to the optimal policy by the end of the
experiment.

The DGPQ algorithm uses the maximum reward (Rmax) to initialize the Gaussian processes. In
Sparse Mountain Car this effectively converts the problem back into the traditional -1 per-step
formulation. In this traditional variant of Mountain Car UCLS significantly outperforms DGPQ
(Appendix G). Sarsa with ε-greedy learns well in Puddle world as it is a cost-to-goal problem in
which by default Sarsa uses optimistic initialization, and therefore is reported in the Appendix. .

Next we investigated the impact of the confidence level 1− p, on the performance of UCLS in River
Swim. The confidence interval radius is proportional to

√
1 + 1/p; smaller p should correspond to a

higher rate of exploration. In Figure 2, smaller p resulted in a slower convergence rate, but all values
eventually reach the optimal policy.

Finally, we investigate the benefit using contextual variance estimates over global variance estimates
within UCLS. In Figure 2, we also show the effect of various p values on the performance of the
algorithm resulting from Corollary 1, which we call Global Variance-UCB (GV-UCB) (see Appendix
E.1 for more details about this algorithm). For this range of p, UCLS still converges to the optimal
policy, albeit at different rates. Using a global variance estimates (GV-UCB), on the other hand,
results in significant over-estimates of variance, resulting in poor performance.

6 Conclusion and Discussion

This paper develops a sound upper-confidence bound on the value estimates for least-squares tem-
poral difference learning (LSTD), without making i.i.d. assumptions about noise distributions. In
particular, we allow for context-dependent noise, where variability could be due to noise in rewards,
transition dynamics or even limitations of the function approximator. We then introduce an algorithm,
called UCLS, that estimates these upper-confidence bounds incrementally, for policy iteration. We
demonstrate empirically that UCLS requires far fewer exploration steps to find high-quality policies
compared to several baselines, across domains chosen to highlight different exploration difficulties.

The goal of this paper is to provide an incremental, model-free, data-efficient, directed exploration
strategy. The upper-confidence bounds for action-values for fixed policies are one of the few available
under function approximation, and so a step towards exploration with optimistic values in the general
case. A next step is to theoretically show that using these upper bounds for exploration ensures
stochastic optimism, and so converges to optimal policies.

One promising aspect of UCLS is that it uses least-squares to efficiently summarize past experience,
but is not tied to a specific state representation. Though we considered a fixed representation for
UCLS, it is feasible that an analysis for the non-stationary case could be used as well for the setting
where the representation is being adapted over time. If the representation drifts slowly, then UCLS
may be able to similarly track the upper-confidence bounds. Recent work has shown that combining
deep Q-learning with Least-squares can result in significant performance gains over vanilla DQN[18].
We expect that combining deep networks and UCLS could result in even larger gains, and is a natural
direction for future work.

7 Acknowledgements

We would like to thank Bernardo Ávila Pires and Jian Qian for their helpful comments, alongwith
Calcul Québec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca) for the
computing resources used in this work.

9

www.calculquebec.ca
www.computecanada.ca

References
[1] Y. Abbasi-Yadkori and C. Szepesvari. Bayesian Optimal Control of Smoothly Parameterized Systems: The

Lazy Posterior Sampling Algorithm. In Uncertainty in Artificial Intelligence, 2014.

[2] P. Auer and R. Ortner. Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning.
Advances in Neural Information Processing Systems, 2006.

[3] P. L. Bartlett and A. Tewari. REGAL - A Regularization based Algorithm for Reinforcement Learning in
Weakly Communicating MDPs. In Conference on Uncertainty in Artificial Intelligence, 2009.

[4] J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine learning, 49(2-3):
233–246, 2002.

[5] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning. Machine
learning, 22(1-3):33–57, 1996.

[6] R. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforce-
ment learning. The Journal of Machine Learning Research, 2003.

[7] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual Bandits with Linear Payoff Functions. In
International Conference on Artificial Intelligence and Statistics, 2011.

[8] R. Grande, T. Walsh, and J. How. Sample Efficient Reinforcement Learning with Gaussian Processes. In
International Conference on Machine Learning, 2014.

[9] T. Jaksch, R. Ortner, and P. Auer. Near-optimal Regret Bounds for Reinforcement Learning. The Journal
of Machine Learning Research, 2010.

[10] N. Jong and P. Stone. Model-based exploration in continuous state spaces. Abstraction, Reformulation,
and Approximation, 2007.

[11] T. Jung and P. Stone. Gaussian processes for sample efficient reinforcement learning with RMAX-like
exploration. In Machine Learning: ECML PKDD, 2010.

[12] L. P. Kaelbling. Learning in embedded systems. MIT press, 1993.

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 1996.

[14] S. Kakade, M. Kearns, and J. Langford. Exploration in metric state spaces. In International Conference on
Machine Learning, 2003.

[15] K. Kawaguchi. Bounded Optimal Exploration in MDP. In AAAI Conference on Artificial Intelligence,
2016.

[16] M. J. Kearns and S. P. Singh. Near-Optimal Reinforcement Learning in Polynomial Time. Machine
Learning, 2002.

[17] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine Learning Research,
2003.

[18] N. Levine, T. Zahavy, D. J. Mankowitz, A. Tamar, and S. Mannor. Shallow updates for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pages 3138–3148, 2017.

[19] L. Li, M. Littman, and C. Mansley. Online exploration in least-squares policy iteration. In International
Conference on Autonomous Agents and Multiagent Systems, 2009.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article
recommendation. In World Wide Web Conference, 2010.

[21] J. Martin, S. N. Sasikumar, T. Everitt, and M. Hutter. Count-Based Exploration in Feature Space for
Reinforcement Learning. In International Joint Conference on Artificial IntelligenceI, 2017.

[22] N. Meuleau and P. Bourgine. Exploration of Multi-State Environments - Local Measures and Back-
Propagation of Uncertainty. Machine Learning, 1999.

[23] C. D. Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied Mathematics, 24
(3):315–323, 1973.

10

[24] K. S. Miller. On the inverse of the sum of matrices. Mathematics magazine, 54(2):67–72, 1981.

[25] T. M. Moerland, J. Broekens, and C. M. Jonker. Efficient exploration with Double Uncertain Value
Networks. In Advances in Neural Information Processing Systems, 2017.

[26] A. Nouri and M. L. Littman. Multi-resolution Exploration in Continuous Spaces. In Advances in Neural
Information Processing Systems, 2009.

[27] R. Ortner and D. Ryabko. Online Regret Bounds for Undiscounted Continuous Reinforcement Learning.
In Advances in Neural Information Processing Systems, 2012.

[28] I. Osband and B. Van Roy. Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
In International Conference on Machine Learning, 2017.

[29] I. Osband, D. Russo, and B. Van Roy. (More) Efficient Reinforcement Learning via Posterior Sampling. In
Advances in Neural Information Processing Systems, 2013.

[30] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep Exploration via Bootstrapped DQN. In Advances
in Neural Information Processing Systems, 2016.

[31] I. Osband, B. Van Roy, and Z. Wen. Generalization and Exploration via Randomized Value Functions. In
International Conference on Machine Learning, 2016.

[32] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-Based Exploration with Neural
Density Models. In International Conference on Machine Learning, 2017.

[33] J. Pazis and R. Parr. PAC optimal exploration in continuous space Markov decision processes. In AAAI
Conference on Artificial Intelligence, 2013.

[34] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and
M. Andrychowicz. Parameter Space Noise for Exploration. arXiv.org, 2017.

[35] S. P. Singh, T. S. Jaakkola, M. L. Littman, and C. Szepesvari. Convergence Results for Single-Step
On-Policy Reinforcement-Learning Algorithms. Machine Learning, 2000.

[36] A. Strehl and M. Littman. Exploration via model based interval estimation. In International Conference
on Machine Learning, 2004.

[37] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free reinforcement learning.
In International Conference on Machine Learning, 2006.

[38] R. Sutton, C. Szepesvári, A. Geramifard, and M. Bowling. Dyna-style planning with linear function
approximation and prioritized sweeping. In Conference on Uncertainty in Artificial Intelligence, 2008.

[39] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 1988.

[40] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press Cambridge, 1998.

[41] C. Szepesvari. Algorithms for Reinforcement Learning. Morgan & Claypool Publishers, 2010.

[42] I. Szita and A. Lorincz. The many faces of optimism. In International Conference on Machine Learning,
2008.

[43] I. Szita and C. Szepesvari. Model-based reinforcement learning with nearly tight exploration complexity
bounds. In International Conference on Machine Learning, 2010.

[44] H. van Seijen and R. Sutton. A deeper look at planning as learning from replay. In International Conference
on Machine Learning, 2015.

[45] M. White. Unifying task specification in reinforcement learning. In International Conference on Machine
Learning, 2017.

[46] M. White and A. White. Interval estimation for reinforcement-learning algorithms in continuous-state
domains. In Advances in Neural Information Processing Systems, 2010.

[47] M. A. Wiering and J. Schmidhuber. Efficient Model-Based Exploration. In Simulation of Adaptive Behavior
From Animals to Animats, 1998.

11

-500

-50

-150

Cumulative
reward

-400

-400

-300

20 40 50 150 450EpisodesEpisodes

-100

100

Cumulative
reward

LSTD-in-C

LSTD-in-F
Best runs

Worst run

74-8 η-value (2^x)

0

-3

-9

Average
cumulative

reward
per run
(10^3)

LSTD-in-F

LSTD-in-C

LSTD-out-C

LSTD-out-F

a b c

Figure 3: Learning performance in Mountain Car for LSTD-in and LSTD-out with η kept constant
through learning (-C) and η fading with time (-F). (a) Early learning curves for LSTD-in. This plot
does not include LSTD-out as it performed too poorly to be visible. (b) Learning curves for LSTD-in
with best and worst runs. LSTD-in-C’s worst run performed too poorly to be visible. (c) Parameter
sensitivity for both variants LSTD-in and LSTD-out to η/ηr.

A Issues with LSTD for control

LSTD is a more data-efficient algorithm than its incremental counterpart TD, and typically performs
quite well in policy evaluation. This is primarily due to TD only using each sample once for a
stochastic update with a tuned stepsize parameter. In the case of control, LSTD performs surprisingly
well without ε-greedy exploration and lack of an optimism strategy. We highlight here the inadvertent
use of the regularization parameter as a form of optimism for LSTD in control, and empirically show
when this strategy fails leading us to UCLS as a sound approach in using LSTD in control.

In practice, the inverted matrix A−1 is often directly maintained using a Sherman-Morrison update,
with a small regularizer η added to the matrix A to guarantee invertibility [41].

There are two objectives that can be solved when dealing with an ill-conditioned system Aw = b.
The most common is to use Tikohonov regularization solving, referred to here as LSTD-out.

min
w
‖Aw − b‖22 + ηr‖w‖22

Another approach is to solve the system

min
w
‖(A + ηI)w − b‖22

The second approach is implicitly what is solved when a Sherman-Morrison update is used for
A−1, with a small regularizer η added to the matrix A to guarantee invertibility. This approach is
referred to here as LSTD-in. When η = 0, both approaches are solving ‖Aw − b‖22, which may
have infinitely many solutions if A is not full rank. While the Tikohonov regularization strategy is
more common, the second approach is useful for enabling use of the incremental Sherman-Morrison
update to facilitate maintaining A−1 directly.

Another choice in regularizing the ill-conditioned system is in how η decays over time. A small fixed
η can be used as a constant regularizer, even as the number of samples increases, because the true A
may be ill-conditioned. However, more regularization could also be used at the beginning and then
decayed over time. The incremental Sherman-Morrison update implicitly decays η proportionally to
1
t .

We conducted an empirical study using LSTD without an ε-greedy exploration strategy in two
domains: Mountain Car and a new One-State world. One-State world—depicted in Figure 4—
simulates a typical setting where sufficient exploration is needed: one outcome with low variance
and lower expected value and one outcome with high variance and higher expected value. For an
algorithm that does not explore sufficiently, it is likely to settle on the suboptimal action, but more
immediately rewarding low-variance outcome. This world simulates a larger continuous navigation
task from 46. We include results for both systems described above and consider a fading version
(shown by -F) or a constant regularization parameter (shown by -C).

Figure 3 shows results for the four different LSTD strategies in Mountain Car. The Tikohonov
regularization, with ηr, is unable to learn an optimal policy in this domain, whereas with either
constant or fading η, the agent can learn an optimal policy. This is surprising, considering we use

12

s E[R] = 2,V[R] ≈ 28E[R] = 1,V[R] = 0

Figure 4: One-state world, where the optimal action (right) has high-variance; the reward here is
uniformly sampled from within the set {−5,−2, 2, 5, 10}. LSTD, with ε = 0 and η large, fails in
this world, unlike the cost-to-goal problems.

η-value (10^x) 32-3 -2

90

70

10

% optimal
behaviour

Optimistic initialization
LSTD-in-F(ε=0.1)

LSTD-in-F(ε=0.0)

LSTD-out-F(ε=0.1)

LSTD-out-F(ε=0.0)

Figure 5: η-sensitivity in 1-State
world with various LSTD updates.
Sarsa with optimistic initialization
α = 0.001 is used as a baseline. The
y-axis represents percentage optimal
behaviour, where optimal behaviour
is choosing to go right, in 20k steps
(averaged over 30 runs). Sarsa with
optimistic initialization is highly sen-
sitive to the step-size chosen. With
other stepsizes (not shown in figure),
it reduces its values too quickly, and
fails a significant percentage of the
time. The best stepsize is chosen here
to show near-optimal performance is
possible in the domain.

neither randomized exploration nor optimistic initialization. The parameter sensitivity curve, shown
in plot c, indicates η and ηr needs to be sufficiently large as time passes in order to find an optimal
policy.

Next, we show that neither regularization strategy with fading η is effective in the One-State world.
The optimal strategy is to take the Right action, to get an expected reward of 2 under a higher variance
for obtaining rewards. All of the LSTD variants fail for this domain, because η no longer plays a role
in encouraging exploration. To verify that a directed exploration strategy helps, we experiment with
ε-greedy exploration, with ε = 0.1, decayed by a factor of 0.2 every 100 steps (shown in Figure 5).
With ε-greedy, and small values of ηr and η, the policy converges to the optimal action, whereas it
fails to with higher values of ηr and η.

These results suggest that η’s role in exploration has obscured our understanding of how to use LSTD
for control. LSTD, with sufficient optimism does seem to reach optimal solutions, and unlike Sutton
et al. [38], we did not find any issues with forgetting. This further explains why there have been
previous results with small ε for LSTD in cost-to-goal problems, that nonetheless still obtained the
optimal policy [44]. Therefore, in developing UCLS, we more explicitly add optimism to LSTD, and
ensure η is strictly used as a regularization parameter (to ensure well-conditioned updates).

B Optimistic Values Theorem

The use of upper confidence bounds on value estimates for exploration has been well-studied and
motivated theoretically in online learning [7]. For reinforcement learning, though, there are only
specialized proofs for particular algorithms using optimistic estimates [8, 31]. To better motivate
and appreciate the use of upper confidence bounds for reinforcement learning, we extract the key
argument from Osband et al. [31], which uses the idea of stochastic optimism.

Under function approximation, it may not be possible to obtain the optimal policy exactly. Instead,
our criterion is to obtain the optimal policy according to the following formulation, assuming greedy-
action selection from action-values. Let Q∗ : S ×A → R be the action-values for the optimal policy,

13

under the chosen density d : S ×A → [0,∞) over states and actions

Q∗ = argmax
Q∈Q

∫
S×A

d(s, a)Q(s, a)dsda (8)

This optimization does not preclude d being related to the trajectory of optimal policy, but generically
allows specification of any density, such as one putting all weight on a set of start states or such as
one that is uniform across states and actions to ensure optimality from any point in the space. The
optimal policy in this setting is the policy that corresponds to acting greedily w.r.t. Q∗; depending on
the function space Q, this may only be an approximately optimal policy. The design of the agent is
directed towards this goal, though we do not explicitly optimize this objective.

Let Q̃t = Q̂t + Ût be the estimated action-values plus the confidence interval radius Ût on time step
t, to get the estimated upper confidence bound which the agent uses to select actions. Let πt be the
policy induced by greedy action selection on Q̃t.
Assumption 1 (Stochastic Optimism). At some point T > 0, the action-values at every step t ≥ T
are stochastically optimistic: E[Q̃t(S,A)] ≥ E[Q∗(S,A)], with expectation according to a specified
density d : S ×A → [0,∞).

Assumption 2 (Shrinking Confidence Interval Radius). The confidence interval radius Ût goes to
zero: E[Ût(S,A)] ≤ f(t) for some non-negative function f with f(t)→ 0.

Assumption 3 (Convergent Action Values). The estimated action-values Q̂t approach the true
action-values for policy πt:

∣∣∣E[Q̂t(S,A)−Qπt(S,A)]
∣∣∣ ≤ g(t) for some non-negative function g

with g(t)→ 0.

These assumptions are heavily dependent on the distribution utilized to evaluate the expectation. If
the expectations are w.r.t. the stationary distribution induced by the optimal policy (d∗), it is easy
to see that they could be satisfied - as the density is non-zero only for the optimal state-action pairs.
In contrast, if the density is a uniform density over the space, then these assumptions may not be
satisfied.

Given the three key assumptions, the theorem below is straightforward to prove. However, these
three conditions are fundamental, and do not imply each other. Therefore, this result highlights what
would need to be shown, to obtain the Optimistic Values Theorem. For example, Assumption 1 and
2 do not imply Assumption 3, because the confidence interval radius could decrease to zero, and
Q̂t still be stochastically optimistic and an over-estimate of values that correspond to a suboptimal
policy. Assumption 1 and 3 do not imply Assumption 2, because Q̂t could converge to the policy
corresponding to acting greedily w.r.t. Q̃t, but Ût may never fade away. Then, Q̃t could still be
stochastically optimistic, but the policy πt could be suboptimal because it is acting greedily according
to inaccurate, inflated estimates of value Q̃t.
Theorem 2 (Optimistic Values Theorem). Under Assumptions 1, 2 and 3,

E[Q∗(S,A)]− E[Qπt(S,A)] ≤ f(t) + g(t)

Regret(T)
def
=

T∑
t=1

E[Q∗(S,A)]− E[Qπt(S,A)]

≤
T∑
t=1

f(t) + g(t)

Proof: Consider the regret across states and actions

E[Q∗(S,A)−Qπt(S,A)] = E[Q∗(S,A)− Q̃t(S,A)] + E[Q̃t(S,A)−Qπt(S,A)]

≤ E[Q̃t(S,A)−Qπt(S,A)]

because E[Q∗(S,A)− Q̃t(S,A)] ≤ 0 by Assumption 1. By Assumptions 2 and 3,

E[Q̃t(S,A)−Qπt(S,A)] = E[Q̂t(S,A)−Qπt(S,A)] + E[Ût(S,A)]

≤ g(t) + f(t)

14

completing the proof. �

This result is intentionally abstract, where the three assumptions could be satisfied in a variety of
ways. These assumptions have been verified for one algorithm, called RLSVI, under a tabular setting
using a finite-horizon specification [31], which simplifies ensuring stochastic optimism (Assumption
1). We hypothesize that the last two assumptions could be addressed with a two-timescale analysis,
with confidence interval radius Ût updating more slowly than Q̂t. This would reflect an iterative
approach, where the optimistic values are essentially held fixed—such as is done in Delayed Q-
learning [8]—and Qπt estimated, before then adjusting the optimistic values. The updates to Q̂t,
then, would be updated on a faster timescale, converging to Qπt , and the upper confidence radius Ût
updating on a slower timescale.

Algorithm 1 GetOptimisticAction(xs,·)

ua ←
√(

1 + 1
p

)
x>s,aCxs,a ∀a ∈ A

a = argmaxa∈A x>s,aw + ua
return a

Algorithm 2 UCLS(λ)

A← 0, b← 0, z← 0, w← 0
B← I, C← I, ν̄ ← 0, c← 1
p = 0.1, η = 10−4, β = 0.001, cmax = 1.0
xs,· ← initial state-action features, for any action
a← GetOptimisticAction(xs,·)
repeat

Take action a and observe xs′,· and r, and γ
a′ ← GetOptimisticAction(xs′,·)
δ ← r + (γxs′,a′ − xs,a)>w
z← γλz + xs,a
b← (1− β)b + βrz
A← (1− β)A + βz(xs,a − γxs′,a′)

>

. Update B ≈ A−>

α = min
{

1.0, 0.01
||A||2F ||xs,a||22+1.0

}
B← B− αA(A>Bxs,a − xs,a)x>s,a
. Update C
ν̄ ← (1− β)ν̄ + βδz
a← B>ν̄
temp = cmax
cmax = max(cmax,a

2
1, . . . ,a

2
d)

if temp 6= cmax then . Adjust initialization
Cii ← Cii + ci(cmax − temp), ∀i

for i such that zi 6= 0 do
ci = ci(1− β)
for j such that zj 6= 0 do

Cij ← (1− β)Cij + βaiaj
. Update w
w← w + (B> + ηI)(b−Aw)
xs,a ← xs′,a′ and a← a′

until agent done interaction with environment

15

C Estimating Upper Confidence Bounds for Policy Evaluation using linear
TD

Recall that the TD update [39] processes one sample at a time as wt+1 = wt + αδtzt to estimate the
solution to the least-squares system wT = A−1T bT in an incremental manner. This is feasible as the
following holds:

wT = A−1T bT
ATwT = bT[

1

T

T−1∑
t=0

zt(xt − γt+1xt+1)>
]
wT =

[
1

T

T−1∑
t=0

ztrt

]
T−1∑
t=0

zt(rt + γt+1x
>
t+1wT − x>t wT) = 0

T−1∑
t=0

ztδt = 0

Therefore, wt is updated incrementally with a constant step-size towards minimizing this error
stochastically.

Given this incremental method to estimate a least-squares solution, we can notice that the covariance
matrix is the outer-product of the solution to a similar least-squares system, A−1T ν̄T . The solution to
this least-squares system is denoted by wvar, and can be estimated incrementally as:

wvart+1 = wvart + αδvartzt

where, δvart = δt + γt+1x
>
t+1wvart − x>t wvart.

Therefore, for a given policy, the true action-values satisfy the following:

x>w∗ ≤ x>wT +
√

p+1
p

√
x>wvarTwvar

>
T x

Similarly a linear variant of GV-UCB can be obtained as the upper bound again consists of an
outer-product to a different least-squares system A−1

T z̄T . But as shown in Figures 2 and 7, GV-UCB,
the quadratic version, can be highly sample inefficient, which may worsen with the linear variant,
GV-UCB-L. Therefore, we do not provide an algorithm, or any empirical results for GV-UCB-L here.

D UCLS-L: Estimating upper confidence bounds for linear TD in control

In the same spirit as UCLS utilizes the policy evaluation upper-bound of LSTD for control, with a
slowly changing control policy, UCLS-L utilizes the policy evaluation upper-bound of linear TD
for control. At each step, UCLS-L, given in Algorithm 4, uses a stochastic update to estimate mean
action-values, and their corresponding contextual-variance estimates. These stochastic updates use
fixed, and if necessary are different, step-sizes (α, and αvar respectively), instead of a closed-form
solution as done by UCLS. The rate of change of the policy in UCLS-L is controlled by the step-size,
unlike in UCLS which utilizes weighted forms of experience samples in A and b. Therefore, UCLS-L
can be sensitive to the step-sizes, but adapt more quickly to a changing feature-space. Further, in order
to account for underestimates of variances, UCLS-L uses another vector wvarInit, in a similar spirit as
UCLS’s retroactive initialization of covariance estimates. Additionally, as these upper-bounds are
estimated incrementally, they can be quite loose, specifically so in the linear framework. Therefore,
instead of choosing the best parameter p, we can choose a parameter p̄ =

√
1 + 1

p : the loss of
theoritical interpretation of the upper-bound is traded-off for better empirical performance.

With this, we investigate UCLS-L as a substitue to UCLS in the three benchmark domains. For
UCLS-L, both p and p̄ is swept, from which the best parameter is selected scale the uncertainity
unstemiate, along with the learning rates α and αvar. The experiment configuration and the domains
are the same as used in UCLS. The results are presented in Figure 6. UCLS-L does reasonably

16

Algorithm 3 GetOptimisticActionLinear(xs,·)

ua ←
√(

1 + 1
p

) (
(x>s,awvar)2 + ||xs,a||2IwvarInit

)
∀a ∈ A

a = argmaxa∈A x>s,aw + ua
return a

Algorithm 4 UCLS-L(λ)

p = 0.1, β = 0.001, vinit = 1.0, α = 0.01, αvar = 0.1
w← 0, wvar ← 0, wvarInit ← 1 ∗ vinit, c← 1
xs,· ← initial state-action features, for any action
a← GetOptimisticActionLinear(xs,·)
repeat

Take action a and observe xs′,· and r, and γ
a′ ← GetOptimisticActionLinear(xs′,·)
δ ← r + (γxs′,a′ − xs,a)>w
δvar ← δ + (γxs′,a′ − xs,a)>wvar
z← γλz + xs,a
. Update wvar and wvarInit
wvar ← wvar + αvarδvarz
temp = vinit
vinit = max(vinit,wvar

2
1, . . . ,wvar

2
d)

if temp 6= vinit then . Adjust initialization
wvarIniti ← wvarIniti + ci(vinit − temp), ∀i

for i such that zi 6= 0 do
ci = ci(1− β)
wvarIniti ← (1− β) ∗wvarIniti, ∀i

. Update w
w← w + αδz
xs,a ← xs′,a′ and a← a′

until agent done interaction with environment

well in all the domains. While it experiences more regret in Puddle World, and River Swim during
early learning, by the end of the steps budget, it learns the optimal policy. In Sparse Mountain Car,
surprisingly, UCLS-L learns much faster and a better policy than UCLS. This can be attributed to
the fact that the parameter p in UCLS was not swept, whereas in UCLS-L we did sweep to find the
best parameter to scale the variance estimate. As the domain is a sparse-reward domain, the variance
estimates play a significant role in influencing exploratory behaviour, and therefore optimizing for
p would improve UCLS’ performance. Nonetheless, these results show UCLS-L to be a promising
algorithm for linear complexity based control, and warrant further evaluation of it.

Algorithm 5 GetOptimisticActionGlobal(xs,·)

ua ← σ

√(
1 + 1

p

)
x>s,aCxs,a ∀a ∈ A

a = argmaxa∈A x>s,aw + ua
return a

E Details about other algorithms

E.1 Global variance UCB

Based on Corollary 1 to estimate a global variance σ2, it is possible that the noise may not be
0-mean during the learning process. We account for this by estimating mean of νt as well. We know

17

UCLS-L

RLSVI
ε-Greedy

UCBootstrap

LSPI-Rmax

DGPQ

Steps per
Episode
x*10^3

Negated
Total

Reward
2^x

20 40 100 10 20 50Episodes Steps (x*10^3)

Sparse Mountain Car Puddle World River Swim

UCLS-L

LSPI-Rmax

RLSVI

UCLS-L

RLSVI

ε-Greedy

UCBootstrap

LSPI-Rmax

UCBootstrap

10

2

4

12

Total
Reward

10^x

5

1

6

5

250 500 1750Episodes

Optimal

(better
perf.) (better

perf.)

(better
perf.)

DGPQ

Figure 6: A comparison of speed of learning in Sparse Mountain Car, Puddle World and River Swim.
In plots (a) and (b) lower on y-axis are better, whereas in (c) curves higher along y-axis are better.
Sparse Mountain Car and Puddle World are episodic problems with a fixed experience budget. Thus
the length of the lines in plots (a) and (b) indicate how many episodes each algorithm completed over
50,000 steps, and the height on the y-axis indicates the quality of the learned policy—lower indicates
better performance. Note RLSVI did not show significant learning after 50,000 steps. The RLSVI
result in Puddle World uses a budget of 1 million.

νt ∼ N (ν̄t, σ
2
t). Therefore:

ν̄t+1 = E[rt+1] − E[xt − γxt+1]>wt

ν̄2t+1 = E[r2t+1] − 2E[rt+1(xt − γxt+1)]>wt

+ w>t E[(xt − γxt+1)(xt − γxt+1)>]wt

These expected values are maintained incrementally. Utilizing this, σ2
t+1 = ν̄2t+1 − ν̄2t+1. We refer

to Global variance UCB as GV-UCB. The algorithm is given in Algorithm 6.

E.2 Bootstrapped upper confidence bounds

The strategy for action selection which utilizes bootstrapped confidence intervals, as proposed
by White and White [46], is given in Algorithm 7. This action selection strategy can be used in
conjunction with any learning algorithm to guide on-policy control. The algorithm requires a window
of recent w’s. The window can be maintained with a circular queue. The window is updated after each
learning step of the main algorithm, resulting in a new wt in the queue. The original UCBootstrap
paper proposed both a global and a sparse updating mechanism, where only the global approach was
theoretically justified. The sparse mechanism was used to reduce the number of parameters stored,
particularly by taking advantage of tile-coding representations. We found in our experiments that
the global approach worked just as well as the sparse approach, and so we include only the simpler,
theoretically justified algorithm.

E.3 DGPQ

Another approach to exploration is found in a model-free algorithm using gaussian processes named
Delayed-GPQ (DGPQ) [8]. The pseudocode for DGPQ is in Algorithm 8. Any algorithm can be
used to train the Gaussian processes, and for this paper we use the same algorithm as in [8]. The
initialization of this algorithm requires the maximum reward and value, but for ease of use we
transform the reward signal to rnew = r − Rmax so the means of the gaussian processes can be
initialized to zero and Vmax = 0.

A major problem with DGPQ is the large number of parameters needed to be set properly. Some
intuition on setting these parameters can be found in [8] as well as in algorithm 8. As some guidance
the width of the kernel determines how much a sample can generalize to other states, the thresholds
(σ2
tol, ε) determine how often we swap for new experience in the set basis vectors, and the Lipschitz

constant LQ tunes the tradeoff between exploration and exploitation.

E.4 LSPI-Rmax

LSPI-Rmax [19] combines LSPI [17] with Rmax [6] for online control in continuous state-spaces.
Exploration is encouraged by determining the knowness of a transition, utilizing kernels. LSPI

18

Algorithm 6 GV-UCB(λ)

A← 0, b← 0, z← 0, w← 0,
B← I, C← I, z̄← 0
p = 0.01,η = 10−4, β = 0.001
σ = 1.0, r̄ = 0.0, r̄2 = 100.0, d̄← 0, d̄r ← 0, D̄← 0
xs,· ← initial state-action features, for any action
a← GetOptimisticActionGlobal(xs,·)
repeat

Take action a and observe xs′,· and r, and γ
a′ ← GetOptimisticActionGlobal(xs′,·)
δ ← r + (γxs′,a′ − xs,a)>w
z← γλz + xs,a
b← (1− β)b + βrz
A← (1− β)A + βz(xs,a − γxs′,a′)

>

. Update C
z̄← (1− β)z̄ + βz
a← B>z̄
for i such that zi 6= 0 do

for j such that zj 6= 0 do
Cij ← (1− β)Cij + βaiaj

. Update σ
r̄ ← (1− β)r̄ + βr
r̄2 ← (1− β)r̄2 + βr2

d̄← (1− β)d̄ + β(xs,a − γxs′,a′)
d̄r ← (1− β)d̄r + βr(xs,a − γxs′,a′)
D̄← (1− β)D̄ + β(xs,a − γxs′,a′)(xs,a − γxs′,a′)

>

ν̄ = r̄ − d̄Tw
ν̄2 = r̄2 − 2d̄r

T
w + w>D̄w

σ =
√
ν̄2 − ν̄2

. Update w and B ≈ A−>

α = min
{

1.0, 0.01
||A||2F ||xs,a||22+1.0

}
B← B− αA(A>Bxs,a − xs,a)x>s.a
w← w + (B + ηI)(b−Aw)
xs,a ← xs′,a′ and a← a′

until agent done interaction with environment

algorithm is designed for a batch setting, where the LSTD solution is computed in closed form for
staged batches of data. However, because it accumulates optimistic values, it can be simply converted
into an online algorithm using incremental updates to the matrix A and b, as done in Li et al. [19].

We summarize this extension in pseudocode as Algorithm 10. Until states become known, the
algorithm estimates action-values that predict the maximum possible return; once a state becomes
known, it starts to use actual rewards sampled from the environment. To estimate the knowness of a
state under function approximation, we use feature counts. Each state has a set of active features; the
active feature with the minimum count reflects an upper bound on the number of times that this state
has been seen. Once a states active features have been seen frequently enough, it becomes known.

E.5 RLSVI

RLSVI [31] is an algorithm that maintains a distribution over the possible value functions. The
value functions are assumed to be linearly parametrized. While the main algorithm proposed uses a
finite-horizon assumption, a modified version proposed in the Appendix of the paper does not, and
this is the version used in the experiments here.

19

Algorithm 7 UCBootstrap(xs,·) select action from state features xs,· at time t
l = block length, B = number of bootstrap resamples, w = number (window) of value functions
weights to store and confidence level α
examples: l = 10, B = 50, w = 100, α = 0.05

M ← bw/lc . num of length l blocks to sample with replacement and concatenate
for each action a do

QN ← {w>t−wxs,a, . . . ,w
>
t−1xs,a}

Q̄N ← mean(QN) . The mean value for this (s, a), given the window of recent weights
Blocks =

{
{[QN [0], . . . , QN [l-1]}, {[QN [1], . . . , QN [l]},

. . . , [QN [w-l], . . . , QN [w-1]]
}

for all i = 1 to B do
for all j = 1 to M do

A∗j ← random block from Blocks (chosen with replacement)
A← (A∗1, A

∗
2, . . . , A

∗
M) . Concatenate blocks

T ∗i = 1
lM

∑lM
k=1A[k] . ith bootstrap estimate is the mean of the M concatenated blocks

T ← sort({T ∗1 , . . . , T ∗B}) . ascending order
j ← bBα2 + α+2

6 c . j is the position of the critical samples to help estimate the continuous
sample quantile

r ← Bα
2 + α+2

6 − j . r is the remainder
T ∗α/2 ← (1− r)T ∗j + rT ∗j+1 . the α/2 sample quantile
ua ← 2Q̄N − T ∗α/2

a = argmaxa∈A ua
return a

F Alternative updates for LSTD

The update for w using A and b in UCLS is the result of an empirical investigation into alternative
linear system solvers. We investigated using a Sherman-Morrison update, with exponential averaging
(in Algorithm 11) as well as improved incremental inverse updates, including one for pseudo-inverses
[23]. This update has a confounding role for η, and for small η we found it less stable than our
proposed update. We investigated iterative updates with a fixed stepsize, wt+1 = wt+α(bt−Atw);
the addition of the step-size, however, removes some of the parameter-free benefits of LSTD. We
investigated conjugate gradient updates, as in Algorithm 12. We finally derived the iterative update
proposed, for B ≈ A−>, to obtain a preconditioner for the iterative update.

For completeness, we include the derivation for the Sherman-Morrison update. The derivation for
A−1t+1 using At+1 = (1− β)At + βuvT is as follows:

A−1t At+1 = (1− β)I + βA−1t uvT

Converting it to terms of A−1t+1:

A−1t+1 = ((1− β)I + βA−1t uvT)−1A−1t

=

(
1

(1− β)
I +

1

1 + β
1−β v

TA−1t u

β

(1− β)2
A−1t uvT)

)
A−1T

=
1

(1− β)
A−1t +

β
(1−β)A

−1
t uvTA−1t

(1− β) + βvTA−1t u

The first step utilizes a Lemma in [24].

G Extended results

We show additional results here comparing UCLS to Sarsa with optimistic initialization and GV-UCB
(p=0.5), Figure 7; along with DGPQ in MCSparse. Also included are plots showing best and worst

20

Algorithm 8 DGPQ(k(·, ·), d(·, ·), LQ, Env,A, Rmax, s0, γ, σ2, σ2
tol, ε)

k(·, ·), d(·, ·) are typically the RBF w/ bandwidth = σ2 and euclidean distance respectively.
LQ correlates with exploration.
A is the set of possible actions.
γ is the discount factor.
σ2
tol is the tolerance of induced variance of using a new point to update a GP

Found useful ranges for parameters during sweeps:
σ2 ∈ [0.001, 0.5],σ2

tol ∈ [0.01, 0.1], ε ∈ [0.01, 0.1], LQ ∈ [1, 20]

1: Q̂(s, a)
def
= min(
Vmax,

min
(si,a)∈Q̂a.BV

{[µ̂i + LQd((s, a), (si, a))]}

)
2: for a ∈ A do
3: Q̂a.BV = ∅
4: GPa = GP.init(µ = Rmax

1−γ , k(·, ·))
5: for t ∈ [0, T] do
6: at = argmax

a
Q̂(s, a)

7: //take action at in state st, observe (st+1, rt)
8: (st+1, rt) = Env(st, at)

9: qt = rt + γmax
a

Q̂(st+1)

10: σ2
1 = GPat .variance(st)

11: //If the new sample is not well covered by GPat
12: if σ2

1 > σ2
tol then

13: GPat .update(st, qt)

14: σ2
2 = GPat .variance(st)

15: //If the GPat now well covers a previously unknown state and the new approximation is 2ε

less than what is found in Q̂ (i.e. is a less optimistic estimate).
16: if

{
σ2
1 > σ2

tol ≥ σ2
2

}
and{

Q̂at(st)−GPat .mean(st) > 2ε
}

then
17: µ = GPat .mean(st) + ε

18: Q̂at .BV.add((st, at), µ)

19: for ((sj , at), µj) ∈ Q̂at .BV do
20: if µj ≤ µ+ LQd((st, at), (sj , at)) then
21: Q̂at .BV.delete(((sj , at), µj))

22: //To prevent slow learning or halted learning reset the current GPs and initialize to the
current estimates.

23: ∀a ∈ A,GPa = GP.init(µ̂ = Q̂a, k(·, ·))

Algorithm 9 IsKnown(s, a)

1: // Uses the minimum count of the features for a state, to decide if s, a is known
2: // If a not given, sums over all a
3: m = 5
4: if a not given then
5: f ←

∑
a c(xs,a) ∈ Rd

6: else
7: f ← c(xs,a) ∈ Rd

8: if min(f) > m then
9: return “Known”

10: else
11: return “Not Known”

21

Algorithm 10 Incremental LSPI-Rmax(m)

1: A← 0, b← 0, z← 0, w← 0,
2: B← I, c← 0
3: η = 10−4, β = 0.001, λ = 0, Gmax = rmax/(1− γ) if continuing or γ 6= 1, else Gmax = rmaxh

for a predicted maximum episode length (e.g., h = 10000).
4: xs,· ← initial state-action features, for any action
5: a← greedy action according to value estimates given by x>s,aw
6: repeat
7: Take action a and observe xs′,· and r, and γ
8: a′ ← greedy action according to value estimates given by x>s′,a′w
9: z← γλz + xs,a

10: if IsKnown(s, a) then
11: if IsKnown(s′) then
12: A← (1− β)A + βz(xs,a − γxs′,a′)

>

13: b← (1− β)b + βrz
14: else
15: A← (1− β)A + βxs,ax

>
s,a

16: b← (1− β)b + β(r + γGmax)xs,a
17: else
18: A← (1− β)A + βxs,ax

>
s,a

19: b← (1− β)b + βGmaxxs,a
20: for ∀ã ∈ A\a do
21: if !IsKnown(s, ã) then
22: A← (1− β)A + βxs,ãx

>
s,ã

23: b← (1− β)b + βGmaxxs,ã
24: c← c + xs,a

25: α = min
{

1.0, 0.01
||A||2F ||xs,a||22+1.0

}
26: B← B− αA(A>Bxs,a − xs,a)x>s,a
27: w← w + (B + ηI)(b−Aw)
28: xs,a ← xs′,a′ and a← a′

29: until agent done interaction with environment

Algorithm 11 LSTD(λ) with Sherman-Morrison update

1: A−1 ← 1
η I, b← 0, z← 0, w← 0,

2: xs,· ← initial state-action features, for any action
3: a← ε-greedy action according to value estimates given by x>s,aw
4: repeat
5: Take action a and observe xs′,· and r, and γ
6: a′ ← ε-greedy action according to value estimates given by x>s′,a′w
7: z← γλz + xs,a
8: β = 1

t
9: b← b + β(rz− b)

10: v←
(
(xs,a − γxs′,a′)

>A−1
)>

11: A−1 ← 1
(1−β)A

−1 +
β

(1−β)A
−1

zv>

(1−β)+βv>z
12: w← A−1b
13: xs,a ← xs′,a′ and a← a′

14: until agent done interaction with environment

22

Algorithm 12 LSTD(λ) with Conjugate Gradient

A← 0, b← 0, z← 0, w← 0,
xs,· ← initial state-action features, for any action
a← ε-greedy action according to value estimates given by x>s,aw
repeat

Take action a and observe xs′,· and r, and γ
a′ ← ε-greedy action according to value estimates given by x>s′,a′wa′

z← γλz + xs,a
βt = 1

t . or constant such as βt = 0.01
b← b + βt(rz− b)
A← A + βt(z(xs,a − γxs′,a′)

> −A)
w← ConjugateGradient(A + ηI,b,w, ηr)
xs,a ← xs′,a′ and a← a′

until agent done interaction with environment

Algorithm 13 Conjugate Gradient(A,b,w, ηr)

1: tol = 0.001
2: Ã = ATA + ηrI
3: r← b− Ãw
4: d← r
5: repeat
6: α← r>r

d>Ad
7: w← w + αd
8: r′ ← r− αÃd
9: β ← r′>r′

r>r
10: d← r′ + βd
11: until CG converged (||r′||22 ≤ tol) or a fixed number of steps reached
12: return w

Negated
Total

Reward
x*10^2

1

5

Episodes500 2000

GV-UCB

UCLS

20 40 100Episodes

Steps per
Episode
x*10^3

4

2

12

UCLS

Optimistic Initialization

GV-UCB

DGPQ

2

5

Steps (x*10^4)1 2 5
1

UCLS
Total

Reward
(10^x)

GV-UCB

Sparse Mountain Car Puddle World River Swim

Optimistic Initialization

Optimistic Initialization(better
perf.) (better

perf.)

(better
perf.)

Figure 7: Learning curves in the three domains comparing UCLS to additional methods. In the first
two plots lower on y-axis indicates better performance, whereas in the right-most plot higher along
y-axis is better.

runs for UCLS and DGPQ — the two closest competitors — to show the variance of each algorithm
Figure 8. Additionally, to empirically reinforce the utility of contextual confidence interval radius
(CIR) over global CIR, we evaluate the policies obtained by UCLS and GV-UCB after 50,000 learning
samples in River Swim and present the results in Figure 9.

As mentioned in the main results, Sarsa with optimistic initialization performs remarkably well in
these domains. In Sparse Mountain Car, as DGPQ converts the sparse reward dynamics to a dense
one, it outperforms Sarsa with optimistic initialization as well. In Puddle World, UCLS matches
up to Sarsa’s policy. In River Swim UCLS experiences minimal regret when compared to Sarsa’s
control policy. With the loss of contextual variance estimates GV-UCB explores the complete state
space more thoroughly, and therefore performs poorly. The explicit upper confidence bound given by

23

UCLS does not suffer from this, and sufficiently explores the domain to converge to an optimal policy
without excessively exploring. For regions where there is low variance, the upper-confidence-bound
converges more quickly to zero, whereas it remains higher in regions of uncertainty. Therefore,
contextual variance estimates provide the flexibility of variable convergence based on the variance of
the region, and global variance estimates decay too slowly. When the policies obtained by GV-UCB
and UCLS are evaluated, it is clear that the policy obtained by UCLS is much closer to the optimal
policy than the policy obtained by GV-UCB, showing that the exploration strategy used by UCLS is
more data efficient.

20 40 140Episodes

Steps per
Episode

(2^x)

7

8

11

DGPQ

Best Run

Worst Run

6

8

13

Negated
Total

Reward
(2^x)

Episodes100 200 500

DGPQ

Best Run

Worst Run

2

5

Steps (x*10^4)1 2 5
1

DGPQ
Best Run

Worst Run

Total
Reward
(10^x)

Steps per
Episode
(x*10^3)

4

2

10

10 20 50Episodes

Best Run

Worst Run

UCLS

Episodes500 2000

UCLS

Best Run

Worst Run

20

40

100

Negated
Total

Reward

2

5

Steps (x*10^4)1 2 5
1

UCLS

Best Run

Worst Run

Total
Reward
(10^x)

Figure 8: Best and worst run curves for DGPQ(top) and UCLS(bottom). From left to right: Sparse
Mountain Car, Puddle World, River Swim.

Optimal

Suboptimal

Random

UCLS(M+CIR)
UCLS(M)

GV-UCB(M)

GV-UCB(M+CIR)

Steps (x*10^4)1 2 5
2

3

4
Total

Reward
(10^x)

UCLS(M+CIR)
UCLS(M)

GV-UCB(M)

GV-UCB(M+CIR)

Steps (x*10^4)1 2 5

UCLS

GV-UCB

2

3

4
Total

Reward
(10^x)

Figure 9: Policy evaluation plots comparing variations of final policy obtained by UCLS (p = 0.1)
and GV-UCB (p = 10e−5) after 50,000 learning steps in River Swim. Policies with (M) indicate
greedy policy w.r.t. mean estimates, whereas policies with (M+CIR) indicate greedy policies w.r.t.
(mean + CIR) estimates. In the left plot it can be seen that UCLS(M) and UCLS(M+CIR) perform
almost as well as the optimal policy, whereas both versions of GV-UCB are still sub-optimal in many
parts of the state space. Additionally, the overlap of UCLS(M) and UCLS(M+CIR) indicates that
contextual CIR fades faster than global CIR, and is a more data-efficient exploration strategy. The
right plot helps contrast the final policies obtained to the actual control policy used during learning
(indicated by just UCLS and GV-UCB).

24

	Introduction
	Background
	Estimating Upper-Confidence Bounds for Policy Evaluation using LSTD
	UCLS: Estimating upper-confidence bounds for LSTD in control
	Experiments
	Algorithms
	Environments
	Experimental Setup
	Results & Analysis

	Conclusion and Discussion
	Acknowledgements
	Issues with LSTD for control
	Optimistic Values Theorem
	Estimating Upper Confidence Bounds for Policy Evaluation using linear TD
	UCLS-L: Estimating upper confidence bounds for linear TD in control
	Details about other algorithms
	Global variance UCB
	Bootstrapped upper confidence bounds
	DGPQ
	LSPI-Rmax
	RLSVI

	Alternative updates for LSTD
	Extended results

