
A Further task details, analyses, and model configurations

In the following sections we provide further details on the experiments and the model configurations. We will
sometimes refer to the following terms when describing the model:

• “total units”: The total number of elements in the memory matrix M . Equivalent to the size of each
memory multiplied by the number of memories.

• “num heads”: The number of attention heads; i.e., the number of unique sets of queries, keys, and
values produced for the memories.

• “memory slots” or “number of memories”: Equivalent to the number of rows in matrix M .

• “num blocks”: The number of iterations of attention performed at each time-step.

• “gate style”: Gating per unit or per memory slot

A.1 N th Farthest

Inputs consisted of sequences of eight randomly sampled, 16-dimensional vectors from a uniform distribution
xt ∼ U(−1, 1), and vector labels lt ∼ {1, 2, ..., 8}, encoded as a one-hot vectors and sampled without
replacement. Labels were sampled and hence did not correspond to the time-points at which the vectors were
presented to the model. Appended to each vector-label input was the task specification (i.e., the values of n and
m for that sequence), also encoded as one-hot vectors. Thus, an input for time-step t was a 40-dimensional
vector (xt; lt;n;m).

For all models (RMC, LSTM, DNC) we used the Adam optimiser [44] with a batch size of 1600, learning rates
tuned between 1e−5 and 1e−3, and trained using a softmax cross entropy loss function. All the models had
an equivalent 4-layer MLP (256 units per layer with ReLu non-linearities) to process their outputs to produce
logits for the softmax. Learning rate did not seem to influence performance, so we settled on 1e−4 for the final
experiments.

For the LSTM and DNC, architecture parameters seemingly made no difference to model performance. For the
LSTM we tried hidden sizes ranging from 64 up to 4096 units, and for the DNC we tried 1, 8, or 16 memories,
128, 512, or 1024 memory sizes (which we tied to the controller LSTM size), and 1, 2, or 4 memory reads &
writes. The DNC used a 2-layer LSTM controller.

For the RMC we used 1, 8, or 16 memories with 2048 total units (so, the size of each memory was 2048
num_mems ),

1, 8, or 16 heads, 1 block of attention, and both the ‘unit’ and ‘memory’ gating methods. Figure 4 shows the
results of a hyperparameter sweep scaled according to wall-clock time (models with more but smaller memories
are faster to run than those with fewer but larger memories, and we chose to compare models with equivalent
number of total units in the memory matrix M ).

A.2 Program Evaluation

To further study the effect of relational structure on working memory and symbolic representation we turned
to a set of problems that provided insights into the RMC’s fitness as a generalized computational model. The
Learning to Execute (LTE) dataset [25] provided a good starting point for assessing the power of our model
over this class of problems. Sample problems are of the form of linear time, constant memory, mini-programs.

Training samples were generated in batches of 128 on-the-fly. Each model was trained for 200K iterations using
an Adam optimiser and learning rate of 1e−3. The samples were parameterized by literal length and nesting
depth which define the length of terminal values in the program snippets and the level of program operation
nesting. Within each batch the literal length and nesting value was sampled uniformly up to the maximum value
for each - this is consistent with the Mix curriculum strategy from [25]. We evaluated the model against a batch
of 12800 samples using the maximum nesting and literal length values for all samples and report the top score.
Examples of samples for each task can be found in figure 6 and figure 7. It also worth noting that the modulus
operation was applied to addition, control, and full program samples so as to bound the output to the maximum
literal length in case of longer for-loops.

The sequential model consists of an encoder and a decoder which each take the form of a recurrent neural
network [45, 25]. Once the encoder has processed the input sequence the state of the encoder is used to initialize
the decoder state and subsequently to generate the target sequence (program output). The output from all
models is passed through a 4-layer MLP - all layers have size 256 with an output ReLU - to generate an output
embedding at each step of the output sequence.

In [25] teacher forcing is used for both training and testing in the decode phase. For our experiments, we began
by exploring teacher forcing during training but used model predictions from the previous step as input to the
the decoder at the next step when evaluating the model [45]. We also considered the potential effect of limiting
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Figure 4: N th Farthest hyperparameter analysis. Timestamp refers to hours of training. There is
a clear effect with the number of memories, with 8 or 16 memories being better than 1. Interestingly,
when the model had 1 memory we observed an effect with the number of heads, with more heads (8
or 16) being better than one, possibly indicating that the RMC can learn to compartmentalise and
relate information across heads in addition to across memories.

LSTM DNC

Figure 5: LSTM and DNC training curves for the N th Farthest task.

the dependency on the ground truth altogether when training the decoder [39] and using a non-auto-regressive
regime where model predictions only were used during training. It turned out that this approach tended to yield
the strongest results.

Following are the encoder/decoder configurations for a collection of memory models that performed best over all
tasks. With the RMC we swept over two and four memories, and two and four attention heads, a total memory
size of 1024 and 2048 (divided across memories), a single pass of self attention per step and scalar memory
gating. For the baselines, the LSTM is a two layer model and we swept over models with 1024 and 2048 units
per layer, skip connections and layer-wise outputs concatenated on the final layer. The DNC used a memory size
of 80, word size 64, four read heads and one write head, a 2-layer controller sweeping over 128, 256 and 512
latent units per layer, larger settings than this tended to hurt performance. Also for the DNC, an LSTM controller
is used for Program Evaluation problems, and feed-forward controller for memorization. Finally, the EntNet was
compared with a total memory size of either 1024 or 2048 with 2, 4, 6, or 8 memory cells where total memory
size is divided among memories and the states of the cells are summed to produce an output. All results reported
are from the strongest performing hyper-parameter setting for the given model.
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Figure 6: Samples of programmatic tasks. Note that training samples will sample literal length up to
including the maximum length.

Figure 7: Memorization tasks. Each sub-task takes the form of a list permutation.

As seen in figure 8 the RMC tends to quickly achieve high performance relative to the baselines, this demonstrates
good data efficiency for these tasks especially when compared to the LSTM. From the same figure and table 1
(the results in the table depict converged accuracy scores for nesting 2 and literal length 5) it is also clear that the
RMC scores well among the full set of program evaluation tasks where the DNC faltered on the control task
and the EntNet on copy and double tasks. It should finally be noted that due to the RMC model size scaling
with respect to total memory size over number of memories and consequently the top performing LSTM models
contained many more parameters than the top performing RMC models.

A.3 Viewport BoxWorld

We study a variant of BoxWorld, which is a pixel-based, highly combinatorial reinforcement learning environment
that demands relational reasoning-based planning, initially developed in [46]. It consists of a grid of 14× 14
pixels: grey pixels denote the background, lone colored pixels are keys that can be picked up, and duples of
colored pixels are locks and keys, where the right pixel of the duple denotes the color of the lock (and hence
the color of the key that is needed to open the lock), and the left pixel denotes the color of the key that would
be obtained should the agent open the lock. The agent is denoted by a dark grey pixel, and has four actions:
up, down, left, right. To make this task demand relational reasoning in a memory space, the agent only has
perceptual access to a 5× 5 RGB window, or viewport, appended with an extra frame denoting the color of the
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Figure 8: Programmatic results. From left to right: full program, addition, control. The top row
depicts per character accuracy scores from tasks with nesting = 2 and literal length = 5 while the
bottom row shows scores from more difficult tasks with nesting = 3 and literal length = 6.

Underlying graphObservation

Figure 9: Example BoxWorld level. The left panel shows the full-view frame of a BoxWorld level.
The agent, the dark grey pixel, only has access to a 5× 5 view surrounding it (light gray area). The
right panel shows the underlying graph that was sampled to generate the level. In this example the
solution path has length 5 and there are 4 distractor branches.

key currently in possession. The goal of the task is to navigate the space, observe the key-lock combinations,
and then choose the correct key-lock sequence so as to eventually receive the rewarded gem, denoted by a white
pixel.

In each level there is a unique sequence of keys-lock pairs that should be traversed to reach the gem. There are a
few important factors that make this task difficult: First, keys disappear once they are used. Since we include
‘distractor’ branches (i.e., key lock paths that lead to a dead end), the agent must be able to look ahead, and
reason about the appropriate path forward to the gem so as to not get stuck. Second, the location of the keys
and locks are randomised, making this task completely devoid of any spatial biases. This emphasises a capacity
to reason about the relations between keys and locks, in memory, based on their abstract relations, rather than
based on their spatial positions. For this reason we suspect that CNN-based approaches may struggle, since their
inductive biases are tied to relating things proximal in space.

To collect a locked key the agent must be in possession of the matching key color (only one key can be held at a
time) and walk over the lock, after which the lock disappears. Only then is it possible for the agent to pick up
the adjacent key. Each level was procedurally generated, constrained to have only one unique sequence in each
level ending with the white gem. To generate the level we first sampled a random graph (tree) that defined the
possible paths that could be traversed, including distractor paths. An example path is shown in figure 9.
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With viewport Without Viewport

Figure 10: Mini Pacman Results.

We used a total of 20 keys and 20 locks (i.e., colors) in our sampling pool to produce each level. Three main
factors determined the difficulty of the level: (1) the path length (i.e., number of locks) to the gem; (2) the
number of distractor branches; and (3) the path lengths of the distractor branches. For training we used solution
path lengths of at least 1 and up to 5, ensuring that an untrained agent would have a small probability of reaching
the goal by chance, at least on the easier levels. We sampled the number of distractor branches to be between 0
and 5, with a length of 1.

The viewport observation was processed through two convolutional layers, with 12 and 24 kernels, and with
2× 2 kernel sizes and a stride of 1. Each layer used a ReLU non-linearity. We used two extra feature maps to
tag the convolutional output with absolute spatial position (x and y) of each pixel/cell, with the tags comprising
evenly spaced values between −1 and 1. The resulting stack was then passed to the RMC, containing four
memories, four heads, a total memory size of 1024 (divided across heads and memories), a single pass of self
attention per step and scalar memory gating. For the baseline, we replaced the RMC with a 5× 5 ConvLSTM
with 64 output channels, with 2× 2 kernels and stride of 1.

We used this architecture in an actor-critic set-up, using the distributed Importance Weighted Actor-Learner
Architecture [47]. The agent consists of 100 actors, which generate trajectories of experience, and one learner,
which directly learns a policy π and a baseline function V , using the actors’ experiences. The model updates
were performed on GPU using mini-batches of 32 trajectories provided by the actors via a queue. The agent had
an entropy cost of 0.005, discount (γ) of 0.99 and unroll length of 40 steps. The learning rate was tuned, taking
values between 1e−5 and 2e−4. Informally, we note that we could replicate these results using an A3C setup,
though training took longer.

The agent received a reward of +10 for collecting the gem, +1 for opening a box in the solution path and−1 for
opening a distractor box. The level was terminated immediately after collecting the gem or opening a distractor
box.

A.3.1 Results

We trained an Importance Weighted Actor-Learner Architectures agent augmented with the RMC on BoxWorld
levels that required opening at least 1 and up to 5 boxes. The number of distractor branches was randomly
sampled from 0 to 5. This agent achieved high performance in the task, correctly solving 98% of the levels after
1e9 steps. The same agent augmented instead with a ConvLSTM performed significantly worse, reaching only
73%.

A.4 Language Modeling

We trained the Recurrent Memory Core with Adam, using a learning rate of 0.001 and gradients were clipped to
have a maximum L2 norm of 0.1. Backpropagation-through-time was truncated to a window-length of 100. The
model was trained with 6 Nvidia Tesla P100 GPUs synchronously. Each GPU trained with a batch of 64 and so
the total batch size was 384. We used 512 (with 0.5 dropout) as the word embedding sizes, and tied the word
embedding matrix parameters to the output softmax.

We swept over the following model architecture parameters:

• Total units in memory {1000, 1500, 2000, 2500, 3000}
• Attention heads {1, 2, 3, 4, 5}
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• Number of memories {1, 2}
• MLP layers {1, 2, 3, 4, 5}
• Attention blocks {1, 2, 3, 4}

and chose 2500 total units, 4 heads, 1 memory, a 5-layer MLP, and 1 attention block based upon validation
error on WikiText-103. We used these same parameters for GigaWord and Project Gutenberg without additional
sweeps, due to the expense of training.
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Figure 11: Validation perplexity on WikiText-103. LSTM comparison from [32]. Visual display
of data may not match numbers from table 2 because of curve smoothing.
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Figure 12: Perplexity as a function of test unroll length. Increase in perplexity when models are
unrolled for shorter sequence lengths at test time without state transfer between unrolls. Perplexities
are compared against the ‘best’ perplexity where the model is unrolled continuously over the full
test set. We see that both models incorporate little information beyond 500 words. Furthermore, the
RMC has a smaller gain in perplexity (drop in performance) when unrolled over shorter time steps in
comparison to the LSTM, e.g. a regression of 1 perplexity for the RMC vs 5 for the LSTM at 100
time steps. This suggests it is focusing on more recent words in the text.

Table 3: Test perplexity split by word frequency on GigaWord v5. Words are bucketed by the
number of times they occur in training set, > 10K contains the most frequent words.

> 10K 10K-1K < 1K All

LSTM [32] 39.4 6.5e3 3.7e4 53.5
LSTM + Hebbian Softmax [32] 33.2 3.2e3 1.6e4 43.7
RMC 28.3 3.1e3 6.9e4 38.3
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