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A Two key lemmas

Lemma| Let the sequence of x;’s be chosen according to MIRRORDESCENT. Assume that the
Bregman Divergence is uniformly bounded on IC, so that D = sup,_; 1 Vi, (x*), where x* denotes
the mmzmzzer of f(- ) Assume that the sequence {7;}=12,... is non-increasing. Then we have

a-REG” < Zt 1 2%|‘5L‘t 1 —ﬂvt”2

Proof. The key inequality we need, which can be found in Lemma 1 of [5]] (and for completeness is
included in Appendix ) is as follows: let y, ¢ be arbitrary, and assume = = argmin, - (z,y) +
V.(z), then for any z* € K, (zF — a*,y) < Vo(a*) — V+ (a*) — Vo(x™). Now apply this fact for
zT = x4,y = Yiouys and ¢ = x4_1, which provides

<$t - x*a'ytatyt> < th—l(x*) - Virt (‘T*) - th—l(‘rt)’ (1)
So, the weighted regret of the x-player can be bounded by

T * *
a-REG" := Zt 1 at<mt -z 7yt Zt 1 ’Yt( Ty 1 - th (J" ) - th71(xt))
1
vt

= %on(x*) UIT( ) + Z (%1“ - )Vzt(x*) 4 th ()
(@) (2
1D+E (’Yt+1 ’Ylt) th 1( ) Et 1 It 1( )

IAD

b
< -y Ll — @,

—~
=

where (a) holds since the sequence {7;} is non-increasing and D upper bounds the divergence terms,
and (b) follows from the strong convexity of ¢, which grants V,,,_, (z¢) > |z — z4—1[|% O

The above lemma requires a bound D on the divergence terms V, (z*), which might be large in
certain unconstrained settings — recall that we do no necessarily require that K is a bounded set,
we only assume that f(-) is minimized at a point with finite norm. On the other hand, when the
x-player’s learning rate -y is fixed, we can define the more natural choice D = V,,, (z*).

Lemmad|[Alternative]: Let the sequence of x;’s be chosen according to MIRRORDESCENT, and
assume v, = -y for all t. Let D =V, (x*), where x* denotes the benchmark in a-REG”. Then we

have a-REG® < % — Zthl %”xt_l — 2|2

Proof. The proof follows exactly as before, yet 4 = ;1 for all ¢ implies that %—1“ — 5 =0and

we may drop the sum in the third line of (Z). The rest of the proof is identical. O
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Lemma 1 of [5]: Let 2/ = argmingcc(x,y) + Ve(x). Then, it satisfies that for any x* € K,
(@' —a*,y) < Ve(a") = Vi (a7) — Ve(2). 3)

Proof. Recall that the Bregman divergence with respect to the distance generating function ¢(-) at a
point ¢ is: V.(z) := ¢(x) — (Vo(c),x — ¢) — ¢(c).
Denote F'(x) := (z,y) + V.(z). Since 2’ is the optimal point of arg min,c x F(x), by optimality,
(x* — 2/, VF(z)) > 0, forany z* € K. So,
(7 —a' VF( ) = (@" —a,y) + (@7 — 2", Vo(a') — Ve(c))

= (@" =2/, y) +{o(z") = (Vo(c), 2" —c) = d(c)} = {d(z") = (Vo(a'), 2" — a") — ¢(2")}
—{o(a) = (Vo(e), 2" — ) — d(c)}
= (" )

— 2, y) + Ve(a*) — Vi (a*) — Vo(2) > 0.
4)
The last inequality means that
(2" — 2%, y) < Ve(e™) = Var (%) = V(). (5)
O

B Proof of Theoremd

_ (41 1

oty in the sense

TheoremE| Algorltthlth 0= L is equivalent to Algortthmlwzth Ve
that they generate equivalent sequences of iterates:

forall t = 1,27. .. ,T‘7 Wy = Ty and Zt—1 = gt'

Proof. First, let us check the base case to see if wy = Z1. We have that wy = z9 — 0V f(zg) from
line 3 of Algorithm [3| while 7, = Zo — -V f(%1) in . Thus, if the initialization is the same:
wo = 20 = Lo = Top = L1, then wy, = Z.

Now assume that wt 1 = T4y—1 holds forat > 2. Then from the expression of line 4 that

21 =we_q + L =i 2(wy—q — wi_g), We get zg_q = Ty_1 + t+1 2(%4_1 — T4_2). Let us analyze that

(t-1)+52(-1)

the r.h.s of the equality. The coefficient of x;_; in T, + & o1 (a:t_l — Ty_g) is yv— =

20+43)  2(2t-1)

, while the coefficient of each z, forany 7 <t —2in T;_1 + t+1( t—1 — Tt—2)

T = 0+
(DT _ 2(2t—1) 21 _
is i - A = e 1)t(t+1> o) X7 = lemen (i - D x T =
27

t+(t 1) 2(2t—1)
t(t+1) " A, T t@+D)

is I = (t+1) for any 7 < t — 2. Thus, 2,1 = Z;. Now observe that if z;_; = T;, we get

wy = ;. To see this, substituting z;_; = wy_; + & = 2 (w1 — wy_z) of line 4 into line 3, we get

Yet the coefficient of x;_; in T; is and the coefficient of x, in 7,

Wy = wy_q + & t+1 (wt 1— Wi—2) — OV f(2zi—1). By using z;_1 = 7 and w;_1 = T;_1, we further
getwy = Ty + 1 o1 2(Z4_1 — Ty_2) — OV f(T4) = T;. We can repeat the argument to show that the
correspondence holds for any ¢, which establishes the equivalency.

Notice that the choice of decreasing sequence {7; } here can still make the distance terms in ( .
cancel out. So, we get O(1/T?) rate by the guarantee. O

C Proof of Theorem

Theorem Let oy = t. Assume KC = R™. Also, let v, = O(%) The output T7 of Algorithmis an
O(%)-approximate optimal solution of min,, f(z).



Proof. To analyze the guarantee of Zp of Algorithm 4] we use the following lemma about FOL-
LOWTHELEADER for strongly convex loss functions.

Corollary 1 from [3] Ler ¢1,...,¢r be a sequence of functions such that for all t € [T), ¢; is
oy-strongly convex. Assume that FOLLOWTHELEADER runs on this sequence and for each t € [T,

let 0; be in V;(y:). Then, Ele 41 (y:) — min, EtT:1 b(y) <3 Zt 1 E‘Ml

Observe that the y-player plays FOLLOWTHELEADER on the loss function sequence ol (y) :=
o (—(z4,y) + f*(y)), whose strong convexity parameter is % (due to f*(y) is 1-strongly convex
by duality). Also, VU (y:) = —xr + Vf*(yr) = —z + :ct 1, where the last inequality is due

. —1 * _ = *
to that if y, = argmax, (;'— S aszs,y) — f(y) = Vf(Zi_1), then Ty = Vf*(y;) by
AboveCor. 2~ 2 27 13 2
duality. So, we have a-REG" < 33/ 7%!:—;:(%) = T eiblmeanl®

T —_ 2 . . . T
ox:r w) For the z-player, it is an instance of MIRRORDESCENT, s0 @-REG' :=

T=1
T
L D=3 2»1“ ”It—lfxt”2

TlT Zthl (rp—a*, o) < 2T = Therefore, T of Algorithmis an a-REG +

—_ LT (1Zee1—e |2 — ||z —ze1 || . . . : .
a-REG’ = O(Eze=llEm Z’i‘ lze==e117) ) _approximate optimal solution. Since the distance

terms may not cancel out, one may only bound the differences of the distance terms by a constant,
which leads to the non-accelerated O(1/T) rate. O

D Proof of Theorem

Theorem [6| Let oy = t. Algorithm [B| with update by option (A) is the case when the y-player
uses OPTIMISTICFTL and the x-player adopts MIRRORDESCENT with ~; = 4L in Fenchel game.

Therefore, wr is an O(7z )-approximate optimal solution of mingcc f(z).

Proof. We first prove by induction showing that w; in Algorithm [5|is 22:1 Z—jxs for any ¢t > 0.
For the base case t = 1, we have wy; = (1 — B1)wp + fr1x1 = 21 = %zl. Now suppose that the
equivalency holds at t — 1, for a ¢ > 2. Then,

= (1 - Bwi—1 + 5759015 = (1 - 5t)(zs 1 A Ts) + B ©
t—1 t—1 Qs t — t s
= (1 - H%)(ZS 1 t(? ) xs) + Bray = ES 1 t(t+1) Ts + %txt = 2521 %ﬁm‘w

where (a) is by induction. So, it holds at ¢ too. Now we are going to show that zy = Ai(ata:t_l +

ZZ 11a xg) = xt We have that z; = (1—5;)wi—1+Fra—1 = (1 ﬁt)(zs . Atslxs)—&—ﬁta:t,l =
t—1 t—1 ~

( t+1)(2t 1 t(t 1) .73,5) + Bixi—1 = ZS 1 t(t+1) Ts + Brxi—1 = ZS 1 Zjﬂjs + tht—l = Tt-

The result also means that Vf(z) =Vf(z) = yt of the y-player who plays Optimistic-FTL in
Algorithm Furthermore, it shows that line 5 of Algorithm xy = argming - v, (V f(2), ) +
Va,_, () is exactly (9) of MIRRORDESCENT in Fenchel game. Also, from (6), the last iterate wy in
Algorithm 5] corresponds to the final output of our accelerated solution to Fenchel game, which is the
weighted average point that enjoys the guarantee by the game analysis. O

E Proof of Theorem

Theorem [7] Let oy, = t. Algorithm[5with update by option (B) is the case when the y -player uses
OPTIMISTICFTL and the x- player adopts BETHEREGULARIZEDLEADER with n = —L in Fenchel

game. Therefore, wr is an O( 7 )-approximate optimal solution of mingcxc f ().

Proof. Consider in Fenchel game that the y-player uses OPTIMISTICFTL while the x-player plays
according to BTRL:

. T
xy = argming e >4 (@, apye) + %R(I)v



where R(-) is a 1-strongly convex function. Define, z = arg min,ecx R(z). Form [I] (also see
Appendix [F)), it shows that BTRL has regret

* T 2
Regret i= S (w0 — a*, aqyy) < MR B levmres )

where z* is the benchmark/comparator defined in the definition of the weighted regret ().
By combining (8) and (7)), we get that

R(z*)—R(z of
a-REG®+a-REGY __ : )n { )'*‘ZtT:l(TttL—ﬁ)Hmt—l_“w < O(L(R(w*)—R(z))) ()
Ar - Ar — T2 ?

where the last inequality is because n = ﬁ so that the distance terms cancel out. So, by Lemma

and Theorem again, we know that Zr is an O(=)-approximate optimal solution of min e f ().

The remaining thing to do is showing that Z is actually wrp of Algorithm [5| with option (B). But,
this follows the same line as the proof of Theorem [6] So, we have completed the proof. O

F Proof of BETHEREGULARIZEDLEADER ’s regret

For completeness, we replicate the proof in [1] about the regret bound of BETHEREGULAR-
IZEDLEADER in this section.

Theorem 10 of [[1]]] Let 6, be the loss vector in round t. Let the update of BTRL be x; =
arg mingexc(z, L) + %R(x), where R(-) is B-strongly convex. Denote z = arg min, ¢ R(z). Then,
BTRL has regret

R(z*)=R(z)—5 S1_, |lwe—ae 1’

Regret := 23;1(33,5 —2*,0;) < -

)

To analyze the regret of BETHEREGULARIZEDLEADER, let us consider OPTIMISTICFTRL first. Let
0; be the loss vector in round ¢ and let the cumulative loss vector be L; = 22:1 0. The update of
OPTIMISTICFTRL is

xy = argmingexc(x, Li—1 + my) + %R(I), (10)
where m is the learner’s guess of the loss vector in round ¢, R(-) is 3-strong convex with respect to a
norm (||-]|) and 7) is a parameter. Therefore, it is clear that the regret of BETHEREGULARIZEDLEADER

will be the one when OPTIMISTICFTRL ’s guess of the loss vectors exactly match the true ones, i.e.
my = Gt.

Theorem 16 of [[1]]] Let 6; be the loss vector in round t. Let the update of OPTIMISTICFTRL
be x; = argmingec(x, Li—1 + my) + %R(m) where my is the learner’s guess of the loss vector

in round t and R(x) is a -strongly convex function. Denote the update of standard FTRL as
z = argmingex (@, Li—1) + %R(x) Also, z1 = arg mingecx R(x). Then, OPTIMISTICFTRL
has regret

Regret := ZtT:l@:t —a*,0;) < w + Zthl 20— my|12, (11)

T
where Dp = >, gHJ:t — 2?2 + ngt — Zi11

Ty = arg mingec(w, Li—1 + my) + %R(m)

2, 2z = argming i (z,Ly—1) + %R(x) and

Recall that the update of BETHEREGULARIZEDLEADER is x; = arg mingex(x, Ls) + %R(x),

Therefore, we have that m; = 6; and x; = z;41 in the regret bound of OPTIMISTICFTRL indicated
by the theorem. Consequently, we get that the regret of BETHEREGULARIZEDLEADER satisfies

R(z")~R(z)=5 3¢, [ze—zea|®

Regret := Zle(xt —z%,0,) < ;

(12)

G Proof of OPTIMISTICFTRL ’s regret

For completeness, we replicate the proof in [1] about the regret bound of OPTIMISTICFTRL in this
section.



Theorem 16 of [[1]]] Let 0; be the loss vector in round t. Let the update of OPTIMISTICFTRL
be xy = argmingeic(x, Ly—1 + my) + %R(:z:), where my is the learner’s guess of the loss vector

in round t and R(x) is a [5-strongly convex function. Denote the update of standard FTRL as
2z = argmingex{x, Ly_1) + %R(m) Also, z1 = arg mingex R(x). Then, OPTIMISTICFTRL
has regret

Regret := S, (my — a*,0;) < BE=FEDr 4 570 910, — gy |2, (13)

where Dp = thl ngt —z|* + ngt — zp1 |2 2 = argming (2, Li—1) + %R(x), and

xy = argmingexc(x, Ly—1 + my) + %R(x)

Proof. Define z; = argmin, - (x, L;_1) + %R(x) as the update of the standard FOLLOW-THE-
REGULARIZED-LEADER. We can re-write the regret as
Regret = Z;T:l <(Et — x*79t> = ZtT:l<xt — Zt+1, 9t — mt> —+ ZZ:1<.’Et — Zt41, mt> —+ <Zt+1 af)*’ 9t>
Let us analyze the first sum

Y1 (@ = 241, 60— mu). (15)
Now using Lemma 17 of [[1]] (which is also stated below) with 1 = x¢, u; = 22;11 6, + m; and
To = 2411, Ug = 22:1 0, in the lemma, we have

o (@ = zeen, 00 = me) < 3y e — zerallll0 — malle < 52 B0 —mall2 (16)

For the other sum,
ZtT=1<$t — Zpg1, M) + (Ze41 — &%, 04), (17)
we are going to show that, for any T' > 0, it is upper-bounded by w, which holds for

B

any z* € K, where Dy = 3°/_ | B[z, — 2| + &||x; — 241> For the base case T = 0, we see

that
S (@ — zepr. ) + (21 — 2%,0,) =0 < W, (18)
as z; = argmingexc R(x).
Using induction, assume that it also holds for 7' — 1 for aT" > 1. Then, we have
ZtT:1<xt — 241, M) + (2e41, 01)

(a)
< (xp — zp41,mrp) + (zr41,07) +

R(ZT)—R(;l)—DT71 + <ZT,LT—1>

®) R(z7)—R(21)—Dr 1~ S |lzr—2r|?
< (z7 — 2p41, mr) + (241, Op) + DED)=HC) T 2oz~

R(zr)—R(z1)—Dr_1— & |lzr—2r|?
+{(xp, L1+ m
m (xp, Lr_y T) (19)

12

+ (@, Ly_1)

= <ZT+179T — mT> +

(c)

R(zr41)—R(z1)=Dr_1—Z|lzr—zr|?— £ lar —2r 41
< (zr41,07 —m7) + 2 2

n

+ (2741, Lr—1 +m7)
— <ZT+1 LT> + R(zr41)—R(21)—Dr

n
(d) .
< (a*, Ly) + Be)=RG)=Dr

)

where (a) is by induction such that the inequality holds at 7" — 1 for any z* € K including 2* = zp,
(b) and (c) are by strong convexity so that

<ZTaLT—1>+% < <$T7LT—1>+% - %HIT*ZTHQ, (20)

and
(rr,Lr_1 +mr) + @ <A(zry1, Lr—1 +mr) + w - 2%||-TT — zr41]?, (21)
and (d) is because 2y is the optimal point of argmin, (z, Ly) + @, We’ve completed the

induction.

O



Lemma 17 of [[T] Denote x:1 = argmin, (z, u1) + %R(az) and x4 = argmin, (x, us) + %R(m)for
a [3-strongly convex function R(-) with respect to a norm || - ||. We have ||x1 — z2|| < %||ur — ual|«-

H Proof of Theorem

Theorem For the game g(x,y) := (z,y) — f*(y) + %‘”Hg, if the y-player plays OPTIMISTICFTL

and the x-player plays BETHEREGULARIZEDLEADER: Z; < arg mingcy Zi o @sls(x), where

u\lﬂC

aplp(z) == ulizlls , then the weighted average (acT, gr) would be O(exp(fT)) approximate

equilibrium ofthe game, where the weights % &t = \/@' This implies that f(Z7) — mingex f(x) =
Ofexp(~L)).

Proof. From Lemma[3] we know that the y-player’s regret by OPTIMISTICFTL is

Sy ale(§e) — anle(y*) < ey 8e(Fe) — Oelesr)

ZZ;I Oét<17t—1 — T, Yt — ?Qt+1>

iy arfwia — @, V&) = V@)
Yoy adllwe =zl VF@E) - V()]

(Eqns. Bl [6)

(Holder’s Ineq.) <
= Yz —wll| V@) - p@ - V@) + pi
(triangle inequality) < Sz — 2| (IVF@) — V@) + pllze — Tl)
(L-smoothness and L > ) < 2L Zthl ap||lzi—1 — ze|||| T — T |
a2
Ean.[) = 2L, Gl -zl —
Therefore,
y T of 2
a-REGY <2L >, A—t”a:t,l — x]|% (22)

For the x-player, its loss function in round ¢ is a0y () := v (uep(x) +(x, y;)), where ¢(z) := 3 ||z[|3.
Assume the x-player plays BETHEREGULARIZEDLEADER,

t
Ty < arg ;Iél/rvl ZO asls(x), (23)

where aply(z) := apue@(x). Denote
¢
A=) "o (24)
s=0

Notice that this is different from A; := Zi=1 as. Then, its regret is (proof is on the next page)

a-REG” := 31| ayly(z,) — auly(2*) < aopLol|lz™ — wol| — Sp—y 2o amy — 2|2, (25)

where Ly is the Lipchitz constant of the 1-strongly convex function ¢(z) and xg = arg min, ¢(z).
Summing (22) and (23), we have

) 2La? u[lt,l
a-REGY + a-REG” < agulollz™ — xo|| + E ( L Mas—1 — 242 (26)
We want to let the distance terms cancel out.
2La?2 A
G AL <, 27)

fit—ao 2 N



which is equivalent to
4La? < /Mitﬁt,l — ,uaoflt,l.

) -
4L (iétz < uiAtfl — pag 7At~_1 i
7oA I 4 8)
a? Qg Qi
AL—5 < p(l - =)(1 - =)
At2 At At

Let us denote the constant 6 := % > 0.
t

92+ 1 - 209 K20 <y, 29
Notice that 0 < % < 1. It suffices to show that
G R /R (30)

4L A, 4L —

Yet, we would expect that % is a decreasing function of ¢, so it suffices to show that
t

024 20y H o 31

which is equivalent to

g2 4 Ly K

4:L/241 M4L 32)
0?(1+-—) — — <0.
(1+ 4L) 4L —
It turns out that § = /{7 = \/% satisfies the above inequality, combining the fact that & < 1.
Therefore, the optimization error € after 7" iterations is
a-REGY + a-REG” 1 A Ap_q
< < = Lollz* —
€= Ar = A A, Ap (cwopLollz™ — o)
1 (e%) ar *
=1 ===) (1= =) (awopnLolz™ — zol|)
Ay Ay Ar
1 o9 or (33)
<—0-=)-(1- =) aoplol|z" — =
< g (=G (1= ) aonLolle” )
1 (p_qaopulo
1-— T-1 0070 .I* — Zol|-
< (1= )T ]
whichis O((1 — \/%)T) = O(exp(— \/%T)).
O
Proof. (of (23)) First, we are going to use induction to show that
Zatft(aft) — ol (2*) < Dy, (34)

t=0

pAL—1 ||xt—1 _ l't||2-

forany z* € X, where D, := — >/ | ¥4

For the base case ¢ = 0, we have

appp(zo) — appup(z™) < 0 = Dy, (35)

where 1z is defined as xg = arg mingc x apud(x).



Now suppose it holds at ¢t = 7 — 1.

T () T—1
Z adi(xy) < Droq + ol (2r) + Z ali(rr—1)
t=0 t=0
(®) 'r IM 2
< D‘rfl +a'r T x'r + Zatét (E‘r - ||5E'rfl - xr”
=D,_1+ Zatft(azT) - Aroap [ — (36)
2
t=0
= DT + Z Oétgt(],}—)
t=0
<D;+ Z%Et(z*)v
t=0

for any z* € X, where (a) we use the induction and we let the point z* = x._; and (b) is
by the strongly convexity and that z,_; = arg minx Zz_ol aly(z) so that 2;01 aly(zr—1) <

Sy aili(w) — Ar S e,y — a||?as Yo, Y aply(z) is at least Tiw—strongly convex. We
have completed the proof of (34). By (34), we have

a-REG” 1= Y0, anly(w) — only(2*) < aope(z*) — aopd(z0) — Yooy Lo we — 2.

T MA
« -1
< aopLollro — %[ = Y o w1 — @,
t=1
(37
where we assume that ¢(+) is Lo-Lipchitz.
O

I Analysis of Accelerated Proximal Method

First, we need a stronger result.

Lemma [Property 1 in [6]] For any proper lower semi-continuous convex function 0(z), let x+ =
argmin, o - 0(x) + Ve(x). Then, it satisfies that for any x* € I,

O(xt) = 0(x7) < Ve(a™) = Vo (a7) = Ve(z™). (38)

Proof. The statement and its proof has also appeared in [2] and [4]. For completeness, we replicate
the proof here. Recall that the Bregman divergence with respect to the distance generating function

¢(+) ata point cis: V.(z) := ¢(x) — (Vo(c),x — ¢) — ¢(c).
Denote F'(x) := 6(x) + V,(z). Since 2 is the optimal point of argmin, . ;- F'(x), by optimality,
(0" — 2, VF(a*)) = (a* — a+,00(") + Vo(a™) — Vo(e)) = 0 (39)
for any 2* € K.
Now using the definition of subgradient, we also have
O(z*) > 6(xt) + (90(x™),a* — a™). (40)
By combining (39) and (#0), we have
O(z*) > 0(x™) + (90(x™), z* — ™).
> 0(z™) + (2% — 2™, Vo(c) — Vo(a™)).
=0(z") = {d(2") = (Vo(c), 2" — c) = d(e)} + {$(a") = (Vo(zT), 2" — 27T) — p(2™)}
+{o(@™) = (Vo(e), 2™ —¢) — ¢(c)}

)
=0(z") = Ve(a") + Vir (%) + Ve(a™)
(41)



O
Recall MIRRORDESCENT ’s update x; = argmin,, y;(athe(z)) + Va,_, (z), where he(z) = (2, yi) +
¥(x). Using the lemma with 6(z) = v (athy(z)), 27 = 2, and ¢ = z4_; we have that
vi(achy () = yilarhi(27)) = 0(x) = 0(2") < Vo, (%) = Vi, (27) = Vo, (). (42)
Therefore, we have that

a-REG” := Zthl athy(zy) — mingey Zthl athy ()
< S L (Ve (@) = Vi, (a%) = Vi, (22))
= ’Y%VIO(‘%*) - V%UIT (:L‘*) + Zthill( - %)th (:L‘*) - %th—l(xt) 43)

Yt+1
) T—1 D T
< %D + -1 (%1+1 - %)D - %V"’”tfl(mt) T 2t %V"“*l(xt)
b) T
<L oS e —wl?,

where (a) holds since the sequence {~;} is non-increasing and D upper bounds the divergence terms,
and (b) follows from the strong convexity of ¢, which grants V,,, , (z¢) > 1|z; — z4—1[|>. Now we
see that following the same lines as the proof in Section We get that Z7 is an O(%) approximate
optimal solution.

—

—~

J Accelerated FRANKWOLFE

Algorithm 1 A new FW algorithm [[1]]

1: In the weighted loss setting of Algorithm [T}
2: fort=1,2,...,T do

3: y-player uses OPTIMISITCFTL as OAlg”: v = V(7).

4: z-player uses BETHEREGULARIZEDLEADER with R(X) := 17 (z)? as OAlg”:

5 Set (%4, p;) = argmin 22:1 plx, asys) + %,02 and play z; = p; 3.
z€K,pe(0,1]

6: end for

[[L] proposed a FRANKWOLFE like algorithm that not only requires a linear oracle but also enjoys
O(1/T?) rate on all the known examples of strongly convex constraint sets that contain the origin,
like 7, ball and Schatten p ball with p € (1,2]. Their analysis requires the assumption that the
underlying function is also strongly-convex to get the fast rate. To describe their algorithm, denote X
be any closed convex set that contains the origin. Define “gauge function” of C as yic(z) := inf{c >
0: £ € K}. Notice that, for a closed convex K that contains the origin, K = {z € R? : yic(z) < 1}.
Furthermore, the boundary points on K satisfy yx(z) = 1.

[1]] showed that the squared of a gauge function is strongly convex on the underlying X for all the
known examples of strongly convex sets that contain the origin. Algorithm I]is the algorithm. Clearly,
Algorithm [T]is an instance of the meta-algorithm. We want to emphasize again that our analysis
does not need the function f(-) to be strongly convex to show O(1/7T?) rate. We’ve improved their
analysis.



K Proof of Theorem [1]

For completeness, we replicate the proof by [1]] here.

Theorem 1| Assume a T-length sequence o are given. Suppose in Algorithm[l|the online learning
algorithms OAlg® and OAlgY have the ai-weighted average regret o-REG" and a-REG’ respectively.
Then the output (T, ijr) is an e-equilibrium for g(-,-), with ¢ = a-REG" + o-REG" .

Proof. Suppose that the loss function of the z-player in round t is azh:(-) : X — R, where
he() := g(-,y:). The y-player, on the other hand, observes her own sequence of loss functions
ale(+) : Y — R, where £;(-) := —g(a4, ).
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Let us now apply the same argument on the right hand side, where we use the x-player’s regret
guarantee.
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Note that sup,cy g(z*,y) = f(2*) be the definition of the game g(-,-) and by Fenchel con-
jugacy, hence we can conclude that sup, .y g(z*,y) = infyexsup,cyg(z,y) = V' =
sup,cy infyex g(2,y). Combining (@#3) and (47), we see that:

sup g (Zr,y) — a- a-REG’ < 1nf g (x,y7r) + a-REG"
yey

which implies that (Z7, §r) is an € = @-REG" + a-REG’ equilibrium. O
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