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A Two key lemmas

Lemma 4 Let the sequence of xt’s be chosen according to MIRRORDESCENT. Assume that the
Bregman Divergence is uniformly bounded onK, so that D = supt=1,...,T Vxt(x

∗), where x∗ denotes
the minimizer of f(·). Assume that the sequence {γt}t=1,2,... is non-increasing. Then we have
α-REGx ≤ D

γT
−
∑T
t=1

1
2γt
‖xt−1 − xt‖2.

Proof. The key inequality we need, which can be found in Lemma 1 of [5] (and for completeness is
included in Appendix A) is as follows: let y, c be arbitrary, and assume x+ = argminx∈K〈x, y〉 +
Vc(x), then for any x∗ ∈ K, 〈x+ − x∗, y〉 ≤ Vc(x∗)− Vx+(x∗)− Vc(x+). Now apply this fact for
x+ = xt, y = γtαtyt and c = xt−1, which provides

〈xt − x∗, γtαtyt〉 ≤ Vxt−1
(x∗)− Vxt(x∗)− Vxt−1

(xt). (1)

So, the weighted regret of the x-player can be bounded by

α-REGx :=
∑T
t=1 αt〈xt − x∗, yt〉

(1)

≤
∑T
t=1

1
γt

(
Vxt−1(x∗)− Vxt(x∗)− Vxt−1(xt)

)
= 1

γ1
Vx0(x∗)− 1

γT
vxT (x∗) +

∑T−1
t=1 ( 1

γt+1
− 1

γt
)Vxt(x

∗)− 1
γt
Vxt−1(xt)

(a)

≤ 1
γ1
D +

∑T−1
t=1 ( 1

γt+1
− 1

γt
)D − 1

γt
Vxt−1

(xt) = D
γT
−
∑T
t=1

1
γt
Vxt−1

(xt)

(b)

≤ D
γT
−
∑T
t=1

1
2γt
‖xt−1 − xt‖2,

(2)

where (a) holds since the sequence {γt} is non-increasing and D upper bounds the divergence terms,
and (b) follows from the strong convexity of φ, which grants Vxt−1

(xt) ≥ 1
2‖xt − xt−1‖2.

The above lemma requires a bound D on the divergence terms Vxt(x
∗), which might be large in

certain unconstrained settings – recall that we do no necessarily require that K is a bounded set,
we only assume that f(·) is minimized at a point with finite norm. On the other hand, when the
x-player’s learning rate γ is fixed, we can define the more natural choice D = Vx0(x∗).

Lemma 4 [Alternative]: Let the sequence of xt’s be chosen according to MIRRORDESCENT, and
assume γt = γ for all t. Let D = Vx0

(x∗), where x∗ denotes the benchmark in α-REGx. Then we
have α-REGx ≤ D

γ −
∑T
t=1

1
2γ ‖xt−1 − xt‖2.

Proof. The proof follows exactly as before, yet γt = γt+1 for all t implies that 1
γt+1
− 1

γt
= 0 and

we may drop the sum in the third line of (2). The rest of the proof is identical.
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Lemma 1 of [5]: Let x′ = arg minx∈K〈x, y〉+ Vc(x). Then, it satisfies that for any x∗ ∈ K,

〈x′ − x∗, y〉 ≤ Vc(x∗)− Vx′(x∗)− Vc(x′). (3)

Proof. Recall that the Bregman divergence with respect to the distance generating function φ(·) at a
point c is: Vc(x) := φ(x)− 〈∇φ(c), x− c〉 − φ(c).

Denote F (x) := 〈x, y〉+ Vc(x). Since x′ is the optimal point of arg minx∈K F (x), by optimality,
〈x∗ − x′,∇F (x′)〉 ≥ 0, for any x∗ ∈ K. So,

〈x∗ − x′,∇F (x′)〉 = 〈x∗ − x′, y〉+ 〈x∗ − x′,∇φ(x′)−∇φ(c)〉
= 〈x∗ − x′, y〉+ {φ(x∗)− 〈∇φ(c), x∗ − c〉 − φ(c)} − {φ(x∗)− 〈∇φ(x′), x∗ − x′〉 − φ(x′)}
− {φ(x′)− 〈∇φ(c), x′ − c〉 − φ(c)}
= 〈x∗ − x′, y〉+ Vc(x

∗)− Vx′(x∗)− Vc(x′) ≥ 0.
(4)

The last inequality means that

〈x′ − x∗, y〉 ≤ Vc(x∗)− Vx′(x∗)− Vc(x′). (5)

B Proof of Theorem 4

Theorem 4 Algorithm 3 with θ = 1
4L is equivalent to Algorithm 2 with γt = (t+1)

t
1

8L in the sense
that they generate equivalent sequences of iterates:

for all t = 1, 2, . . . , T, wt = x̄t and zt−1 = x̃t.

Proof. First, let us check the base case to see if w1 = x̄1. We have that w1 = z0 − θ∇f(z0) from
line 3 of Algorithm 3, while x̄1 = x̄0 − 1

4L∇f(x̃1) in (11). Thus, if the initialization is the same:
w0 = z0 = x0 = x̄0 = x̃1, then w1 = x̄1.

Now assume that wt−1 = x̄t−1 holds for a t ≥ 2. Then, from the expression of line 4 that
zt−1 = wt−1 + t−2

t+1 (wt−1 − wt−2), we get zt−1 = x̄t−1 + t−2
t+1 (x̄t−1 − x̄t−2). Let us analyze that

the r.h.s of the equality. The coefficient of xt−1 in x̄t−1 + t−2
t+1 (x̄t−1 − x̄t−2) is

(t−1)+ t−2
t+1 (t−1)

At−1
=

2(1+ t−2
t+1 )

t = 2(2t−1)
t(t+1) , while the coefficient of each xτ for any τ ≤ t− 2 in x̄t−1 + t−2

t+1 (x̄t−1 − x̄t−2)

is
(1+ t−2

t+1 )τ

At−1
− t−2

t+1
τ

At−2
= { 2(2t−1)

(t−1)t(t+1) −
2

(t+1)(t−1)} × τ = { 2
(t−1)(t+1)

(
2t−1
t − 1

)
} × τ =

2τ
t(t+1) . Yet, the coefficient of xt−1 in x̃t is t+(t−1)

At
= 2(2t−1)

t(t+1) and the coefficient of xτ in x̃t
is τ

At
= 2τ

t(t+1) for any τ ≤ t − 2. Thus, zt−1 = x̃t. Now observe that if zt−1 = x̃t, we get
wt = x̄t. To see this, substituting zt−1 = wt−1 + t−2

t+1 (wt−1 − wt−2) of line 4 into line 3, we get
wt = wt−1 + t−2

t+1 (wt−1 − wt−2)− θ∇f(zt−1). By using zt−1 = x̃t and wt−1 = x̄t−1, we further
get wt = x̄t−1 + t−2

t+1 (x̄t−1 − x̄t−2)− θ∇f(x̃t) = x̄t. We can repeat the argument to show that the
correspondence holds for any t, which establishes the equivalency.

Notice that the choice of decreasing sequence {γt} here can still make the distance terms in (10)
cancel out. So, we get O(1/T 2) rate by the guarantee.

C Proof of Theorem 5

Theorem 5 Let αt = t. Assume K = Rn. Also, let γt = O( 1
L ). The output x̄T of Algorithm 4 is an

O( 1
T )-approximate optimal solution of minx f(x).
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Proof. To analyze the guarantee of x̄T of Algorithm 4, we use the following lemma about FOL-
LOWTHELEADER for strongly convex loss functions.

Corollary 1 from [3] Let `1, ..., `T be a sequence of functions such that for all t ∈ [T ], `t is
σt-strongly convex. Assume that FOLLOWTHELEADER runs on this sequence and for each t ∈ [T ],
let θt be in ∇`t(yt). Then,

∑T
t=1 `t(yt)−minx

∑T
t=1 `t(y) ≤ 1

2

∑T
t=1

‖θt‖2∑t
τ=1 στ

Observe that the y-player plays FOLLOWTHELEADER on the loss function sequence αt`t(y) :=
αt(−〈xt, y〉+ f∗(y)), whose strong convexity parameter is αt

L (due to f∗(y) is 1
L -strongly convex

by duality). Also, ∇`t(yt) = −xt + ∇f∗(yt) = −xt + x̄t−1, where the last inequality is due
to that if yt = argmaxy〈 1

At−1

∑t−1
s=1 αsxs, y〉 − f∗(y) = ∇f(x̄t−1), then x̄t−1 = ∇f∗(yt) by

duality. So, we have α-REG
y AboveCor.

≤ 1
2AT

∑T
t=1

α2
t‖x̄t−1−xt‖2∑t
τ=1 ατ (1/L)

= 1
2AT

∑T
t=1

α2
tL‖x̄t−1−xt‖2

At
=

O(
∑T
τ=1

L‖x̄t−1−xt‖2
AT

). For the x-player, it is an instance of MIRRORDESCENT, so α-REG
x

:=

1
AT

∑T
t=1〈xt−x∗, αtyt〉 ≤

1
γT
D−

∑T
t=1

1
2γt
‖xt−1−xt‖2

AT
Therefore, x̄T of Algorithm 4 is an α-REG

x
+

α-REG
y

= O(
L
∑T
t=1(‖x̄t−1−xt‖2−‖xt−xt−1‖2)

AT
) -approximate optimal solution. Since the distance

terms may not cancel out, one may only bound the differences of the distance terms by a constant,
which leads to the non-accelerated O(1/T ) rate.

D Proof of Theorem 6

Theorem 6 Let αt = t. Algorithm 5 with update by option (A) is the case when the y-player
uses OPTIMISTICFTL and the x-player adopts MIRRORDESCENT with γt = 1

4L in Fenchel game.
Therefore, wT is an O( 1

T 2 )-approximate optimal solution of minx∈K f(x).

Proof. We first prove by induction showing that wt in Algorithm 5 is
∑t
s=1

αs
At
xs for any t > 0.

For the base case t = 1, we have w1 = (1 − β1)w0 + β1x1 = x1 = α1

A1
x1. Now suppose that the

equivalency holds at t− 1, for a t ≥ 2. Then,

wt = (1− βt)wt−1 + βtxt
(a)
= (1− βt)(

∑t−1
s=1

αs
At−1

xs) + βtxt

= (1− 2
t+1 )(

∑t−1
s=1

αs
t(t−1)

2

xs) + βtxt =
∑t−1
s=1

αs
t(t+1)

2

xs + αt
At
xt =

∑t
s=1

αs
As
xs,

(6)

where (a) is by induction. So, it holds at t too. Now we are going to show that zt = 1
At

(αtxt−1 +∑t−1
s=1 αsxs) = x̃t. We have that zt = (1−βt)wt−1+βtxt−1 = (1−βt)(

∑t−1
s=1

αs
At−1

xs)+βtxt−1 =

(1 − 2
t+1 )(

∑t−1
t=1

αt
t(t−1)

2

xt) + βtxt−1 =
∑t−1
s=1

αs
t(t+1)

2

xs + βtxt−1 =
∑t−1
s=1

αs
At
xs + αt

At
xt−1 = x̃t.

The result also means that∇f(zt) = ∇f(x̃t) = yt of the y-player who plays Optimistic-FTL in
Algorithm 1. Furthermore, it shows that line 5 of Algorithm 5: xt = argminx∈K γ

′
t〈∇f(zt), x〉 +

Vxt−1
(x) is exactly (9) of MIRRORDESCENT in Fenchel game. Also, from (6), the last iterate wT in

Algorithm 5 corresponds to the final output of our accelerated solution to Fenchel game, which is the
weighted average point that enjoys the guarantee by the game analysis.

E Proof of Theorem 7

Theorem 7 Let αt = t. Algorithm 5 with update by option (B) is the case when the y-player uses
OPTIMISTICFTL and the x-player adopts BETHEREGULARIZEDLEADER with η = 1

4L in Fenchel
game. Therefore, wT is an O( 1

T 2 )-approximate optimal solution of minx∈K f(x).

Proof. Consider in Fenchel game that the y-player uses OPTIMISTICFTL while the x-player plays
according to BTRL:

xt = argminx∈K
∑T
t=1〈xt, αtyt〉+ 1

ηR(x),
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where R(·) is a 1-strongly convex function. Define, z = arg minx∈KR(x). Form [1] (also see
Appendix F), it shows that BTRL has regret

Regret :=
∑T
t=1〈xt − x∗, αtyt〉 ≤

R(x∗)−R(z)− 1
2

∑T
t=1 ‖xt−xt−1‖2

η , (7)

where x∗ is the benchmark/comparator defined in the definition of the weighted regret (4).

By combining (8) and (7), we get that

α-REGx+α-REGy

AT
=

R(x∗)−R(z)
η +

∑T
t=1(

α2
t
At
L− 1

2η )‖xt−1−xt‖2

AT
≤ O(L(R(x∗)−R(z))

T 2 ), (8)

where the last inequality is because η = 1
4L so that the distance terms cancel out. So, by Lemma 1

and Theorem 1 again, we know that x̄T is an O( 1
T 2 )-approximate optimal solution of minx∈K f(x).

The remaining thing to do is showing that x̄T is actually wT of Algorithm 5 with option (B). But,
this follows the same line as the proof of Theorem 6. So, we have completed the proof.

F Proof of BETHEREGULARIZEDLEADER ’s regret

For completeness, we replicate the proof in [1] about the regret bound of BETHEREGULAR-
IZEDLEADER in this section.

Theorem 10 of [[1]] Let θt be the loss vector in round t. Let the update of BTRL be xt =
arg minx∈K〈x, Lt〉+ 1

ηR(x), where R(·) is β-strongly convex. Denote z = arg minx∈KR(x). Then,
BTRL has regret

Regret :=
∑T
t=1〈xt − x∗, θt〉 ≤

R(x∗)−R(z)− β2
∑T
t=1 ‖xt−xt−1‖2

η . (9)

To analyze the regret of BETHEREGULARIZEDLEADER, let us consider OPTIMISTICFTRL first. Let
θt be the loss vector in round t and let the cumulative loss vector be Lt =

∑t
s=1 θs. The update of

OPTIMISTICFTRL is
xt = arg minx∈K〈x, Lt−1 +mt〉+ 1

ηR(x), (10)

where mt is the learner’s guess of the loss vector in round t, R(·) is β-strong convex with respect to a
norm (‖·‖) and η is a parameter. Therefore, it is clear that the regret of BETHEREGULARIZEDLEADER
will be the one when OPTIMISTICFTRL ’s guess of the loss vectors exactly match the true ones, i.e.
mt = θt.

Theorem 16 of [[1]] Let θt be the loss vector in round t. Let the update of OPTIMISTICFTRL
be xt = arg minx∈K〈x, Lt−1 + mt〉 + 1

ηR(x), where mt is the learner’s guess of the loss vector
in round t and R(x) is a β-strongly convex function. Denote the update of standard FTRL as
zt = arg minx∈K〈x, Lt−1〉+ 1

ηR(x). Also, z1 = arg minx∈KR(x). Then, OPTIMISTICFTRL (10)
has regret

Regret :=
∑T
t=1〈xt − x∗, θt〉 ≤

R(x∗)−R(z1)−DT
η +

∑T
t=1

η
β ‖θt −mt‖2∗, (11)

where DT =
∑T
t=1

β
2 ‖xt − zt‖2 + β

2 ‖xt − zt+1‖2, zt = argminx∈K〈x, Lt−1〉 + 1
ηR(x), and

xt = arg minx∈K〈x, Lt−1 +mt〉+ 1
ηR(x).

Recall that the update of BETHEREGULARIZEDLEADER is xt = arg minx∈K〈x, Lt〉 + 1
ηR(x),

Therefore, we have that mt = θt and xt = zt+1 in the regret bound of OPTIMISTICFTRL indicated
by the theorem. Consequently, we get that the regret of BETHEREGULARIZEDLEADER satisfies

Regret :=
∑T
t=1〈xt − x∗, θt〉 ≤

R(x∗)−R(z)− β2
∑T
t=1 ‖xt−xt−1‖2

η . (12)

G Proof of OPTIMISTICFTRL ’s regret

For completeness, we replicate the proof in [1] about the regret bound of OPTIMISTICFTRL in this
section.
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Theorem 16 of [[1]] Let θt be the loss vector in round t. Let the update of OPTIMISTICFTRL
be xt = arg minx∈K〈x, Lt−1 + mt〉 + 1

ηR(x), where mt is the learner’s guess of the loss vector
in round t and R(x) is a β-strongly convex function. Denote the update of standard FTRL as
zt = arg minx∈K〈x, Lt−1〉+ 1

ηR(x). Also, z1 = arg minx∈KR(x). Then, OPTIMISTICFTRL (10)
has regret

Regret :=
∑T
t=1〈xt − x∗, θt〉 ≤

R(x∗)−R(z1)−DT
η +

∑T
t=1

η
β ‖θt −mt‖2∗, (13)

where DT =
∑T
t=1

β
2 ‖xt − zt‖2 + β

2 ‖xt − zt+1‖2, zt = argminx∈K〈x, Lt−1〉 + 1
ηR(x), and

xt = arg minx∈K〈x, Lt−1 +mt〉+ 1
ηR(x).

Proof. Define zt = argminx∈K〈x, Lt−1〉 + 1
ηR(x) as the update of the standard FOLLOW-THE-

REGULARIZED-LEADER. We can re-write the regret as

Regret :=
∑T
t=1〈xt − x∗, θt〉 =

∑T
t=1〈xt − zt+1, θt −mt〉+

∑T
t=1〈xt − zt+1,mt〉+ 〈zt+1 − x∗, θt〉

(14)
Let us analyze the first sum ∑T

t=1〈xt − zt+1, θt −mt〉. (15)

Now using Lemma 17 of [1] (which is also stated below) with x1 = xt, u1 =
∑t−1
s=1 θs + mt and

x2 = zt+1, u2 =
∑t
s=1 θs in the lemma, we have∑T

t=1〈xt − zt+1, θt −mt〉 ≤
∑T
t=1 ‖xt − zt+1‖‖θt −mt‖∗ ≤

∑T
t=1

η
β ‖θt −mt‖2∗. (16)

For the other sum, ∑T
t=1〈xt − zt+1,mt〉+ 〈zt+1 − x∗, θt〉, (17)

we are going to show that, for any T ≥ 0, it is upper-bounded by R(x∗)−R(z1)−DT
η , which holds for

any x∗ ∈ K, where DT =
∑T
t=1

β
2 ‖xt − zt‖

2 + β
2 ‖xt − zt+1‖2. For the base case T = 0, we see

that ∑0
t=1〈xt − zt+1,mt〉+ 〈zt+1 − x∗, θt〉 = 0 ≤ R(x∗)−R(z1)−0

η , (18)

as z1 = arg minx∈KR(x).

Using induction, assume that it also holds for T − 1 for a T ≥ 1. Then, we have∑T
t=1〈xt − zt+1,mt〉+ 〈zt+1, θt〉

(a)

≤ 〈xT − zT+1,mT 〉+ 〈zT+1, θT 〉+ R(zT )−R(z1)−DT−1

η + 〈zT , LT−1〉
(b)

≤ 〈xT − zT+1,mT 〉+ 〈zT+1, θT 〉+
R(xT )−R(z1)−DT−1− β2 ‖xT−zT ‖

2

η + 〈xT , LT−1〉

= 〈zT+1, θT −mT 〉+
R(xT )−R(z1)−DT−1− β2 ‖xT−zT ‖

2

η + 〈xT , LT−1 +mT 〉
(c)

≤ 〈zT+1, θT −mT 〉+
R(zT+1)−R(z1)−DT−1− β2 ‖xT−zT ‖

2− β2 ‖xT−zT+1‖2

η

+ 〈zT+1, LT−1 +mT 〉

= 〈zT+1, LT 〉+ R(zT+1)−R(z1)−DT
η

(d)

≤ 〈x∗, LT 〉+ R(x∗)−R(z1)−DT
η ,

(19)

where (a) is by induction such that the inequality holds at T − 1 for any x∗ ∈ K including x∗ = zT ,
(b) and (c) are by strong convexity so that

〈zT , LT−1〉+ R(zT )
η ≤ 〈xT , LT−1〉+ R(xT )

η − β
2η‖xT − zT ‖

2, (20)

and
〈xT , LT−1 +mT 〉+ R(xT )

η ≤ 〈zT+1, LT−1 +mT 〉+ R(zT+1)
η − β

2η‖xT − zT+1‖2, (21)

and (d) is because zT+1 is the optimal point of argminx〈x, LT 〉 + R(x)
η . We’ve completed the

induction.
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Lemma 17 of [[1]] Denote x1 = argminx〈x, u1〉+ 1
ηR(x) and x2 = argminx〈x, u2〉+ 1

ηR(x) for
a β-strongly convex function R(·) with respect to a norm ‖ · ‖. We have ‖x1 − x2‖ ≤ η

β ‖u1 − u2‖∗.

H Proof of Theorem 8

Theorem 8 For the game g(x, y) := 〈x, y〉 − f̃∗(y) +
µ‖x‖22

2 , if the y-player plays OPTIMISTICFTL
and the x-player plays BETHEREGULARIZEDLEADER: xt ← arg minx∈X

∑t
s=0 αs`s(x), where

α0`0(x) := α0
µ‖x‖22

2 , then the weighted average (x̄T , ȳT ) would be O(exp(− T√
κ

))-approximate
equilibrium of the game, where the weights αt

Ãt
= 1√

6κ
. This implies that f(x̄T )−minx∈X f(x) =

O(exp(− T√
κ

)).

Proof. From Lemma 3, we know that the y-player’s regret by OPTIMISTICFTL is∑T
t=1 αt`t(ỹt)− αt`t(y∗) ≤

∑T
t=1 δt(ỹt)− δt(ŷt+1)

=
∑T
t=1 αt〈xt−1 − xt, ỹt − ŷt+1〉

(Eqns. 5, 6) =
∑T
t=1 αt〈xt−1 − xt,∇f̃(x̃t)−∇f̃(x̄t)〉

(Hölder’s Ineq.) ≤
∑T
t=1 αt‖xt−1 − xt‖‖∇f̃(x̃t)−∇f̃(x̄t)‖

=
∑T
t=1 αt‖xt−1 − xt‖‖∇f(x̃t)− µx̃t −∇f̃(x̄t) + µx̄t‖

(triangle inequality) ≤
∑T
t=1 αt‖xt−1 − xt‖(‖∇f(x̃t)−∇f̃(x̄t)‖+ µ‖x̄t − x̃t‖)

(L-smoothness and L ≥ µ) ≤ 2L
∑T
t=1 αt‖xt−1 − xt‖‖x̃t − x̄t‖

(Eqn. 7) = 2L
∑T
t=1

α2
t

At
‖xt−1 − xt‖‖xt−1 − xt‖

Therefore,

α-REGy ≤ 2L
∑T
t=1

α2
t

At
‖xt−1 − xt‖2. (22)

For the x-player, its loss function in round t is αt`t(x) := αt(µφ(x)+〈x, yt〉), where φ(x) := 1
2‖x‖

2
2.

Assume the x-player plays BETHEREGULARIZEDLEADER,

xt ← arg min
x∈X

t∑
s=0

αs`s(x), (23)

where α0`0(x) := α0µφ(x). Denote

Ãt :=

t∑
s=0

αs. (24)

Notice that this is different from At :=
∑t
s=1 αs. Then, its regret is (proof is on the next page)

α-REGx :=
∑T
t=1 αt`t(xt)− αt`t(x∗) ≤ α0µL0‖x∗ − x0‖ −

∑T
t=1

µÃt−1

2 ‖xt−1 − xt‖2, (25)

where L0 is the Lipchitz constant of the 1-strongly convex function φ(x) and x0 = arg minx φ(x).

Summing (22) and (25), we have

α-REGy + α-REGx ≤ α0µL0‖x∗ − x0‖+

T∑
t=1

(
2Lα2

t

At
− µÃt−1

2
)‖xt−1 − xt‖2. (26)

We want to let the distance terms cancel out.

2Lα2
t

Ãt − a0

− µÃt−1

2
≤ 0, (27)
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which is equivalent to

4Lα2
t ≤ µÃtÃt−1 − µα0Ãt−1.

4L
α2
t

Ãt
2 ≤ µ

Ãt−1

Ãt
− µα0

Ãt−1

Ãt

1

Ãt

4L
α2
t

Ãt
2 ≤ µ(1− α0

Ãt
)(1− αt

Ãt
)

(28)

Let us denote the constant θ := αt
Ãt

> 0.

θ2 +
µ

4L
(1− α0

Ãt
)θ − µ

4L
(1− α0

Ãt
) ≤ 0. (29)

Notice that 0 < α0

Ãt
≤ 1. It suffices to show that

θ2 +
µ

4L
(1− α0

Ãt
)θ − µ

4L
≤ 0. (30)

Yet, we would expect that α0

Ãt
is a decreasing function of t, so it suffices to show that

θ2 +
µ

4L
(1− α0

Ã1

)θ − µ

4L
≤ 0, (31)

which is equivalent to

θ2 +
µ

4L

α1

Ã1

θ − µ

4L
≤ 0

θ2(1 +
µ

4L
)− µ

4L
≤ 0.

(32)

It turns out that θ =
√

µ
6L = 1√

6κ
satisfies the above inequality, combining the fact that µL ≤ 1.

Therefore, the optimization error ε after T iterations is

ε ≤ α-REGy + α-REGx

AT
≤ 1

A1

A1

A2
· · · AT−1

AT
(α0µL0‖x∗ − x0‖)

=
1

A1
(1− α2

A2
) · · · (1− αT

AT
)(α0µL0‖x∗ − x0‖)

≤ 1

A1
(1− α2

Ã2

) · · · (1− αT

ÃT
)(α0µL0‖x∗ − x0‖)

≤ (1− 1√
6κ

)T−1α0µL0

A1
‖x∗ − x0‖.

(33)

which is O((1− 1√
6κ

)T ) = O(exp(− 1√
6κ
T )).

Proof. (of (25)) First, we are going to use induction to show that

τ∑
t=0

αt`t(xt)− αt`t(x∗) ≤ Dτ , (34)

for any x∗ ∈ X , where Dτ := −
∑τ
t=1

µÃt−1

2 ‖xt−1 − xt‖2.
For the base case t = 0, we have

α0µφ(x0)− α0µφ(x∗) ≤ 0 = D0, (35)

where x0 is defined as x0 = arg minx∈X α0µφ(x).

7



Now suppose it holds at t = τ − 1.
τ∑
t=0

αt`t(xt)
(a)

≤ Dτ−1 + ατ `τ (xτ ) +

τ−1∑
t=0

αt`t(xτ−1)

(b)

≤ Dτ−1 + ατ `τ (xτ ) +

τ−1∑
t=0

αt`t(xτ )− Ãτ−1µ

2
‖xτ−1 − xτ‖2

= Dτ−1 +

τ∑
t=0

αt`t(xτ )− Ãτ−1µ

2
‖xτ−1 − xτ‖2

= Dτ +

τ∑
t=0

αt`t(xτ )

≤ Dτ +

τ∑
t=0

αt`t(x
∗),

(36)

for any x∗ ∈ X , where (a) we use the induction and we let the point x∗ = xτ−1 and (b) is
by the strongly convexity and that xτ−1 = arg minx

∑τ−1
t=0 αt`t(x) so that

∑τ−1
t=0 αt`t(xτ−1) ≤∑τ−1

t=0 αt`t(xτ ) − Ãτ−1µ
2 ‖xτ−1 − xτ‖2 as

∑τ−1
t=0 αt`t(x) is at least Ãτ−1µ

2 -strongly convex. We
have completed the proof of (34). By (34), we have

α-REGx :=
∑T
t=1 αt`t(xt)− αt`t(x∗) ≤ α0µφ(x∗)− α0µφ(x0)−

∑T
t=1

µÃt−1

2 ‖xt−1 − xt‖2.

≤ α0µL0‖x0 − x∗‖ −
T∑
t=1

µÃt−1

2
‖xt−1 − xt‖2,

(37)
where we assume that φ(·) is L0-Lipchitz.

I Analysis of Accelerated Proximal Method

First, we need a stronger result.

Lemma [Property 1 in [6]] For any proper lower semi-continuous convex function θ(x), let x+ =
argminx∈K θ(x) + Vc(x). Then, it satisfies that for any x∗ ∈ K,

θ(x+)− θ(x∗) ≤ Vc(x∗)− Vx+(x∗)− Vc(x+). (38)

Proof. The statement and its proof has also appeared in [2] and [4]. For completeness, we replicate
the proof here. Recall that the Bregman divergence with respect to the distance generating function
φ(·) at a point c is: Vc(x) := φ(x)− 〈∇φ(c), x− c〉 − φ(c).

Denote F (x) := θ(x) + Vc(x). Since x+ is the optimal point of argminx∈K F (x), by optimality,

〈x∗ − x+,∇F (x+)〉 = 〈x∗ − x+, ∂θ(x+) +∇φ(x+)−∇φ(c)〉 ≥ 0, (39)
for any x∗ ∈ K.

Now using the definition of subgradient, we also have
θ(x∗) ≥ θ(x+) + 〈∂θ(x+), x∗ − x+〉. (40)

By combining (39) and (40), we have
θ(x∗) ≥ θ(x+) + 〈∂θ(x+), x∗ − x+〉.

≥ θ(x+) + 〈x∗ − x+,∇φ(c)−∇φ(x+)〉.
= θ(x+)− {φ(x∗)− 〈∇φ(c), x∗ − c〉 − φ(c)}+ {φ(x∗)− 〈∇φ(x+), x∗ − x+〉 − φ(x+)}
+ {φ(x+)− 〈∇φ(c), x+ − c〉 − φ(c)}
= θ(x+)− Vc(x∗) + Vx+(x∗) + Vc(x

+)
(41)
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Recall MIRRORDESCENT ’s update xt = argminx γt(αtht(x)) +Vxt−1
(x), where ht(x) = 〈x, yt〉+

ψ(x). Using the lemma with θ(x) = γt(αtht(x)), x+ = xt and c = xt−1 we have that

γt(αtht(xt))− γt(αtht(x∗)) = θ(xt)− θ(x∗) ≤ Vxt−1(x∗)− Vxt(x∗)− Vxt−1(xt). (42)

Therefore, we have that

α-REGx :=
∑T
t=1 αtht(xt)−minx∈X

∑T
t=1 αtht(x)

(42)

≤
∑T
t=1

1
γt

(
Vxt−1(x∗)− Vxt(x∗)− Vxt−1(xt)

)
= 1

γ1
Vx0(x∗)− 1

γT
vxT (x∗) +

∑T−1
t=1 ( 1

γt+1
− 1

γt
)Vxt(x

∗)− 1
γt
Vxt−1(xt)

(a)

≤ 1
γ1
D +

∑T−1
t=1 ( 1

γt+1
− 1

γt
)D − 1

γt
Vxt−1

(xt) = D
γT
−
∑T
t=1

1
γt
Vxt−1

(xt)

(b)

≤ D
γT
−
∑T
t=1

1
2γt
‖xt−1 − xt‖2,

(43)

where (a) holds since the sequence {γt} is non-increasing and D upper bounds the divergence terms,
and (b) follows from the strong convexity of φ, which grants Vxt−1(xt) ≥ 1

2‖xt − xt−1‖2. Now we
see that following the same lines as the proof in Section 3. We get that x̄T is an O( 1

T 2 ) approximate
optimal solution.

J Accelerated FRANKWOLFE

Algorithm 1 A new FW algorithm [[1]]
1: In the weighted loss setting of Algorithm 1:
2: for t = 1, 2, . . . , T do
3: y-player uses OPTIMISITCFTL as OAlgx: yt = ∇f(x̃t).
4: x-player uses BETHEREGULARIZEDLEADER with R(X) := 1

2γK(x)2 as OAlgx:
5: Set (x̂t, ρt) = argmin

x∈K,ρ∈[0,1]

∑t
s=1 ρ〈x, αsys〉+ 1

ηρ
2 and play xt = ρtx̂t.

6: end for

[1] proposed a FRANKWOLFE like algorithm that not only requires a linear oracle but also enjoys
O(1/T 2) rate on all the known examples of strongly convex constraint sets that contain the origin,
like lp ball and Schatten p ball with p ∈ (1, 2]. Their analysis requires the assumption that the
underlying function is also strongly-convex to get the fast rate. To describe their algorithm, denote K
be any closed convex set that contains the origin. Define “gauge function” of K as γK(x) := inf{c ≥
0 : xc ∈ K}. Notice that, for a closed convex K that contains the origin, K = {x ∈ Rd : γK(x) ≤ 1}.
Furthermore, the boundary points on K satisfy γK(x) = 1.

[1] showed that the squared of a gauge function is strongly convex on the underlying K for all the
known examples of strongly convex sets that contain the origin. Algorithm 1 is the algorithm. Clearly,
Algorithm 1 is an instance of the meta-algorithm. We want to emphasize again that our analysis
does not need the function f(·) to be strongly convex to show O(1/T 2) rate. We’ve improved their
analysis.
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K Proof of Theorem 1

For completeness, we replicate the proof by [1] here.

Theorem 1 Assume a T -length sequence α are given. Suppose in Algorithm 1 the online learning
algorithms OAlgx and OAlgy have the α-weighted average regret α-REG

x
and α-REG

y
respectively.

Then the output (x̄T , ȳT ) is an ε-equilibrium for g(·, ·), with ε = α-REG
x

+ α-REG
y
.

Proof. Suppose that the loss function of the x-player in round t is αtht(·) : X → R, where
ht(·) := g(·, yt). The y-player, on the other hand, observes her own sequence of loss functions
αt`t(·) : Y → R, where `t(·) := −g(xt, ·).

1∑T
s=1 αs

T∑
t=1

αtg(xt, yt) =
1∑T

s=1 αs

T∑
t=1

−αt`t(yt)

= − 1∑T
s=1 αs

inf
y∈Y

{
T∑
t=1

αt`t(y)

}
− α-REGy∑T

s=1 αs

= sup
y∈Y

{
1∑T

s=1 αs

T∑
t=1

αtg(xt, y)

}
−α-REG

y

(Jensen) ≥ sup
y∈Y

g
(

1∑T
s=1 αs

∑T
t=1 αtxt, y

)
−α-REG

y
(44)

= sup
y∈Y

g (x̄T , y)−α-REG
y

(45)

≥ inf
x∈X

sup
y∈Y

g (x, y)−α-REG
y

Let us now apply the same argument on the right hand side, where we use the x-player’s regret
guarantee.

1∑T
s=1 αs

T∑
t=1

αtg(xt, yt) =
1∑T

s=1 αs

T∑
t=1

αtht(xt)

=

{
T∑
t=1

1∑T
s=1 αs

αtht(x)

}
+

α-REGx∑T
s=1 αs

=

{
T∑
t=1

1∑T
s=1 αs

αtg(x∗, yt)

}
+ α-REG

x

≤ g
(
x∗,
∑T
t=1

1∑T
s=1 αs

αtyt

)
+ α-REG

x
(46)

= g (x∗, ȳT ) + α-REG
x

(47)

≤ sup
y∈Y

g(x∗, y) + α-REG
x

Note that supy∈Y g(x∗, y) = f(x∗) be the definition of the game g(·, ·) and by Fenchel con-
jugacy, hence we can conclude that supy∈Y g(x∗, y) = infx∈X supy∈Y g(x, y) = V ∗ =
supy∈Y infx∈X g(x, y). Combining (45) and (47), we see that:

sup
y∈Y

g (x̄T , y)−α-REG
y ≤ inf

x∈X
g (x, ȳT ) + α-REG

x

which implies that (x̄T , ȳT ) is an ε = α-REG
x

+ α-REG
y

equilibrium.
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