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Abstract

Hypothesis testing for graphs has been an important tool in applied research fields
for more than two decades, and still remains a challenging problem as one often
needs to draw inference from few replicates of large graphs. Recent studies in
statistics and learning theory have provided some theoretical insights about such
high-dimensional graph testing problems, but the practicality of the developed
theoretical methods remains an open question.

In this paper, we consider the problem of two-sample testing of large graphs. We
demonstrate the practical merits and limitations of existing theoretical tests and
their bootstrapped variants. We also propose two new tests based on asymptotic
distributions. We show that these tests are computationally less expensive and, in
some cases, more reliable than the existing methods.

1 Introduction

Hypothesis testing is one of the most commonly encountered statistical problems that naturally arises
in nearly all scientific disciplines. With the widespread use of networks in bioinformatics, social
sciences and other fields since the turn of the century, it was obvious that the hypothesis testing of
graphs would soon become a key statistical tool in studies based on network analysis. The problem
of testing for differences in networks arises quite naturally in various situations. For instance, Bassett;
et al.| (2008)) study the differences in anatomical brain networks of schizophrenic patients and healthy
individuals, whereas |[Zhang et al.|(2009) test for statistically significant topological changes in gene
regulatory networks arising from two different treatments of breast cancer. As|Clarke et al.| (2008)
and Hyduke et al.| (2013) point out, the statistical challenge associated with network testing is the
curse of dimensionality as one needs to test large graphs based on few independent samples. |Ginestet;
et al.| (2014) show that complications can also arise due to the widespread use of multiple testing
principles that rely on performing independent tests for every edge.

Although network analysis has been a primary research topic in statistics and machine learning,
theoretical developments related to testing random graphs have been rather limited until recent times.
Property testing of graphs has been well studied in computer science (Goldreich et al., [1998]), but
probably the earliest instances of the theory of random graph testing are the works on community
detection, which use hypothesis testing to detect if a network has planted communities or to determine
the number of communities in a block model (Arias-Castro and Verzelen, 2014, [Bickel and Sarkar,
2016, |Lei, [2016). In the present work, we are interested in the more general and practically important
problem of two-sample testing: Given two populations of random graphs, decide whether both
populations are generated from the same distribution or not. While there have been machine learning
approaches to quantify similarities between graphs for the purpose of classification, clustering
etc. (Borgwardt et al.,|2005} |Shervashidze et al., 2011), the use of graph distances for the purpose of
hypothesis testing is more recent (Ginestet et al., 2017). Most approaches for graph testing based
on classical two-sample tests are applicable in the relatively low-dimensional setting, where the
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population size (number of graphs) is larger than the size of the graphs (number of vertices). However,
Hyduke et al.| (2013)) note that this scenario does not always apply because the number of samples
could be potentially much smaller — for instance, one may need to test between two large regulatory
networks (that is, population size is one). Such scenarios can be better tackled from a perspective of
high-dimensional statistics as shown in|Tang et al.|(2016)),(Ghoshdastidar et al.|(2017a), where the
authors study two-sample testing for specific classes of random graphs with particular focus on the
small population size.

In this work, we focus on the framework of the graph two-sample problem considered in|Tang et al.
(2016), Ginestet et al.|(2017), (Ghoshdastidar et al.|(2017a), where all graphs are defined on a common
set of vertices. Assume that the number of vertices in each graph is n, and the sample size of either
population is m. One can consider the two-sample problem in three different regimes: (i) m is large;
(ii) m > 1, but much smaller than n; and (iii) m = 1. The first setting is the simplest one, and
practical tests are known in this case (Gretton et al.| 2012} (Ginestet et al.,[2017)). However, there
exist many application domains where already the availability of only a small population of graphs
is a challenge, and large populations are completely out of bounds. The latter two cases of small
m > 1 and m = 1 have been studied in Ghoshdastidar et al.[|(2017a)) and [Tang et al.|(2016)), where
theoretical tests based on concentration inequalities have been developed and practical bootstrapped
variants of the tests have been suggested. The contribution of the present work is three-fold:

1. For the cases of m > 1 and m = 1, we propose new tests that are based on asymptotic null
distributions under certain model assumptions and we prove their statistical consistency
(Sections [ and 3 respectively). The proposed tests are devoid of bootstrapping, and hence,
computationally faster than existing bootstrapped tests for small m. Detailed descriptions of
the tests are provided in the supplementary material.

2. We compare the practical merits and limitations of existing tests with the proposed tests
(Section [6] and supplementary). We show that the proposed tests are more powerful and
reliable than existing methods in some situations.

3. Our aim is also to make the existing and proposed tests more accessible for applied research.
We provide Matlab implementations of the tests in the supplementary material.

The present work is focused on the assumption that all networks are defined over the same set
of vertices. This may seem restrictive in some application areas, but it is commonly encountered
in other areas such as brain network analysis or molecular interaction networks, where vertices
correspond to well-defined regions of the brain or protein structures. Few works study the case where
graphs do not have vertex correspondences in context of clustering (Mukherjee et al.| [2017) and
testing (Ghoshdastidar et al., [ 2017b| Tang et al.}[2017). But, theoretical guarantees are only known
for specific choices of network functions (triangle counts or graph spectra), or under the assumption
of an underlying embedding of the vertices.

Notation. We use the asymptotic notation o, (-) and w, (-), where the asymptotics are with respect

to the number of vertices n. We say = op(y) and y = wy(2) when lim ¥ = 0. We denote the
n—oo

matrix Frobenius norm by || - || 7 and the spectral norm or largest singular value by || - ||2.

2 Problem Statement

We consider the following framework of two-sample setting. Let V' be a set of n vertices. Let
Gi,...,Gpand Hy, ..., H,, be two populations of undirected unweighted graphs defined on the
common vertex set V', where each population consists of independent and identically distributed
samples. The two-sample hypothesis testing problem is as follows:

Test whether (G;)i=1,... m and (H;)i=1,... m are generated from the same random model or not.

There exist a plethora of nonparametric tests that are provably consistent for m — oo. In particular,
kernel based tests (Gretton et al., 2012} are known to be suitable for two-sample problems in large
dimensions. These tests, in conjunction with graph kernels (Shervashidze et al.,|201 1} | Kondor and
Pan, 2016)) or distances (Mukherjee et al., |2017), may be used to derive consistent procedures for
testing between two large populations of graphs. Such principles are applicable even under a more
general framework without vertex correspondence (see |Gretton et al., 2012)). However, given graphs



on a common vertex set, the most natural approach is to construct tests based on the graph adjacency
matrix or the graph Laplacian (Ginestet et al.,|2017)). To be precise, one may view each undirected
graph on n vertices as a (;L)—dimensional vector and use classical two-sample tests based on the

x*? or T? statistics (Andersonl |1984). Unfortunately, such tests require an estimate of the (%) x (})-
dimensional sample covariance matrix, which cannot be accurately obtained from a moderate sample
size. For instance, |Ginestet et al.| (2017) need regularisation of the covariance estimate even for
moderate sized problems (n = 40, m = 100), and it is unknown whether such methods work for
brain networks obtained from a single-lab experimental setup (m < 20). For m < n, it is indeed
hard to prove consistency results under the general two-sample framework described above since
the correlation among the edges can be arbitrary. Hence, we develop our theory for random graphs
with independent edges. Tang et al.| (2016) show that tests derived for such graphs are also useful in
practice.

We assume that the graphs are generated from the inhomogeneous Erds-Rényi (IER) model (Bollobas
et al.,2007). This model has been considered in the work of|(Ghoshdastidar et al.|(2017a) and subsumes
other models studied in the context of graph testing such as dot product graphs (Tang et al.,[2016)) and
stochastic block models (Lei, [2016). Given a symmetric matrix P € [0, 1]"*™ with zero diagonal,
a graph G is said to be an IER graph with population adjacency P, denoted as G ~ IER(P), if its
symmetric adjacency matrix Ag € {0,1}"*"™ satisfies:

(Ag)ij ~ Bernoulli(P;;) foralli < j, and {(Ag)ij : % < j} are mutually independent.

For any n, we state the two-sample problem as follows. Let P(™), Q(") ¢ [0, 1]™*™ be two symmetric
matrices. Given Gy, ..., G, ~iq IER (P(”)) and Hy,..., H,, ~iq [ER (Q(”)), test the hypotheses

Ho : P™ = QU against Hy : P £ QM. (1)
Our theoretical results in subsequent sections will often be in the asymptotic case as n — oo. For this,
we assume that there are two sequences of models (P(™) __and (Q™) __. and the sequences are

identical under the null hypothesis H,. We derive asymptotic powers of the proposed tests assuming
certain separation rates under the alternative hypothesis.

3 Testing large population of graphs (m — o)

Before proceeding to the case of small population size, we discuss a baseline approach that is designed
for the large m regime (m — o0). The following discussion provides a y2-type test statistic for
networks, which is a simplification of |Ginestet et al.|(2017)) under the IER assumption. Given the

adjacency matrices Ag,,...,Aqg,, and Ay, , ..., An,,, consider the test statistic
— — 2
(Ac)ij — (Ar)ij
TX2 - Z m (7 l]2 ”) m _ 2 9 (2)
i<i D) k; ((Ac)ij — (A6)i)” + =) k; ((Am)is — (Aw)ij)

where (Ag)i; = = >0 (Ag, );- Itis easy to see that under Ho, Th2 — x? (@

) in distri-
bution as m — oo for any fixed n. This suggests a x2-type test similar to Ginestet et al.[(2017).
However, like any classical test, no performance guarantee can be given for small m and our numeri-
cal results show that such a test is powerless for small m and sparse graphs. Hence, in the rest of the

paper, we consider tests that are powerful even for small m.

4 Testing small populations of large graphs (m > 1)

The case of small m > 1 for IER graphs was first studied from a theoretical perspective in|Ghosh-
dastidar et al.|(2017a), and the authors also show that, under a minimax testing framework, the testing
problem is quite different for m = 1 and m > 1. From a practical perspective, small m > 1is a
common situation in neural imaging with only few subjects. The case of m = 2 is also interesting
for testing between two individuals based on test-retest diffusion MRI data, where two scans are
collected from each subject with a separation of multiple weeks (Landman et al., 201 1)).

Under the assumption of IER models described in Section [2] and given the adjacency matrices
Ag,,...,Aqg,, and Ay, , ..., An,, ,|Ghoshdastidar et al.| (2017a) propose test statistics based on

m?



estimates of the distances HP(”) - QM H2 and HP(") - QM H 7 Up to certain normalisation factors
that account for sparsity of the graphs. They consider the following two test statistics

Z AGk AHk
Topee = = - , and @
\/1rgza§Xn ng kZ::1(AGk)” * (AHk)U
> < (Acy)ij — (AHk)ij> ( > (Aey)ij — (AHk)”)
i<j \k<m/2 k>m/2
o = €]

Z( > (Ack)ij+(AHk)ij>< > (AGk)z'jJr(AHk)ij)

i<j \k<m/2 k>m/2

Subsequently, theoretical tests are constructed based on concentration inequalities: one can show that
with high probability, the test statistics are smaller than some specified threshold under the null hy-
pothesis, but they exceed the same threshold if the separation between P(™ and Q" is large enough.
In practice, however, the authors note that the theoretical thresholds are too large to be exceeded
for moderate n, and recommend estimation of the threshold through bootstrapping. Each bootstrap
sample is generated by randomly partitioning the entire population G4, ...,Gn, Hi, ..., Hy, into
two parts, and T’ or T, are computed based on this random partition. This procedure provides
an approximation of the statistic under the null model. We refer to these tests as Boot-Spectral
and Boot-Frobenius, and show their limitations for small m via simulations. Detailed descriptions
of these tests are included in Appendix B in the supplementary.

We now propose a test based on the asymptotic behaviour of T, in @) as n — co. We state the
asymptotic behaviour in the following result.

Theorem 1 (Asymptotic test based on T,,). In the two-sample framework of Section E] assume
that P, Q™) have entries bounded away from 1, and satisfy max { ||P(") ||F , ||Q(”) HF} = wy(1).

Under the null hypothesis, lim T, is dominated by a standard normal random variable, and hence,
n— o0
forany a € (0,1),
IPD(Tfro ¢ [_tmta]) <a+ 0n(1)7 )

where t, = ®71(1 — $) is the 5 upper quantile of the standard normal distribution.

O e aerhand, F[PO) — Q[ = (& s [P [Q] ) s
P(Tfro S [—ta,ta]) = On(l) (6)

The proof, given in Appendix A, is based on the use of the Berry-Esseen theorem (Berryl, |[1941)).
Using Theorem|I} we propose an a-level test based on asymptotic normal dominance of 7'y .,.

Proposed Test Asymp-Normal: Reject the null hypothesis if |Tiro| > ta.

A detailed description of this test is given in Appendix B. The assumption HP(”) H o HQ(”) || e
wy (1) is not restrictive since it is quite similar to assuming that the number of edges is super-linear
in n, that is, the graphs are not too sparse. We note that unlike the y?-test of Section [2} here the
asymptotics are for n — oo instead of m — oo, and hence, the behaviour under null hypothesis
may not improve for larger m. The asymptotic unit power of the Asymp-Normal test, as shown in
Theorem [T is proved under a separation condition, which is not surprising since we have access to
only a finite number of graphs. The result also shows that for large m, smaller separations can be
detected by the proposed test.

Remark 2 (Computational effort). Note that the computational complexity for computing the test
statistics in (B) and (@) is linear in the total number of edges in the entire population. However, the
bootstrap tests require computation of the test statistic multiple times (equal to number of bootstrap
samples b; we use b = 200 in our experiments). On the other hand, the proposed test compute the
statistic once, and is much faster (~200 times). Moreover, if the graphs are too large to be stored in
memory, bootstrapping requires multiple passes over the data, while the proposed test requires only a
single pass.



5 Testing difference between two large graphs (m = 1)

The case of m = 1 is perhaps the most interesting from theoretical perspective: the objective is to
detect whether two large graphs G and H are identically distributed or not. This finds application
in detecting differences in regulatory networks (Zhang et al., 2009) or comparing brain networks
of individuals (Tang et al.,|2016). Although the concentration based test using 7. is applicable
even for m = 1 (Ghoshdastidar et al., 2017a)), bootstrapping based on label permutation is infeasible
for m = 1 since there is no scope of permuting labels with unit population size. [Tang et al.|(2016)),
however, propose a concentration based test in this case and suggest a bootstrapping based on low
rank assumption of the population adjacency. [Tang et al.|(2016) study the two-sample problem for
random dot product graphs, which are IER graphs with low rank population adjacency matrices
(ignoring the effect of zero diagonal). This class includes the stochastic block model, where the rank
equals the number of communities. Let G ~ IER (P(")) and H ~ IER (Q("), and assume that
P and Q™ are of rank r. One defines the adjacency spectral embedding (ASE) of graph G as

Xg = UGEI/Q, where Yo € R™*" is a diagonal matrix containing r largest singular values of Ag
and Ug € R™*" is the matrix of corresponding left singular vectors. |Tang et al. (2016) propose the
test statistic

Tasg =min {||X¢ — XgW|p: W e R WW"' =1}, (7)
where the rank r is assumed to be known. The rotation matrix W aligns the ASE of the two graphs.
Tang et al.|(2016) theoretically analyse a concentration based test, where the null hypothesis is rejected
if Ty s crosses a suitably chosen threshold. In practice, they suggest the following bootstrapping
to determine the threshold (Algorithm 1 in Tang et al.,[2016). One may approximate P("™) by the
estimated population adjacency (EPA) P = XeXZE. More random dot product graphs can be
simulated from P, and a bootstrapped threshold can be obtained by computing T4 s for pairs of
graphs generated from P. Instead of the T 45 statistic, one may also use a statistic based on EPA as

Tera=|P-Q - ®)

This statistic has been used as distance measure in the context of graph clustering (Mukherjee et al.}
2017). We refer to the tests based on the statistics in (7) and (8], and the above bootstrapping
procedure by Boot-ASE and Boot-EPA (see Appendix B for detailed descriptions). We find that the
latter performs better, but both tests work under the condition that the population adjacency is of low
rank, and the rank is precisely known. Our numerical results demonstrate the limitations of these
tests when the rank is not correctly known.

Alternatively, we propose a test based on the asymptotic distribution of eigenvalues that is not
restricted to graphs with low rank population adjacencies. Given G ~ IER (P(")) and H ~
IER (Q(”)), consider the matrix C' € R™*" with zero diagonal and for ¢ # j,

o = (Ac)ij — (An)ij _ ©)

e (R () e (- a)

We assume that the entries of P(") and Q(”) are not arbitrarily close to 1, and define C';; = 0 when
Cij = %. We show that the extreme eigenvalues of C' asymptotically follow the Tracy-Widom law,
which characterises the distribution of the largest eigenvalues of matrices with independent standard
normal entries (Tracy and Widom, [1996). Subsequently, we show that ||C'||2 is a useful test statistic.

Theorem 3 (Asymptotic test based on ||C||2). Consider the above setting of two-sample testing,
and let C be as defined in ). Let \1(C) and \,,(C) be the largest and smallest eigenvalues of C.

Under the null hypothesis, that is, if P = Q™) for all n, then
n?3 (A (C) —2) = TWy and n**(—M\,(C) —2) — TW;
in distribution as n — oo, where T'W is the Tracy-Widom law for orthogonal ensembles. Hence,

P (n?*(|C)l2 = 2) > 7a) < a+o0a(1), (10)

forany a € (0,1), where 7, is the § upper quantile of the TW distribution.



On the other hand, if P and Q™) are such that |E[C]|s > 4 + w,(n=2/3), then

IP’(nQ/?’(HCHg—Q) gra) = on(1). (11)

The proof, given in Appendix A, relies on results on the spectrum of random matrices (Erdos et al.,
2012} |[Lee and Yin, [2014), and have been previously used for the special case of determining the
number of communities in a block model (Bickel and Sarkar, [2016| |Lei, 2016). If the graphs are
assumed to be block models, then asymptotic power can be proved under more precise conditions on
difference in population adjacencies P(™) — Q™ (see Appendix A.3). From a practical perspective,
C cannot be computed since P(™) and Q(™ are unknown. Still, one may approximate them by
relying on a weaker version of Szemerédi’s regularity lemma, which implies that large graphs can
be approximated by stochastic block models with possibly large number of blocks (Lovasz, |2012)).
To this end, we propose to estimate P("™) from A¢ as follows. We use a community detection
algorithm, such as normalised spectral clustering (Ng et al., 2002), to find  communities in G (r is a
parameter for the test). Subsequently P(™) is approximated by a block matrix P such that if , j lie in

communities V7, V> respectively, then P;; is the mean of the sub-matrix of A¢ restricted to Vi x Va.
Similarly one can also compute ) from Ay . Hence, we propose a Tracy-Widom test statistic as

o [, -2)
(Ag)ij — (An)ij

)

and the diagonal is zero. The proposed a-level test based on Ty and Theorem [3]is the following.

where 51 P =

forall i # j

Proposed Test Asymp-TW: Reject the null hypothesis if Ty > T,.

A detailed description of the test, as used in our implementations, is given in Appendix B. We note
that unlike bootstrap tests based on T4 s or T’ p 4, the proposed test uses the number of communities
(or rank) r only for approximation of P™ Q™) and the power of the test is not sensitive to the
choice of r. In addition, the computational benefit of a distribution based test over bootstrap tests, as
noted in Remark 2] is also applicable in this case.

6 Numerical results

In this section, we empirically compare the merits and limitations of the tests discussed in the paper.
We present our numerical results in three groups: (i) results for random graphs for m > 1, (ii) results
for random graphs for m = 1, and (iii) results for testing real networks. For m > 1, we consider
four tests. Boot-Spectral and Boot-Frobenius are the bootstrap tests based on Tpe. (3) and
Ttro @), respectively. Asymp-Chi2 is the x2-type test based on T2 @), which is suited for the large
m setting, and finally, the proposed test Asymp-Normal is based on the normal dominance of T,
as n — oo as shown in Theorem[I] For m = 1, we consider three tests. Boot-ASE and Boot-EPA
are the bootstrap tests based on Tasg (7) and Tgpa (8], respectively. Asymp-TW is the proposed test
based on T'ryy (I2) and Theorem[3] Appendices B and C in the supplementary contain descriptions
of all tests and additional numerical results. Matlab codes are provided in the supplementary.

6.1 Comparative study on random graphs for m > 1

For this study, we generate graphs from stochastic block models with 2 communities as considered
in|Tang et al.|(2016). We define P™ and Q(") as follows. The vertex set of size n is partitioned into
two communities, each of size 7/2. In P(™), edges occur independently with probability p within
each community, and with probability ¢ between two communities. (") has the same block structure
as P(™), but edges occur with probability (p + €) within each community. Under the null hypothesis
e = 0 and hence Q) = P(™) whereas under the alternative hypothesis, we set € > 0.

' Also available at: https://github. com/gdebarghya/Network-TwoSampleTesting,


https://github.com/gdebarghya/Network-TwoSampleTesting
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Figure 1: Power of different tests for increasing number of vertices n, and for m = 2, 4. The dotted
line for case of null hypothesis corresponds to the significance level of 5%.

In our first experiment, we study the performance of different tests for varying m and n. We let n
grow from 100 to 1000 in steps of 100, and set p = 0.1 and ¢ = 0.05. We set € = 0 and 0.04 for
null and alternative hypotheses, respectively. We use two values of population size, m € {2,4}, and
fix the significance level at « = 5%. Figure|l|shows the rate of rejecting the null hypothesis (test
power) computed from 1000 independent runs of the experiment. Under the null model, the test
power should be smaller than o = 5%, whereas under the alternative model, a high test power (close
to 1) is desirable. We see that for m = 2, only Asymp-Normal has power while the bootstrap tests
have zero rejection rate. This is not surprising as bootstrapping is impossible for m = 2. For m = 4,
Boot-Frobenius has a behaviour similar to Asymp-Normal although the latter is computationally
much faster. Boot-Spectral achieves a higher power for small n but cannot achieve unit power.
Asymp-Chi2 has an erratic behaviour for small m, and hence, we study it for larger sample size in
Figure 3 (in Appendix C). As is expected, Asymp-Chi2 has desired performance only for m > n.

We also study the effect of edge sparsity on the performance of the tests. For this, we consider the
above setting, but scale the edge probabilities by a factor of p, where p = 1 is exactly same as the
above setting while larger p corresponds to denser graphs. Figure 4 in the appendix shows the results
in this case, where we fix n = 500 and vary p € {1, %,1,2,4} and m € {2,4,6,8,10}. We again
find that Asymp-Normal and Boot-Frobenius have similar trends for m > 4. All tests perform
better for dense graphs, but Boot-Spectral may be preferred for sparse graphs when m > 6.

6.2 Comparative study on random graphs for m = 1

We conduct similar experiments for the case of m = 1. Recall that bootstrap tests for m = 1 work
under the assumption that the population adjacencies are of low rank. This holds in above considered
setting of block models, where the rank is 2. We first demonstrate the effect of knowledge of true
rank on the test power. We use r € {2,4} to specify the rank parameter for bootstrap tests, and
also as the number of blocks used for community detection step of Asymp-TW. Figure 2] shows the
power of the tests for the above setting with p = 1 and growing n. We find that when r = 2, that is,
true rank is known, both bootstrap tests perform well under alternative hypothesis, and outperform
Asymp-TW, although Boot-ASE has a high type-I error rate. However, when an over-estimate of
rank is used (r = 4), both bootstrap tests break down — Boot-EPA always rejects while Boot-ASE
always accepts — but the performance of Asymp-TW is robust to this parameter change.

We also study the effect of sparsity by varying p (see Figure 5 in Appendix C). We only consider the
case r = 2. We find that all tests perform better in dense regime, and the rejection rate of Asymp-TW
under null is below 5% even for small graphs. However, the performance of both Boot-ASE and
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Asymp-TW are poor if the graphs are too sparse. Hence, Boot-EPA may be preferable for sparse
graphs, but only if the rank is correctly known.

6.3 Qualitative results for testing real networks

We use the proposed asymptotic tests to analyse two real datasets. These experiments demonstrate
that the proposed tests are applicable beyond the setting of IER graphs. In the first setup, we
consider moderate sized graphs (n = 178) constructed by thresholding autocorrelation matrices of
EEG recordings (Andrzejak et al.,|2001} [Dua and Taniskidoul [2017). The network construction is
described Appendix C.2. Each group of networks corresponds to either epileptic seizure activity
or four other resting states. In Tables 1-4 in Appendix C, we report the test powers and p-values
for Asymp-Normal and Asymp-TW. We find that, except for one pair of resting states, networks for
different groups can be distinguished by both tests. Further observations and discussions are also
provided in the appendix.

We also study networks corresponding to peering information of autonomous systems, that is,
graphs defined on the routers comprising the Internet with the edges representing who-talks-to-
whom (Leskovec et al.| 2005} Leskovec and Krevl, 2014). The information for n = 11806 systems
was collected once a week for nine consecutive weeks, and two networks are available for each date
based on two sets of information (m = 2). We run Asymp-Normal test for every pair of dates and
report the p-values in Table 5 (Appendix C.3). It is interesting to observe that as the interval between
two dates increase, the p-values decrease at an exponential rate, that is, the networks differ drastically
according to our tests. We also conduct semi-synthetic experiments by randomly perturbing the
networks, and study the performance of Asymp-Normal and Asymp-TW as the perturbations increase
(see Figures 6-7). Since the networks are large and sparse, we perform the community detection step
of Asymp-TW using BigClam (Yang and Leskovec, |2013)) instead of spectral clustering. We infer that
the limitation of Asymp-TW in sparse regime (observed in Figure 5) could possibly be caused by poor
performance of standard spectral clustering in sparse regime.

7 Concluding remarks

In this work, we consider the two-sample testing problem for undirected unweighted graphs defined
on a common vertex set. This problem finds application in various domains, and is often challenging
due to unavailability of large number of samples (small m). We study the practicality of existing



theoretical tests, and propose two new tests based on asymptotics for large graphs (Thereoms|[T]and [3).
We perform numerical comparison of various tests, and also provide their Matlab implementations.
In the m > 1 case, we find that Boot-Spectral is effective for m > 6, but Asymp-Normal is
recommended for smaller m since it is more reliable and requires less computation. For m = 1, we
recommend Asymp-TW due to robustness to the rank parameter and computational advantage. For
large sparse graphs, Asymp-TW should be used with a robust community detection step (BigClam).

One can certainly extend some of these tests to more general frameworks of graph testing. For
instance, directed graphs can be tackled by modifying T’s,, such that the summation is over all 7, j
and Theorem [I] would hold even in this case. For weighted graphs, Theorem [3can be used if one
modifies C' (9) by normalising with variance of (A¢)i; — (A )qj. Subsequently, these variances can
be approximated again through block modelling. For m > 1, we believe that unequal population
sizes can be handled by rescaling the matrices appropriately, but we have not verified this.
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