A Proofs of Theorem[I|and Corollary /1]

A.1 Proof of Theorem /1]

The proof is based on a variant of the Le Cam’s method in Theorem 3 in [26]. Our major technical
developments lie in properly choosing two hypothesis distributions as well as a neural network, and
then lower-bounding the difference of the expectation of the chosen neural network function between
the two distributions. We first present the Le Cam’s method (Theorem 3 in [26]).

Lemma 1 (Le Cam’s method). Let F' : © — R be a functional defined on a space © and Pg =
{Py : 0 € O} be a set of probability measures. The data samples D,, are distributed according to an
unknown element Py € Pg. Assume that there exist 01,02 € © such that |F(61) — F(62)] > 28 >0
and KL(Py, || Ps,) < o < 0. Then,

Fn(Dn)_F(e)‘ 26} ZmaX{ie_“,l_ a/2} (1)

inf sup Py {
F, 6co

2

Py,
Py,

where the Kullback-Leibler divergence KL(Py,||Py,) := [log (
estimator of F'(#) based on the random samples D,,.

) dPy, and F,(D,) is an

We first consider the case when the parameter set is WWp, and then adapt the proof to the parameter
set W1,00. In addition, we suppose m > n, and the case m < n can be proved in the same way.

Case 1: parameter set WWp. Recall from (5)) that Wp is defined by
d—1
Wr = [[ {Wi e R"*™ : |[W;||p < Mp(i)} x {wg € R™ : |wq|| < Mp(d)}.
i=1
Assign each distribution ¢ € P, with a unique index 9~H and define an index set © := {éu i € Pl
To cast the form (EI) in Theor to the context of Lemma welet® = © x 0, F(0) = dr,, (u,v)
and Py :=P = " x v™ in li for 6 = (67“7 51,), where gu and 51, are the indices of u, v € Pyg and

. - . ji.d.

P = p™ x v™ is the probability measure with the respect to the random samples {x; }"_; By w and
id.d.

{yitiz, ~ v

To apply Lemma [I} we need to find two pairs of distributions (p1, 1), (u2,v2) € Py and «, 3
such that |dg, (u1,v1) — dr,, (p2,v2)| > 25 and KL(P3||P1) < «, where Py = pf x v{" and
Py = pf x v3*. Specifically, we choose the following four Gaussian distributions

M1 = G(ul,T2Ih), vy = G(llgﬂ'zlh), M2 = Vo = G(O,TQI}L). (22)

where

rZ, /1 1 r2 r2 n
Jw? = =52 (n + m) usl? = 52, ufup = fugl?, 72 = =2 (24 2) 23

with I'yg defined as the upper bound of the mean and variance parameter of the unbounded-support
sub-Gaussian distributions in Pyp (see (8)) for the definition). Clearly, (23) implies that ||u; —uz||? =
% /3nand 0 < 7, |luy,||uz|| < Tys.

Since pio = va, dx,, (2, v2) = 0, and hence

A7, (k) = dF,, (p2; v2)| = dF,, (1, 1) = sup [Bxvp, f(x) = Exw, f(X)].(24)

EFnn

To lower-bound (Z4), we choose the weights in f(x) = W1 o4 (Wd,lod,g(- . -al(Vle))) €
Fnn as follows:

1. VT’d(I) = MF(d),VTId(Z) =0 for i = 2,3, ey N
2.Fori=2,...,d—1, W;(1,1) = Q(i), W,(s,t) = 0 for (s,t) # (1,1),
3. W1 ()] = wi = Mp(1)(u; — up)/||ug — ug|, Wi(s) =0 for 2 < s < ny, (25)
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where wd( ) refers to the i*" coordinate of W, W, (s,t) denotes the (s,t)!" entry of W, Wl( )

is the s* column vector of WT and (i) is defined in |.| Then, corresponding to the above
parameters, we have

F(x) = Mp(d)og—1 (d — 1)oas - Q2)o1 (W] x)). (26)
Combining (24) and (26) yields
dF,, (1,v1) — dF,, (p2, 1) = 2 By f (%) = Exony f(%)]
> B, F%) = Exar /(%) 27)

Due to ¢ the definitions of 41 in 22), for x ~ p1, we have that w{x ~ G(w]uy, [|w|?7?). Let
T = w1 X € R and o(x ; u, 72) be the probability density of the Gaussian distribution with mean u
and variance 72. Then, we have

ey f (% /MF Ga 1 (Ud— 1) s U201 (2)) ¢ (z; Wiy, [wi]*?) da
= / Mp(d)og—1 (Ud—1)og_s- - o1(z+wiw)) ¢ (z;0,[|wi]*r?) dz. (28)
Similarly, we have
Exco, f(x /MF G4 1 (Ud—1)o4_s---Q2)o1(x)) ¢ (x; 0, |w|>r?) da,
which, in conjunction with (27) and (28)), yields

|, (11, v1) = dF,, (g2, v2)] = Exopry f(X) = Bxer, f(%)
= / (MF(d)Ud_l(' cop(z+ wful)) — Mp(d)og—1(-- Ul(a:)) © (m; 0, ||w1||27'2) dz. (29)

A(x)

Following from the definitions of u; and u, in 23), we have

Q) ii
wiu, > wlug W 0, (30)

where (i) follows from the fact that w (u; — uz) = Mp(1)|Ju; — uz|| > 0 and (ii) follows because
11,]17:112 = ||uz||?. Recalling that each (i) > O and each o;(+) is non-decreasing, and using (30) that
wi uy > 0, we have A(x) > 0 for all 2 € R. Hence, can be further lower-bounded by

7 p1.0) = G| = [ Ala)e (0, Jwar?) do

> / A(z)ga (:z:; 0, ||W1||2T2) dzx. (31)
0

where ¢(1) is defined in Assumption 2} Next, we develop a lower bound on the quantity A(z).
Lemma 2. For 0 < x < ¢(1)/2, we have

A(m)zM ”BHQ HQ,,

where Q,(1),i = 1,2, ...,d — 1 are defined in Assumption@

Proof. Following from the definitions of u; and uy in (23)) , we have

W) M 1 1 G) ¢(1
oy & Me(Tu [T 7T g()

f n ' om> 2 (32)
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where (i) follows from the inequality that ||w{ u|| < [|w1|/||ui|| = Mp(1)|juy]| and (ii) follows

from the assumption of Theoremthat vm=T+n=1 <+/3¢(1)/(2Mp(1)T). Based on that
wiu; < ¢(1)/2, we have, forany 0 < = < ¢(1)/2,

0<z+wiu <gq(l), 0<z<q(l)
which, using the definition of §2(¢) in (I 1) and letting £2(d) = Mg (d), yields that, fori = 2,3, ...,d
0 < Qi)oi—1(---01(x)), Qi)oim1(---o1(z + wiw)) < Q@)oi—1 (- 01(q(1))) < q(d).
Then, further by Assumption[2} we obtain
Az) = Mp(d) (0a—1(- - o1(z + Wi u)) = oa-1(--- 01(2)))
> Mp(d)Qy(d—1)Q(d—1) (od,2(~ oz +wiag)) —og_of--- al(x))) . (33)
Repeating the step for d — 1 times, and using that wi uy = 0, we have

d—1 d—1 d—1
A(z) > wia Mp(d H Qi H Qo (i) = wi(u; —uy)Mp(d) H Q(i) H Qo (1)
i=2 i
d—1 ( d—1
= Mp(1)M WrﬂﬂHQ HQU wHQ HQU
which finishes the proof of Lemma@ O

Combining (31)) and Lemma[2] we obtain
|dF,, (L1, v1) — dfm (k2,v2)]

q(l

Mp(1)M qu1 9 o
S C) | CXCY MR

d—1 i
_ Mp(1)Mp(d)Tup H Q(i H Qo (i /ZHWIHT (2]0,1) dz

V3n

O Mp(1)Mp(d)Tus T T

U Mp F uB F (DT

> Qi . z|0,1) dx

> V3n H I | Qo ( / #(x0,1)

d—1
Mp(1)Mp(d)Tus ( ( a(1) ))

> Qi | | ) , 34

== Leolled ()T 9
where (i) follows from the fact that ||w1 || = Mz(1 Tugy/% (24 £) < Ty and ®(-) is the

CDF of the standard Gaussian distribution.
Next, we upper-bound the KL divergence between the distributions P, and P as follows.
KL(P2|[B1) = KL(u4 ) + KL [
= nKL(p2(|p1) + mKL(v2|v1)

fua? | fuef® 1
=—. 35
oz T T3 )
Combining (34), (35) and LemmaI] yields
C(PyB) 1, 1

inf  sup P { ‘a?(n,m) —dz,, (i, 1/)‘ >
d(n,m) p,vePus \/’77,

where C(P,g) is the constant given by (T0).
Case 2: parameter set W, .. Recall from (EI) that W o is defined as

d—1
Wi,oo 1= H (Wi e RMX™: [Will1 0o < My oo(i)} X {wg € R™ : [[wally < M) oo(d)}

i=1

1
} > maX{Ze_l/Q, Z} ==
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The proof for this case follows the steps similar to those in Case 1. To apply Lemmal[I] we select four
distributions 41, v1, pi2 and v as in (22) with

T T 2 FEB n
w = [61,0,0,....,0]T, us = [b,0,0,....0]7, 7 :7(2+E)’

r2, /1 1 2 i
=T (L D)0 = g - b = B2, (36)

Note that this construction also implies (23). Based on this construction, we pick the weights in
f(x) =wloa_1(---01(Wix)) € Fpp as follows.

1. Wg(1) = My,00(d), Wa(s) =0 for s # 1,

2. Fori=2,3,....d—1,W; = [W;, Wi,...,W;]", Wi(1) = My oo(i), Wi(s) =0 for s # 1,

3. Wl = [le Wi, ...,Wl]T, Wi = Ml’oo(l)(ul — ug)/||u1 — 112||. (37)
Clearly, (37) implies that [[Walls = My oo(d), [Will1,00 = [Wi]1 = [[¥1] = Myo(1) and
[IWill1.00 = [Will1 = M1,00(2) fori = 2,...,d — 1. Using the parameters chosen in , we have

F(x) = My oo (d)og_: (Wi_11) oa—2 (- (Wi_i1) 01 (W] x)))
= M,o0(d)oa—1 (M1,00(d — 1)0a—2 - M1 00 (2)01 (W] X)), (38)

where 1 denotes the all-one vector. Then, we have

ldz,, (p1,v1) —dF,, (p2,v2)| = dF,, (11, v1) = fSlleP [Escnpiy f(X) = Exs, f(X)]
€Fnn

>

Ex~u1f(x) - Exw’lf(x)‘ :

The remaining steps are the same as in Case 1, and are omitted.

A.2  Proof of Corollary/l]

Recall that if o;(-) is ReLU, then ¢(i) < oo and Q. (i) = 1. For the parameter set Wr, we
choose g(1) = Mp(1)T'yp and ¢(i) = oo fori = 2,...,d — 1 in Theorem|I] Then we obtain that

q(1)/(2Mp(1)T'yg) = 0.5 and (i) = Mp(4), which, combined with v/3 (1 — ® (0.5)) /6 > 0.08,
finish the proof. The result for the parameter set JV; o, can be proved in the same way.

B Proof of Theorem

The proof is also based on the Le Cam’s method (Lemmal ) as in Appendix [A.T] However, here we
deal with the bounded-support class of distributions. Hence, the hypothesis distributions we choose
here are different. Suppose m > n and the case m < n follows the same steps.

Case 1: parameter set is Wp. To use Lemma|[I] we construct the following four distributions:

§—eifx:x1 if x=x;
pa(x) = v1(x) = pa(x) = 12(x) =

1 (39
3 +eif x=—x3

if x=—-x3

N — N —

where e = v/2n72 /4 < 1/2 and ||x, || = Ts.
First, we lower-bound |d,, (111, 1) — d,, (12, v2)|. Based on the construction (39), we obtain

ldF,, (11, v1) — dF,, (p2,v2)| = dF,, (11, v1)

= sup |Exwu F(x) = Exn, f(X)]
fe-r‘nn

= sup

L) foy+ (R ) o) - S px0) - 2 (-x)
FEFnn <2 > <2 > 2 2
=€ sup |f(x1)— f(—x1)]

fE‘FTL’Vl

> e |f(x1) = f(=x1)|
=e(Mp(d)og—1(--- o1 (Mp(1)'s)) — Mp(d)og—1(---o1(—=Mr(1)I's))), (40)

14



where the function f (x) € Fpn is constructed using an approach similar to , which is given by

f(x)=Mp(d)og—1 (Mp(d — 1) Mp(2)oy (w{x)) with wi = Mp(1)x1/||%1]].

Next, we derive an upper bound on the KL divergence between the distributions as follows.

KL(Py||Py) = nKL(p2||p1) + mKL(v2||v1)

@n 110 L +E10 1
M 2\ T e ) T2 B\ T2

11 1+ 4€2 <i<i>1 42
—nlo — -n——:
9" %8 1—-4¢2) = 2" 142

G 1
~4-2/n

< (41)

1
2 b
where (i) follows from the fact that 1 = v», (ii) follows from the inequality that log(1 + «) < z for
x > 0 and (iii) follows because € = \@n’%/ll. Hence, combining , , €= ﬂn*%/él and
Lemma and noting that v/2/8 > 0.17, we complete the proof.

Case 2: parameter set is VV; .. Similarly to the proof for Case 1, we select the same distributions
as in (39) with the parameters satisfying

x; = [[',0,0,...,07, e =v2n"1/2/4. (42)
Clearly, (#2) implies [|x1]|1 = [|x1|| = I's. Using an approach similar to (#0), we obtain

ldF,, (11, v1) —dF,, (p2,v2)| = dF,, (11, 1)

= sup |ExN,Ul F(x) = Exn, f(X)]
fefnn

=e€ sup |f(x1)— f(—x1)]

f€Fnn

> € \f(xl) - f(*X1)|
€ (Mi,00(d)og—1(- - 01(M1,00(1)I'B)) — M1,00(d)od—1(- - 01(—Mi1,00(1)I'8))) , (43)

where the function f (x) € Fpn is constructed based on a approach similar to , which is given by
f(x) = My oo(d)oar (- Mioo(2)o1 (wix)) with wy = My oo (1)x1/|[x1].  (44)
Substituting € = v/2n~/2 /4 into and adopting the same steps in , we finish the proof by

Lemmalll

C Proof of Theorem

As we outline in Section [3.4] the proof of Theorem [3|follows from the proofs of Theorems 5] [6] and [7]
as three main steps. We next provide the proofs for these theorems in three subsections.

C.1 Proof of Theorem[3|

The proof follows from the general idea in [[11] for the scalar case. The major technical development
here lies in upper-bounding E (e*Vi|x1,...,x;_1) for the martingale difference V; based on a
tail bound of sub-Gaussian random vectors, and then using the bound of E (e*Vi|x,...,x;_1) to
yield (T3) by Markov’s inequality. To simplify the notation in the proof, we use X, 41, ..., Xp4m t0
denote y1, ..., Y.
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Let Vz = Exl’m’anrm (F‘Xl, ...7Xi) — Exl’“

E ( AV

xnem (F|X1,...,x;_1). Then, we have

AE(F'|x1,...,%; ) —AE(F'|x1,...,%x; —
Xl,_“,xi_l) :/ E(Flsc )= NE(F s, i) g P
X

(i)
AF —A\F
S‘/ Exi+1,~~-,xn+me Exi,~~,xn+me d]P)Xi
X

AF —A\F
:/ / e d]le.+1~-~dIP’xn+m/ e dIP’xg-~-d]P’xn+m d Py,
x; Xit1sesXntm X}y Xntm
‘/xi+11~-~7xn+m (L

where (i) follows from the Jensen’s inequality. Then, using the fact that e! + ™! < e™% + e® for
V|t| < s and noting (14), we have, for 1 < i <n,

Xit1 ~ dpxn+nz’ (45)

SAF(""xi’”')AF(""XE"")dledPx(i) dp

!
isX;

AL F > =%l _ALElxi =%
n

A i) = F (X)) | o= AE (i) =F(nx)nn)) < o Te x . (46)

Thus, we have, for1 < i <n,

. — !
/ A (X150 %0 Xnm) )‘F(xl""’xl"“’x”+m)dPxidPx;
X, X!

® %/ AP (i) =F i) | q=AF ot =Pl g B d Py,
(i) 1 N B .
2 ,/ AMLrlxi—x[/n 4 ~Arlx—xl/ngp_dp.,
2 X;,X) ' i
1

— Eui (eufnxi—x;n/n 4 e—uﬂ\xi—xgn/n)
(iii) 2,2 N2 o2 272 0 12 2
< Ex x, N LEllxi—xi]17/(2n%) E,, ¢ L3 |lz:11%/(2n?) 47)
where (i) follows from the symmetry between x; and x, (ii) is based on , (iii) follows from the
inequality that (e® 4+ e~%)/2 < /2, and we set z; = x; — x, in the last equality. Since x; and x;
are both sub-Gaussian with mean u, and variance parameter 7,,, we have E(z;) = 0 and

Eed % —Re2 XiEe 2 X < cllall?a®/2 lall*a/2 _ eIIaHQUi’ (48)

which implies that z; is a zero-mean sub-Gaussian random variable with the variance parameter 202
Next, we quote the following tail inequality from [[10], which is useful here.

Lemma 3 (Theorem 1 in [10]). Let A € R"*" be a matrix and let ¥ = AT A. Suppose that
X is a sub-Gaussian random vector with mean u € R" and variance parameter 7. Then, for
0<n<1/27%Z|),

E (EVIHAXHZ) < exp (7_2 tr(E)n +

4 2\,,2 2
)+ ) )

1—272|X|n

Recall from that z; is sub-Gaussian with variance parameter 27'§ and mean 0. Then, letting
A=I,andu=0in Lemma and using , we have, for n > \/ETI)\L]:,

L2 2L PN
E exp ( 573 1A ) <exp < 3 + - 27_5)\21%_”2) . (50)
Assume that n > /37, AL 7. Then, can be further upper-bounded by

A2L2 2r2RA2L2
E exp ( 2n2f ||Zz||2> < exp <2f) )

n
which, in conjunction with {@3)) and (7)), implies that for 1 < i < n,
E (e)‘vf' X1, ...,xi,l) < exp (2T§hA2L§:/n2) . (51)
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Using similar steps, we obtain, forn +1 < i <n+mandm > \/§Ty/\Lf,
E (e ...,Xi_l) < exp (QTth/\QLg_—/Tn?) . (52)
Then, using (51, and Markov’s inequality, we have
P(F(xl, corXnam) — EF (X1, ooy Xpam) > e)

n+m n+m
=P (Z Vi > 6) < e By, xtnim (H Vi )

i=1

n+m
— e
=€ ]Exl,...,xn+m,1 xn+m H € *y Xn4+m—1

n+m—1

- AV, AV

=e "¢ Exl,.“,xn+m,1 H e’ Eanrm (6 nm ‘Xl, e 7Xn+m71)
=1

(i)

n+m—1
— e 27’ hA2L2 /m? I | AV,
<€ Y }_/ Ex17---7xn+m—1 €

i=1

(i)

<exp (—Ae + 277 hA* L% /m + 272h A L% /n)

(iii) ) 5o

< exp (—Ae + 205 hA° L% /m + 2T og A’ L% /n) (53)
where (ii) follows by repeating (i) for n + m — 1 times and (iii) follows from the fact that 0 <
Ty Ty < Dyp. Let M = I'2ph L% Optimizing (53) over A, we have A = eM ~1(1/n +1/m)~! and

( ( ) ( ) > ) < A [62 ( )
P(F (X1, ..., Xpot CF(xq,... Xptn exp . ‘;4
15+ Xn+m 15+ &n4+m € ] (n m)

Recall that our proof requires that n > V31 AL 7 and m > \/§Ty)\L 7, which, based on the
facts that A = eM~'(1/n + 1/m)~! and 0 < 7,,7, < D, are satisfied for any 0 < e <
V3hT g L min{m,n}(n~' 4+ m™"'). Thus, the proof is complete.

C.2 Proof of Theorem

Based on the definition of dz, (u,v), we have

sup |EX~uf(X) - EyNVf(Y)l — Ssup |Ex~ﬂf(x) - Ey'vf/f(yn

fE€EFnn fE€EFnn

Exwf(x)—;zf(xi)—( en )= 0 35 )‘ 55)

i=1

|d]:nn (M’ I/) - d]:nn (ﬂv ZA/)| =

F(Xl»---7xn7}’17~--7ywz)
First note that for V1 < ¢ < n,

|F(X17"'7Xia aYm) - F(X17 7X;a aYm)| < fSI;-'p |f(x1) - f(X;)‘ /TL (56)
€Fnn

If the parameter set is Wy, then using Cauchy-Schwarz inequality, we have

[f(xi)=f(x)| = [wgoa—1 (- 01 (Wix;)) = wjioa1 (- 01(Wix])) |
< Mp(d)||og—1 (---01(Wix;)) — a1 (- - 01 (W1x])) ||

©)

< Mp(d)La-1|Wa-104-2 (- 01(W1x;)) = Wyi_104-2 (- -- 01 (W1x;)) ||

< Mp(d)La-1Mp(d—1)|loa-2 (-+-01(W1x;)) = 042 (- o1 (Wix))) |, (57)
where (i) follows from the fact that 041 (-) is Ld,l-LipschitZ. Repeating the process , we obtain

F(x; |<HMF HLszfx;n,
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which, in conjunction with (56), implies that, for V1 <i <n

d d—1
|F(X1a ey Xy 7ym) - F(Xla “';X;;v 7ym)‘ < HMF(Z) H Ll”XZ - X;H/TL (58)
=1 7

1

Similarly, we can get, for V1 < i < m,

d d—1
1=1 1=1

Let K := H‘ii:l Mp(3) Hf:_ll L;. Combining , and Theorem we have, for any 0 < € <
V3hT g K min{m,n}(n=' +m=1),

—EQmTL
P (F(X1, 0 Xms oooes Ym) = EF(X1, ooy Xy oo Yom) > €) < (60
(PO Yir) = B P13 ¥) 2 ) < 050 (i ) (60

where I is defined in . Plugging 6 = exp (—e?mn/(8hI'Z, K?(m +n))) in implies that,
if vV6hmin{n, m}vm=1 +n=1 > 4,/log(1/§), then with probability at least 1 — J,

d d—1
. 11 1
F(X1, 0, ¥m) SEF(X1, . ym) + 20w [ [ Mr() | Li\/Qh (n + m) log . (61)
i=1

i=1
Next, we upper-bound the expectation term in (61) through the following steps.

EF (X1, s Xny s Ym)

{ }'{y}fe}‘n

n

Byt S0 |+ e (FO) = [(x) = - D¢ (f(.YQ)—f(yi))‘

fEFnn |1

i=1 =1
1 — 1 &
S]Ex,x/,e sup |— €; f X; 7f X +E Lyl sup | — €i f yi f yi
| D () = S|+ By sup |20 e (7051 = 1)
2Ry (Fnns i) + 2R (Fan, v) (62)

which, combined with (33)) and (61)), finishes the proof for the parameter set Wp.

If the parameter set is W o, then we have
[f(xi) = fF(x)| = [Wioa—1 (- 01(Wix;)) = wiog 1 (- 01 (Wix])) |

(i)
< wallillog—1 (- 01 (Wix;)) — 0g-1 (- 01(W1x})) [loo
< Mi,00(d)Lg—1||Wg—104—2 (- - - 01(W1x;)) = Wyi_104-2 (- - - 01(W1x;)) || o

(ii)
< Mi,00(d)Lg—1 M1 ,00(d — 1)||og—2 (- - - 01 (W1x;)) — 0g—2 (- - - 01 (W1x3)) || co

d d—1 d d—1
<] Mrooli) [T Lillxi = Xilloo < [T Moo (i) T Zillxi — il (63)
=1 =1 1=1 1=1

where (i) follows from the inequality that w”x < ||w||1[|x/|s and (ii) follows from Wx <
[IW1,00|I%||co- The remaining steps are the same as in the case when the parameter set is Wy, and
are omitted.

C.3 Proof of Theorem[7|

As commented in Section [3.4] directly applying the existing results on the Rademacher complexity of
neural networks in [8] to unbounded sub-Gaussian inputs can lead to a loose upper bound. Hence,
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here we use a different approach that takes advantage of the sub-Gaussianity of the input data. Our
technique first upper-bounds the Rademacher complexity Ec x sup ez, |1, € f(x;)/n| by

n 2

Zéif(xi)/”

i=1

Aog [ Ecx sup exp | A , (64)

f e f’!L n

and then upper-bounds the expectation term in (64) by combining a peeling method different from
that in [8] and a tail bound of sub-Gaussian random vectors.

To prove Theorem 7] we first establish a useful lemma as follows.

Lemma 4. For any input z € R?, let 0(z) := [0(21),0(22), ..., 0(2:)]T. Then, we have

(I If the acitvatio function o(-) is L-Lipchitz and satisfies o(ax) = ao(x) for all a > 0, then for
any vector-valued function class F and any constant 1 > 0,

2 2

n

Zeif(xi)

i=1

Ex e sup exp | n
FEFIW|IF<R

> o(Wf(x))

i=1

< 2Ex . sup exp nR?L?
fer

(ID) If the acitvatio function o(-) is L-Lipchitz and satisfies o(0) = 0, then for any vector-valued
Sfunction class F and any constant 1 > (),
Oo)

Proof. The proof of the first result follows the general idea of that of Lemma 1 in [8]. However, we
cannot directly apply Lemma 1 in [8] because the function exp(nz?) is not increasing over entire R.
Thus, we need to tailor its proof to our setting.

n

Zeif(xi)

FEF IIW]l1,06<R i=1

Z ;0 (W f(x;))

Ex e sup exp | n < 2Ex . sup exp nR?L?
oo fer

Consider a function g : R — (0, 00) given by g(z) = exp(nz?)I(z > 0) + I(x < 0), where I(-) is
the indicator function. It can be verified that g(-) is increasing and convex. Then, we have

S

2
= Ex,e sup g
fEF W F<R i=

() -
:Ex,e sup g €;0 Wf Xi ’ (65)
feFIwlI<R ( Z it ))D

i=1
where (i) follows from the second equation in the proof of Lemma 1 in [§]]. Noting that g(x) > 0, we
have g(|z|) < g(«) + g(—=), and hence is upper-bounded by

Exe sup g <Z eia(Wf(Xi))> +Exc sup g <_Z€ia(wf(xi))> ,

feFIwl<R i=1 feF Iwl<R

Ex sup exp [ n
FEFIIWIF<R

Z €io(Wf(xi))

which, using the symmetry of the distribution of the Rademacher random variable ¢;, is equal to
n
Wy sup g Y eo(wfxi)) |- (66)
fEFIIW|ISR i=1

Recall that g is increasing and convex and note that o(0) = 0. Then, based on the equation (4.20)[1]
in [12]], we further upper-bound (66) by

2

2Ex. sup g¢g|LR Z e f(x:)|| | = 2Ex,e sup exp nR?L* Z € f(x;) (67)
feF,IIw|<R i=1 fer i=1
The proof of the second result follows from that of Lemma 2 in [8]. O

! Although this result requires o(-) to be 1-Lipchitz, it can be directly extended to any Lipchitz constant
L > 0 by replacing the Lipchitz constant 1 with L in its proof.
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Next, we provide the main part of the proof.

Case 1: parameter set Wp. Let F;(x) = 0;—1(W;_10;_2(- - 01(W1x)). Then, for any A > 0,

an(-ana N) = IE:x,e sup
Fo_1,wa,Wq_1

i=1

Z Eiwgad—l(wd—le—l(Xi))|

1 n
= |~log | expA <Ex,5 sup Zﬁzwdgd 1(Wa_1Fy_1(x;))

A Fa_1,wa,Wa_1 |,

@ 1 n
< X log Ex,e €xXp A sup Z GZWd Od— l(Wd le I(Xz))

Fa1,wa,Wa_1 |,

n

1
—log | Ex. sup exp | A Zelwdad 1(Wya_1Fy_1(x;))

)
)
)
)

A ' Fg_1,wqg,Wgq_1 i=1
n
1 2
< 5108 | Exe sup exp | AMp(d) >_cioa1 (Wi Fama(x1))
Fg_1,W4q_1 =1

n

ZeiFd—l Xi)

i=1

i) |1
< 3 log | Ex. ;up exp | AMp(d)?Mp(d —1)2L7_,

d—1

, (68)

where (i) follows from Jensen’s inequality, (ii) follows from the fact that the function exp(\z?) is
strictly increasing over [0, o] and (iii) follows from Lemma[d] Repeating the step (iii) in for
d — 1 times yields

MR (Fons 1) < \/ % log <2d—1Ex7€ (&MQHZE% "H)) (69)

where we define M := H;izl Mp(7) ]_[?:_11 L;. Next, we upper-bound the following term from

2 2

n

E €;X;

=1

n

E € X4

i=1

Excexp | AM? =E. | Exexp | AM? €1, En (70)

Conditioned on €1, ..., €, we define z = Z?:l €;X;. Recall that each x; is a sub-Gaussian random
vector with variance 72 and mean u. Thus, we have, for any vector a € R”,

E,e (z—Ez) _ H]Ex1 —Ex;) 6||a|\2n7'2/2’

which implies that z is a sub-Gaussian random vector with variance n72 and mean u, = u ;. €;.
Then, using Lemmain the proof of Theorem we obtain, for any 0 < A\M? < 1/(2n7?),

2N M + ||u, ||2/\M2>

E, exp (AM?[|z]*) < exp (nTQh/\M2 +

1—2n12AM?2
@) n2rthA2 M4 ToAM? 300 &l
9 2 uB =11
< exp (m’ hAM~ + 1_27172)\]\42) exp 1 — 2nr2\M?2 )

where (i) follows from the fact that ||[u||? < T'%;. Pick A = (1 — 2n72AM?)/(4T%;nM?). Then, we
have A\M? < 1/(2n7?), and

2 S el
E, exp (AMJz]*) < exp (”T”“MQ (1 i 4%)) o <4; :
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n

which, in conjunction with (70)), yields
>

’ 2 2 72 ‘Zﬁ—l 62“2
<exp <n7‘ hAM (1 + —2)) Eeexp | —=——— . (71
2 AT, n

Based on the equation (1) in [17], we have

P(

>

i=1

Ex,c exp <,\M2

> \/ﬁ5> <2e70°/2,

which implies that

() (5)

Defining a random variable Y = exp (|§:i:1 €l /(4n)), and letting t = exp (62/4) > 1, the
inequality can be rewritten as P (Y > t) < 2/t2. Then, we can obtain

E, exp [ (i &l :IE(Y):/OOIP’(Y>t)dt</OOEdt:2
€ 4n 1 - - 1 t2 ’
which, combined with (7)), implies that

n
E €i X

2
< 2exp (m‘2h)\M2 ( + 5 )) . (73)

i=1 4I‘uB

Combining and (73) and recalling that A = 1/(40'%;nM? + 2n72M?), we have

NRy (Frn, i) < v/nlugM~y/6d1og2 + 5h/4

T'usM+/6dlog?2 + 5h/4

R (Fumo ) < Lo /6dlog2 1+ 5h/4
NG

n
€
i=1

> \/ﬁé> < 27572, (72)

2
Ex e exp AM?

which further yields

Case 2: parameter set JV; ... Using an approach similar to and applying Lemmafd} we obtain,

for any A > 0,
N e

where M = H:.izl M1 0o (2) H?:_ll L;. Letting x;; be the j th coordinate of x;, the expectation term

in (74) can be rewritten as
Zezmu > < ZExeexp ()\M Ze Tij )
h n
ZEx,e (exp ( Z l’w‘) + exp ()\MZ Eifliij>>
i i=1

h n n
=23 Eycexp <)\M26ixij> 9 QZE (HEX exp (AMe;x;;)
j=1 =1

i=1

n

E €iX;

i=1

1
an(]:n'ruM) < X log <2d_1Ex’5 exp ()\M

Ex . exp ()\M max

IN

€1y eeny 6n>

i & .
<22]E (H exp (M2)\272/2)> = 2hexp (\*M?n7?/2), (75)
i=1
where (i) follows from the fact that x, ..., x,, are independent and (ii) follows from the definition of
the sub-Gaussian random variable. Combining (74) and yields

dlog2 + logh M?*n7?
R (Frn, ) < o8 ):i—og +A Qm— gMT\/Qn\/allogQ—|—logh
(i)

< MT'gVv2n+/dlog?2 + logh,

where (i) is obtained by picking A = /2(dlog 2 + log h)/(M?2n72) and (ii) follows from the fact
that 7 < I'yg. Then, the proof is complete.
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D Proof of Theorem 4|

The proof is similar to that of Theorem @ First, we have

|d]:n'n. (lu’7 V) - d]:nn (ﬂﬂ ﬁ)‘ < F(X17 e Xns Y1, ey ym)
where the function F is defined in (55). We start with the case when the parameter set is Wg, and
then adapt the proof to the parameter set W .

Case 1: parameter set JVp. Using an approach similar to (58) and (59), we can obtain,

d d—1
|F (., X,.) — F(o, x50 < HMF H Li||x; — x| /n < 2T'g HMF i) [] Li/n
3 =1 =1
d—1

d—1
|F(ooyYir ) — F(o ¥l |<HMF )T Zilly: - yl||/m<2FBHMF i) [T Li/m,
=1

=1

which, using the standard Mcharmld 1nequahty [[L6], implies

2

—e*mn
P(F(X1,ee,Xnyeeos ¥Ym) — EF (X1, ooy Xy ooy Yim) = €) < €XP <2K2(m+n)> (76)

where K :=T'p H?Zl Mp(7) Hf;ll L;. In order to upper-bound the expectation term in 1j using
an approach similar to (62) yields

EF (X1, sXny ooy Ym) < 2R (Frums 1) + 2R (Fum, V). (77)

Let § = exp (—e*mn/(2K?(m + n))) Combining and (77) implies that , with probability at
least 1 — 9,

F(X1, s X, oo Ym) < 2R (Fun, 1) + 2Rom ( s U

d
+FBHMF( ,/21og5,/—+— (78)

1=1
where the Rademacher complexity

n

1
Rn(Frns 1) = Ex,e legn - ; e f(x;)

Conditioned on X1, ..., X,,, we define

n

7%n(]:nn) = Ee sup l Z Eif(xi> .

f€Fnn n i=1

Let FZ(X) = O'ifl(wiflo'ifz(' 01 (Wlx)) Then, we can obtain

sup
Fog_1,wa,Wa_1

o

nRp(Frn) = E

ZGiW50d1(Wd1Fd1(Xi))‘

i=1

log | exp A | E sup
Fa_1,wa,Wg_1

(i)
< —log | E. sup exp A
Fa_1,wa,Wa_1

1
—log |E. sup expA| Mg(d)
A Fa—1,Wgq_1

> =

n

A=
> =

E €Wy 0q-1(Wa_1F_1(x;))

i=1

Zﬂwgad—l(wd 1Fa_1(x;) D)

)

> eioa 1 (Wa1Fua(x;) H)) (80)

i=1

IN

where (i) follows from the Jensen’s inequality. Recall that ||x;|| < I's fori = 1,2,...,n. Then,
combining (80) and the steps of the proof of Theorem 1 in [8] yields

e [T, Mr() [12) Li(v/2d10g2 + 1)

Rn(Fun) < NG )
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which, in conjunction with (78) and (79), yields the first result of Theorem ]

Case 2: parameter set V), ... Using an approach similar to (78], we can obtain

F(X1y ooy Xy ooy Ym) < 2Ry (Fmy 18) + 2R (Fumy V)

d d—1 T 1 1
+FBHM1,oo(i) H L-\/Qlog g\/ o + m’
i=1 i=1

Then, similarly to the proof of Theorem 2 in [§]], we can obtain

d . d—1
’RA = 00 | |-7 i\/i

n(F7L7L) S 2FB Hl_l Ml’ (Z) L L ¢ ki ! * 10gh7
Vn

which, in conjunction with (81)), implies the second result of Theorem [4]
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