
A Proofs of Theorem 1 and Corollary 1

A.1 Proof of Theorem 1

The proof is based on a variant of the Le Cam’s method in Theorem 3 in [26]. Our major technical
developments lie in properly choosing two hypothesis distributions as well as a neural network, and
then lower-bounding the difference of the expectation of the chosen neural network function between
the two distributions. We first present the Le Cam’s method (Theorem 3 in [26]).
Lemma 1 (Le Cam’s method). Let F : Θ → R be a functional defined on a space Θ and PΘ =
{Pθ : θ ∈ Θ} be a set of probability measures. The data samples Dn are distributed according to an
unknown element Pθ ∈ PΘ. Assume that there exist θ1, θ2 ∈ Θ such that |F (θ1)− F (θ2)| ≥ 2β > 0
and KL(Pθ2‖Pθ1) ≤ α <∞. Then,

inf
F̂n

sup
θ∈Θ

Pθ

{∣∣∣F̂n(Dn)− F (θ)
∣∣∣ ≥ β} ≥ max

{
1

4
e−α,

1−
√
α/2

2

}
, (21)

where the Kullback-Leibler divergence KL(Pθ2‖Pθ1) :=
∫

log
(
dPθ2
dPθ1

)
dPθ2 and F̂n(Dn) is an

estimator of F (θ) based on the random samples Dn.

We first consider the case when the parameter set isWF , and then adapt the proof to the parameter
setW1,∞. In addition, we suppose m ≥ n, and the case m < n can be proved in the same way.

Case 1: parameter setWF . Recall from (5) thatWF is defined by

WF :=

d−1∏
i=1

{
Wi ∈ Rni×mi : ‖Wi‖F ≤MF (i)

}
× {wd ∈ Rnd : ‖wd‖ ≤MF (d)} .

Assign each distribution µ ∈ PuB with a unique index θ̃µ and define an index set Θ̃ := {θ̃µ : µ ∈ PuB}.
To cast the form (9) in Theorem 1 to the context of Lemma 1, we let Θ = Θ̃× Θ̃, F (θ) = dFnn(µ, ν)

and Pθ := P = µn × νm in (21) for θ = (θ̃µ, θ̃ν), where θ̃µ and θ̃ν are the indices of µ, ν ∈ PuB and

P = µn × νm is the probability measure with the respect to the random samples {xi}ni=1
i.i.d.∼ µ and

{yi}mi=1
i.i.d.∼ ν.

To apply Lemma 1, we need to find two pairs of distributions (µ1, ν1), (µ2, ν2) ∈ PuB and α, β
such that |dFnn(µ1, ν1) − dFnn(µ2, ν2)| ≥ 2β and KL(P2‖P1) ≤ α, where P1 = µn1 × νm1 and
P2 = µn2 × νm2 . Specifically, we choose the following four Gaussian distributions

µ1 = G(u1, τ
2Ih), ν1 = G(u2, τ

2Ih), µ2 = ν2 = G(0, τ2Ih). (22)

where

‖u1‖2 =
Γ2

uB

3

(
1

n
+

1

m

)
, ‖u2‖2 =

Γ2
uB

3m
, uT1 u2 = ‖u2‖2, τ2 =

Γ2
uB

3

(
2 +

n

m

)
(23)

with ΓuB defined as the upper bound of the mean and variance parameter of the unbounded-support
sub-Gaussian distributions in PuB (see (8) for the definition). Clearly, (23) implies that ‖u1−u2‖2 =
Γ2

uB/3n and 0 ≤ τ, ‖u1‖, ‖u2‖ ≤ ΓuB.

Since µ2 = ν2, dFnn(µ2, ν2) = 0, and hence

|dFnn(µ1, ν1)− dFnn(µ2, ν2)| = dFnn(µ1, ν1) = sup
f∈Fnn

|Ex∼µ1f(x)− Ex∼ν1f(x)| . (24)

To lower-bound (24), we choose the weights in f̃(x) = w̃T
d σd−1

(
W̃d−1σd−2(· · ·σ1(W̃1x))

)
∈

Fnn as follows:

1. w̃d(1) = MF (d), w̃d(i) = 0 for i = 2, 3, ..., nd,

2. For i = 2, ..., d− 1, W̃i(1, 1) = Ω(i),W̃i(s, t) = 0 for (s, t) 6= (1, 1),

3. ‖W̃1(1)‖ = w1 = MF (1)(u1 − u2)/‖u1 − u2‖,W̃1(s) = 0 for 2 ≤ s ≤ n1, (25)

11



where w̃d(i) refers to the ith coordinate of w̃d, W̃i(s, t) denotes the (s, t)th entry of W̃, W̃1(s)

is the sth column vector of W̃T
1 and Ω(i) is defined in (11). Then, corresponding to the above

parameters, we have

f̃(x) = MF (d)σd−1

(
Ω(d− 1)σd−2 · · ·Ω(2)σ1

(
wT

1 x
))
. (26)

Combining (24) and (26) yields

|dFnn(µ1, ν1)− dFnn(µ2, ν2)| = sup
f∈Fnn

|Ex∼µ1
f(x)− Ex∼ν1

f(x)|

≥
∣∣∣Ex∼µ1

f̃(x)− Ex∼ν1
f̃(x)

∣∣∣ . (27)

Due to the definitions of µ1 in (22), for x ∼ µ1, we have that wT
1 x ∼ G(wT

1 u1, ‖w1‖2τ2). Let
x = wT

1 x ∈ R and ϕ(x ; u, τ2) be the probability density of the Gaussian distribution with mean u
and variance τ2. Then, we have

Ex∼µ1
f̃(x) =

∫
x

MF (d)σd−1 (Ω(d− 1)σd−2 · · ·Ω(2)σ1(x))ϕ
(
x ; wT

1 u1, ‖w1‖2τ2
)

dx

=

∫
x

MF (d)σd−1

(
Ω(d− 1)σd−2 · · ·σ1(x+ wT

1 u1)
)
ϕ
(
x ; 0, ‖w1‖2τ2

)
dx. (28)

Similarly, we have

Ex∼ν1
f̃(x) =

∫
x

MF (d)σd−1 (Ω(d− 1)σd−2 · · ·Ω(2)σ1(x))ϕ
(
x ; 0, ‖w1‖2τ2

)
dx,

which, in conjunction with (27) and (28), yields

|dFnn(µ1, ν1)− dFnn(µ2, ν2)| ≥ Ex∼µ1
f̃(x)− Ex∼ν1

f̃(x)

=

∫
x

(
MF (d)σd−1(· · ·σ1(x+ wT

1 u1))−MF (d)σd−1(· · ·σ1(x)
)︸ ︷︷ ︸

∆(x)

ϕ
(
x ; 0, ‖w1‖2τ2

)
dx. (29)

Following from the definitions of u1 and u2 in (23), we have

wT
1 u1

(i)
≥ wT

1 u2
(ii)
= 0, (30)

where (i) follows from the fact that wT
1 (u1 − u2) = MF (1)‖u1 − u2‖ ≥ 0 and (ii) follows because

uT1 u2 = ‖u2‖2. Recalling that each Ω(i) ≥ 0 and each σi(·) is non-decreasing, and using (30) that
wT

1 u1 ≥ 0, we have ∆(x) ≥ 0 for all x ∈ R. Hence, (29) can be further lower-bounded by

|dFnn(µ1, ν1)− dFnn(µ2, ν2)| ≥
∫
x

∆(x)ϕ
(
x ; 0, ‖w1‖2τ2

)
dx

≥
∫ q(1)

2

0

∆(x)ϕ
(
x ; 0, ‖w1‖2τ2

)
dx. (31)

where q(1) is defined in Assumption 2. Next, we develop a lower bound on the quantity ∆(x).

Lemma 2. For 0 ≤ x ≤ q(1)/2, we have

∆(x) ≥ MF (1)MF (d)ΓuB√
3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i),

where Qσ(i), i = 1, 2, ..., d− 1 are defined in Assumption 2.

Proof. Following from the definitions of u1 and u2 in (23) , we have

wT
1 u1

(i)
≤ MF (1)ΓuB√

3

√
1

n
+

1

m

(ii)
≤ q(1)

2
(32)
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where (i) follows from the inequality that ‖wT
1 u1‖ ≤ ‖w1‖‖u1‖ = MF (1)‖u1‖ and (ii) follows

from the assumption of Theorem 1 that
√
m−1 + n−1 <

√
3q(1)/(2MF (1)ΓuB). Based on (32) that

wT
1 u1 ≤ q(1)/2, we have, for any 0 ≤ x ≤ q(1)/2,

0 ≤ x+ wT
1 u1 ≤ q(1), 0 ≤ x < q(1)

which, using the definition of Ω(i) in (11) and letting Ω(d) = MF (d), yields that, for i = 2, 3, ..., d

0 < Ω(i)σi−1(· · ·σ1(x)), Ω(i)σi−1(· · ·σ1(x+ wT
1 u1)) ≤ Ω(i)σi−1(· · ·σ1(q(1))) ≤ q(i).

Then, further by Assumption 2, we obtain

∆(x) ≥MF (d)
(
σd−1(· · ·σ1(x+ w̃T

1 u1))− σd−1(· · ·σ1(x))
)

≥MF (d)Qσ(d− 1)Ω(d− 1)
(
σd−2(· · ·σ1(x+ w̃T

1 u1))− σd−2(· · ·σ1(x))
)
. (33)

Repeating the step (33) for d− 1 times, and using (30) that wT
1 u2 = 0, we have

∆(x) ≥ wT
1 u1MF (d)

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i) = wT
1 (u1 − u2)MF (d)

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i)

= MF (1)MF (d)‖u1 − u2‖
d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i) =
MF (1)MF (d)ΓuB√

3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i),

which finishes the proof of Lemma 2.

Combining (31) and Lemma 2, we obtain

|dFnn(µ1, ν1)− dFnn(µ2, ν2)|

≥ MF (1)MF (d)ΓuB√
3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i)

∫ q(1)
2

0

ϕ
(
x | 0, ‖w1‖2τ2

)
dx

=
MF (1)MF (d)ΓuB√

3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i)

∫ q(1)
2‖w1‖τ

0

ϕ (x | 0, 1) dx

(i)
≥ MF (1)MF (d)ΓuB√

3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i)

∫ q(1)
2MF (1)ΓuB

0

ϕ (x | 0, 1) dx,

≥ MF (1)MF (d)ΓuB√
3n

d−1∏
i=2

Ω(i)

d−1∏
i=1

Qσ(i)

(
1− Φ

(
q(1)

2MF (1)ΓuB

))
, (34)

where (i) follows from the fact that ‖w1‖ = MF (1), τ = ΓuB

√
1
3

(
2 + n

m

)
≤ ΓuB and Φ(·) is the

CDF of the standard Gaussian distribution.

Next, we upper-bound the KL divergence between the distributions P2 and P1 as follows.

KL(P2‖P1) = KL(µn2‖µn1 ) + KL(νm2 ‖νm1 )

= nKL(µ2‖µ1) +mKL(ν2‖ν1)

= n
‖u1‖2

2τ2
+m
‖u2‖2

2τ2
=

1

2
. (35)

Combining (34), (35) and Lemma 1 yields

inf
d̂(n,m)

sup
µ,ν∈PuB

P
{∣∣∣d̂(n,m)− dFnn(µ, ν)

∣∣∣ ≥ C(PuB)√
n

}
≥ max{1

4
e−1/2,

1

4
} =

1

4
.

where C(PuB) is the constant given by (10).

Case 2: parameter setW1,∞. Recall from (5) thatW1,∞ is defined as

W1,∞ :=

d−1∏
i=1

{
Wi ∈ Rni×mi : ‖Wi‖1,∞ ≤M1,∞(i)

}
× {wd ∈ Rnd : ‖wd‖1 ≤M1,∞(d)} .
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The proof for this case follows the steps similar to those in Case 1. To apply Lemma 1, we select four
distributions µ1, ν1, µ2 and ν2 as in (22) with

u1 = [b1, 0, 0, ..., 0]T ,u2 = [b2, 0, 0, ..., 0]T , τ2 =
Γ2

uB

3

(
2 +

n

m

)
,

b21 =
Γ2

uB

3

(
1

n
+

1

m

)
, b22 =

Γ2
uB

3m
, (b1 − b2)2 =

Γ2
uB

3n
. (36)

Note that this construction also implies (23). Based on this construction, we pick the weights in
f̂(x) = ŵT

d σd−1

(
· · ·σ1

(
Ŵ1x

))
∈ Fnn as follows.

1. ŵd(1) = M1,∞(d), ŵd(s) = 0 for s 6= 1,

2. For i = 2, 3, ..., d− 1,Ŵi = [ŵi, ŵi, ..., ŵi]
T
, ŵi(1) = M1,∞(i), ŵi(s) = 0 for s 6= 1,

3. Ŵ1 = [w1, w1, ...,w1]
T
, w1 = M1,∞(1)(u1 − u2)/‖u1 − u2‖. (37)

Clearly, (37) implies that ‖ŵd‖1 = M1,∞(d), ‖Ŵ1‖1,∞ = ‖ŵ1‖1 = ‖ŵ1‖ = M1,∞(1) and
‖Ŵi‖1,∞ = ‖ŵi‖1 = M1,∞(i) for i = 2, ..., d− 1. Using the parameters chosen in (37), we have

f̂(x) = M1,∞(d)σd−1

((
ŵT
d−11

)
σd−2

(
· · ·
(
ŵT
d−11

)
σ1

(
wT

1 x
)))

= M1,∞(d)σd−1

(
M1,∞(d− 1)σd−2 · · ·M1,∞(2)σ1

(
wT

1 x
))
, (38)

where 1 denotes the all-one vector. Then, we have
|dFnn(µ1, ν1)− dFnn(µ2, ν2)| = dFnn(µ1, ν1) = sup

f∈Fnn
|Ex∼µ1

f(x)− Ex∼ν1
f(x)|

≥
∣∣∣Ex∼µ1

f̂(x)− Ex∼ν1
f̂(x)

∣∣∣ .
The remaining steps are the same as in Case 1, and are omitted.

A.2 Proof of Corollary 1

Recall that if σi(·) is ReLU, then q(i) ≤ ∞ and Qσ(i) = 1. For the parameter set WF , we
choose q(1) = MF (1)ΓuB and q(i) = ∞ for i = 2, ..., d − 1 in Theorem 1. Then we obtain that
q(1)/(2MF (1)ΓuB) = 0.5 and Ω(i) = MF (i), which, combined with

√
3 (1− Φ (0.5)) /6 > 0.08,

finish the proof. The result for the parameter setW1,∞ can be proved in the same way.

B Proof of Theorem 2

The proof is also based on the Le Cam’s method (Lemma 1) as in Appendix A.1. However, here we
deal with the bounded-support class of distributions. Hence, the hypothesis distributions we choose
here are different. Suppose m > n and the case m < n follows the same steps.

Case 1: parameter set isWF . To use Lemma 1, we construct the following four distributions:

µ1(x) =


1

2
− ε if x = x1

1

2
+ ε if x = −x1

ν1(x) = µ2(x) = ν2(x) =


1

2
if x = x1

1

2
if x = −x1

(39)

where ε =
√

2n−
1
2 /4 < 1/2 and ‖x1‖ = ΓB.

First, we lower-bound |dFnn(µ1, ν1)− dFnn(µ2, ν2)|. Based on the construction (39), we obtain
|dFnn(µ1, ν1)− dFnn(µ2, ν2)| = dFnn(µ1, ν1)

= sup
f∈Fnn

|Ex∼µ1f(x)− Ex∼ν1f(x)|

= sup
f∈Fnn

∣∣∣∣(1

2
− ε
)
f(x1) +

(
1

2
+ ε

)
f(−x1)− 1

2
f(x1)− 1

2
f(−x1)

∣∣∣∣
= ε sup

f∈Fnn
|f(x1)− f(−x1)|

≥ ε |f̃(x1)− f̃(−x1)|
= ε (MF (d)σd−1(· · ·σ1(MF (1)ΓB))−MF (d)σd−1(· · ·σ1(−MF (1)ΓB))) , (40)
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where the function f̃(x) ∈ Fnn is constructed using an approach similar to (26), which is given by

f̃(x) = MF (d)σd−1

(
MF (d− 1) · · ·MF (2)σ1

(
wT

1 x
))

with w1 = MF (1)x1/‖x1‖.

Next, we derive an upper bound on the KL divergence between the distributions as follows.

KL(P2‖P1) = nKL(µ2‖µ1) +mKL(ν2‖ν1)

(i)
= n

(
1

2
log

(
1

1− 2ε

)
+

1

2
log

(
1

1 + 2ε

))
=

1

2
n log

(
1 +

4ε2

1− 4ε2

)
(ii)
≤ 1

2
n

4ε2

1− 4ε2

(iii)
≤ 1

4− 2/n
≤ 1

2
, (41)

where (i) follows from the fact that ν1 = ν2, (ii) follows from the inequality that log(1 + x) ≤ x for
x > 0 and (iii) follows because ε =

√
2n−

1
2 /4. Hence, combining (40), (41), ε =

√
2n−

1
2 /4 and

Lemma 1, and noting that
√

2/8 > 0.17, we complete the proof.

Case 2: parameter set isW1,∞. Similarly to the proof for Case 1, we select the same distributions
as in (39) with the parameters satisfying

x1 = [ΓB, 0, 0, ..., 0]T , ε =
√

2n−1/2/4. (42)

Clearly, (42) implies ‖x1‖1 = ‖x1‖ = ΓB. Using an approach similar to (40), we obtain

|dFnn(µ1, ν1)− dFnn(µ2, ν2)| = dFnn(µ1, ν1)

= sup
f∈Fnn

|Ex∼µ1
f(x)− Ex∼ν1

f(x)|

= ε sup
f∈Fnn

|f(x1)− f(−x1)|

≥ ε |f̂(x1)− f̂(−x1)|
= ε (M1,∞(d)σd−1(· · ·σ1(M1,∞(1)ΓB))−M1,∞(d)σd−1(· · ·σ1(−M1,∞(1)ΓB))) , (43)

where the function f̂(x) ∈ Fnn is constructed based on a approach similar to (38), which is given by

f̂(x) = M1,∞(d)σd−1

(
· · ·M1,∞(2)σ1

(
wT

1 x
))

with w1 = M1,∞(1)x1/‖x1‖. (44)

Substituting ε =
√

2n−1/2/4 into (43) and adopting the same steps in (41), we finish the proof by
Lemma 1.

C Proof of Theorem 3

As we outline in Section 3.4, the proof of Theorem 3 follows from the proofs of Theorems 5, 6 and 7
as three main steps. We next provide the proofs for these theorems in three subsections.

C.1 Proof of Theorem 5

The proof follows from the general idea in [11] for the scalar case. The major technical development
here lies in upper-bounding E

(
eλVi

∣∣x1, ...,xi−1

)
for the martingale difference Vi based on a

tail bound of sub-Gaussian random vectors, and then using the bound of E
(
eλVi

∣∣x1, ...,xi−1

)
to

yield (15) by Markov’s inequality. To simplify the notation in the proof, we use xn+1, ...,xn+m to
denote y1, ...,ym.
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Let Vi = Ex1,...,xn+m(F |x1, ...,xi)− Ex1,...,xn+m(F |x1, ...,xi−1). Then, we have

E
(
eλVi

∣∣x1, ...,xi−1

)
=

∫
xi

eλE(F |x1,...,xi)−λE(F |x1,...,xi−1)dPxi

(i)
≤
∫
xi

Exi+1,...,xn+m
eλF Exi,...,xn+m

e−λF dPxi

=

∫
xi

(∫
xi+1,...,xn+m

eλF dPxi+1
· · · dPxn+m

∫
x′i,...,xn+m

e−λF dPx′i
· · · dPxn+m

)
dPxi

=

∫
xi+1,...,xn+m

(∫
xi,x′i

eλF (...,xi,...)−λF (...,x′i,...)dPxidPx′i

)
dPxi+1 · · · dPxn+m , (45)

where (i) follows from the Jensen’s inequality. Then, using the fact that et + e−t ≤ e−s + es for
∀ |t| ≤ s and noting (14), we have, for 1 ≤ i ≤ n,

eλ(F (...,xi,...)−F (...,x′i,...)) + e−λ(F (...,xi,...)−F (...,x′i,...)) ≤ e
λLF‖xi−x′i‖

n + e−
λLF‖xi−x′i‖

n . (46)

Thus, we have, for 1 ≤ i ≤ n,∫
xi,x′i

eλF (x1,...,xi,...,xn+m)−λF (x1,...,x
′
i,...,xn+m)dPxidPx′i

(i)
=

1

2

∫
xi,x′i

eλ(F (...,xi,...)−F (...,x′i,...)) + e−λ(F (...,xi,...)−F (...,x′i,...))dPxidPx′i

(ii)
≤ 1

2

∫
xi,x′i

eλLF‖xi−x
′
i‖/n + e−λLF‖xi−x

′
i‖/ndPxidPx′i

=
1

2
Exi,x′i

(
eλLF‖xi−x

′
i‖/n + e−λLF‖xi−x

′
i‖/n

)
(iii)
≤ Exi,x′i

eλ
2L2
F‖xi−x

′
i‖

2/(2n2) = Ezi e
λ2L2

F‖zi‖
2/(2n2) (47)

where (i) follows from the symmetry between xi and x′i, (ii) is based on (46), (iii) follows from the
inequality that (ex + e−x)/2 ≤ ex2/2, and we set zi = xi − x′i in the last equality. Since xi and xi
are both sub-Gaussian with mean ux and variance parameter τx, we have E(zi) = 0 and

E ea
T zi = E ea

Txi E e−a
Tx′i ≤ e‖a‖

2σ2/2e‖a‖
2σ2
x/2 = e‖a‖

2σ2
x , (48)

which implies that zi is a zero-mean sub-Gaussian random variable with the variance parameter 2σ2
x.

Next, we quote the following tail inequality from [10], which is useful here.
Lemma 3 (Theorem 1 in [10]). Let A ∈ Rh×h be a matrix and let Σ = ATA. Suppose that
x is a sub-Gaussian random vector with mean u ∈ Rh and variance parameter τ2. Then, for
0 ≤ η < 1/(2τ2‖Σ‖),

E
(
eη‖Ax‖2

)
≤ exp

(
τ2 tr(Σ)η +

τ4 tr(Σ2)η2 + ‖Au‖2η
1− 2τ2‖Σ‖η

)
. (49)

Recall from (48) that zi is sub-Gaussian with variance parameter 2τ2
x and mean 0. Then, letting

A = Ih and u = 0 in Lemma 3 and using (47), we have, for n ≥
√

2τxλLF ,

E exp

(
λ2L2

F
2n2

‖zi‖2
)
≤ exp

(
τ2
xhλ

2L2
F

n2
+

τ4
xhλ

4L4
F

n4 − 2τ2
xλ

2L2
Fn

2

)
. (50)

Assume that n ≥
√

3τxλLF . Then, (50) can be further upper-bounded by

E exp

(
λ2L2

F
2n2

‖zi‖2
)
≤ exp

(
2τ2
xhλ

2L2
F

n2

)
,

which, in conjunction with (45) and (47), implies that for 1 ≤ i ≤ n,

E
(
eλVi

∣∣x1, ...,xi−1

)
≤ exp

(
2τ2
xhλ

2L2
F/n

2
)
. (51)
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Using similar steps, we obtain, for n+ 1 ≤ i ≤ n+m and m ≥
√

3τyλLF ,

E
(
eλVi

∣∣x1, ...,xi−1

)
≤ exp

(
2τ2
yhλ

2L2
F/m

2
)
. (52)

Then, using (51), (52) and Markov’s inequality, we have

P
(
F (x1, ...,xn+m)− EF (x1, ...,xn+m) ≥ ε

)
=P

(
n+m∑
i=1

Vi > ε

)
≤ e−λε Ex1,...,xn+m

(
n+m∏
i=1

eλVi

)

=e−λε Ex1,...,xn+m−1

(
Exn+m

(
n+m∏
i=1

eλVi |x1, · · · ,xn+m−1

))

=e−λε Ex1,...,xn+m−1

(
n+m−1∏
i=1

eλVi Exn+m

(
eλVn+m |x1, · · · ,xn+m−1

))
(i)
≤e−λεe2τ2

yhλ
2L2
F/m

2

Ex1,...,xn+m−1

(
n+m−1∏
i=1

eλVi

)
(ii)
≤ exp

(
−λε+ 2τ2

yhλ
2L2
F/m+ 2τ2

xhλ
2L2
F/n

)
(iii)
≤ exp

(
−λε+ 2Γ2

uBhλ
2L2
F/m+ 2Γ2

uBhλ
2L2
F/n

)
, (53)

where (ii) follows by repeating (i) for n + m − 1 times and (iii) follows from the fact that 0 <
τx, τy ≤ ΓuB. Let M = Γ2

uBhL
2
F . Optimizing (53) over λ, we have λ = εM−1(1/n+ 1/m)−1 and

P (F (x1, ...,xn+m)− EF (x1, ...,xn+m) ≥ ε) ≤ exp

(
−ε2nm

8M(n+m)

)
. (54)

Recall that our proof requires that n ≥
√

3τxλLF and m ≥
√

3τyλLF , which, based on the
facts that λ = εM−1(1/n + 1/m)−1 and 0 < τx, τy ≤ ΓuB, are satisfied for any 0 < ε ≤√

3hΓuBLF min{m,n}(n−1 +m−1). Thus, the proof is complete.

C.2 Proof of Theorem 6

Based on the definition of dFnn(µ, ν), we have

|dFnn(µ, ν)− dFnn(µ̂, ν̂)| =

∣∣∣∣∣ sup
f∈Fnn

|Ex∼µf(x)− Ey∼νf(y)| − sup
f∈Fnn

|Ex∼µ̂f(x)− Ey∼ν̂f(y)|

∣∣∣∣∣
≤ sup
f∈Fnn

∣∣∣∣∣Ex∼µf(x)− 1

n

n∑
i=1

f(xi)−

(
Ey∼νf(y)− 1

m

m∑
i=1

f(yi)

)∣∣∣∣∣︸ ︷︷ ︸
F (x1,...,xn,y1,...,ym)

. (55)

First note that for ∀ 1 ≤ i ≤ n,

|F (x1, ...,xi, ...,ym)− F (x1, ...,x
′
i, ...,ym)| ≤ sup

f∈Fnn
|f(xi)− f(x′i)| /n. (56)

If the parameter set isWF , then using Cauchy-Schwarz inequality, we have

|f(xi)−f(x′i)| = |wT
d σd−1 (· · ·σ1(W1xi))−wT

d σd−1 (· · ·σ1(W1x
′
i)) |

≤MF (d)‖σd−1 (· · ·σ1(W1xi))− σd−1 (· · ·σ1(W1x
′
i)) ‖

(i)
≤MF (d)Ld−1‖Wd−1σd−2 (· · ·σ1(W1xi))−Wd−1σd−2 (· · ·σ1(W1xi)) ‖
≤MF (d)Ld−1MF (d− 1)‖σd−2 (· · ·σ1(W1xi))− σd−2 (· · ·σ1(W1x

′
i)) ‖, (57)

where (i) follows from the fact that σd−1(·) is Ld−1-Lipschitz. Repeating the process (57), we obtain

|f(xi)− f(x′i)| ≤
d∏
i=1

MF (i)

d−1∏
i=1

Li‖xi − x′i‖,
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which, in conjunction with (56), implies that, for ∀ 1 ≤ i ≤ n

|F (x1, ...,xi, ...,ym)− F (x1, ...,x
′
i, ...,ym)| ≤

d∏
i=1

MF (i)

d−1∏
i=1

Li‖xi − x′i‖/n. (58)

Similarly, we can get, for ∀ 1 ≤ i ≤ m,

|F (x1, ...,yi, ...,ym)− F (x1, ...,y
′
i, ...,ym)| ≤

d∏
i=1

MF (i)

d−1∏
i=1

Li‖yi − y′i‖/m. (59)

Let K :=
∏d
i=1MF (i)

∏d−1
i=1 Li. Combining (58), (59) and Theorem 5, we have, for any 0 < ε ≤√

3hΓuBK min{m,n}(n−1 +m−1),

P (F (x1, ...,xn, ....,ym)− EF (x1, ...,xn, ....,ym) ≥ ε) ≤ exp

(
−ε2mn

8hΓ2
uBK

2(m+ n)

)
, (60)

where ΓuB is defined in (8). Plugging δ = exp
(
−ε2mn/(8hΓ2

uBK
2(m+ n))

)
in (60) implies that,

if
√

6hmin{n,m}
√
m−1 + n−1 ≥ 4

√
log(1/δ), then with probability at least 1− δ,

F (x1, ....,ym) ≤ EF (x1, ....,ym) + 2ΓuB

d∏
i=1

MF (i)

d−1∏
i=1

Li

√
2h

(
1

n
+

1

m

)
log

1

δ
. (61)

Next, we upper-bound the expectation term in (61) through the following steps.

EF (x1, ...,xn, ....,ym)

=E{xi},{yi} sup
f∈Fnn

∣∣∣∣∣Ex∼µf(x)− 1

n

n∑
i=1

f(xi)−

(
Ey∼νf(y)− 1

m

m∑
i=1

f(yi)

)∣∣∣∣∣
≤Ex,y,x′,y′,ε,ε′ sup

f∈Fnn

∣∣∣∣∣ 1n
n∑
i=1

εi (f(x′i)− f(xi))−
1

m

m∑
i=1

ε′i (f(y′i)− f(yi))

∣∣∣∣∣
≤Ex,x′,ε sup

f∈Fnn

∣∣∣∣∣ 1n
n∑
i=1

εi (f(x′i)− f(xi))

∣∣∣∣∣+ Ey,y′,ε′ sup
f∈Fnn

∣∣∣∣∣ 1

m

m∑
i=1

εi (f(y′i)− f(yi))

∣∣∣∣∣
≤2Rn(Fnn, µ) + 2Rm(Fnn, ν) (62)

which, combined with (55) and (61), finishes the proof for the parameter setWF .

If the parameter set isW1,∞, then we have

|f(xi)− f(x′i)| = |wT
d σd−1 (· · ·σ1(W1xi))−wT

d σd−1 (· · ·σ1(W1x
′
i)) |

(i)
≤ ‖wd‖1‖σd−1 (· · ·σ1(W1xi))− σd−1 (· · ·σ1(W1x

′
i)) ‖∞

≤M1,∞(d)Ld−1‖Wd−1σd−2 (· · ·σ1(W1xi))−Wd−1σd−2 (· · ·σ1(W1xi)) ‖∞
(ii)
≤ M1,∞(d)Ld−1M1,∞(d− 1)‖σd−2 (· · ·σ1(W1xi))− σd−2 (· · ·σ1(W1xi)) ‖∞

≤
d∏
i=1

M1,∞(i)

d−1∏
i=1

Li‖xi − x′i‖∞ ≤
d∏
i=1

M1,∞(i)

d−1∏
i=1

Li‖xi − x′i‖, (63)

where (i) follows from the inequality that wTx ≤ ‖w‖1‖x‖∞ and (ii) follows from Wx ≤
‖W‖1,∞‖x‖∞. The remaining steps are the same as in the case when the parameter set isWF , and
are omitted.

C.3 Proof of Theorem 7

As commented in Section 3.4, directly applying the existing results on the Rademacher complexity of
neural networks in [8] to unbounded sub-Gaussian inputs can lead to a loose upper bound. Hence,
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here we use a different approach that takes advantage of the sub-Gaussianity of the input data. Our
technique first upper-bounds the Rademacher complexity Eε,x supf∈Fnn |

∑n
i=1 εif(xi)/n| by√√√√√λ log

Eε,x sup
f∈Fnn

exp

λ ∣∣∣∣∣
n∑
i=1

εif(xi)/n

∣∣∣∣∣
2
, (64)

and then upper-bounds the expectation term in (64) by combining a peeling method different from
that in [8] and a tail bound of sub-Gaussian random vectors.

To prove Theorem 7, we first establish a useful lemma as follows.
Lemma 4. For any input z ∈ Rt, let σ(z) := [σ(z1), σ(z2), ..., σ(zt)]

T . Then, we have

(I) If the acitvatio function σ(·) is L-Lipchitz and satisfies σ(αx) = ασ(x) for all α ≥ 0, then for
any vector-valued function class F and any constant η > 0,

Ex,ε sup
f∈F,‖W‖F≤R

exp

η ∥∥∥∥∥
n∑
i=1

εiσ(Wf(xi))

∥∥∥∥∥
2
 ≤ 2Ex,ε sup

f∈F
exp

ηR2L2

∥∥∥∥∥
n∑
i=1

εif(xi)

∥∥∥∥∥
2
 .

(II) If the acitvatio function σ(·) is L-Lipchitz and satisfies σ(0) = 0, then for any vector-valued
function class F and any constant η > 0,

Ex,ε sup
f∈F,‖W‖1,∞≤R

exp

(
η

∥∥∥∥∥
n∑
i=1

εiσ(Wf(xi))

∥∥∥∥∥
∞

)
≤ 2Ex,ε sup

f∈F
exp

(
ηR2L2

∥∥∥∥∥
n∑
i=1

εif(xi)

∥∥∥∥∥
∞

)
.

Proof. The proof of the first result follows the general idea of that of Lemma 1 in [8]. However, we
cannot directly apply Lemma 1 in [8] because the function exp(ηx2) is not increasing over entire R.
Thus, we need to tailor its proof to our setting.

Consider a function g : R 7−→ (0,∞) given by g(x) = exp(ηx2)I(x ≥ 0) + I(x < 0), where I(·) is
the indicator function. It can be verified that g(·) is increasing and convex. Then, we have

Ex,ε sup
f∈F,‖W‖F≤R

exp

(
η

∥∥∥∥∥
n∑
i=1

εiσ(Wf(xi))

∥∥∥∥∥
2)

= Ex,ε sup
f∈F,‖W‖F≤R

g

(∥∥∥∥∥
n∑
i=1

εiσ(Wf(xi))

∥∥∥∥∥
)

(i)
= Ex,ε sup

f∈F,‖w‖≤R
g

(∣∣∣∣∣
n∑
i=1

εiσ(wf(xi))

∣∣∣∣∣
)
, (65)

where (i) follows from the second equation in the proof of Lemma 1 in [8]. Noting that g(x) ≥ 0, we
have g(|x|) ≤ g(x) + g(−x), and hence (65) is upper-bounded by

Ex,ε sup
f∈F,‖w‖≤R

g

(
n∑
i=1

εiσ(wf(xi))

)
+ Ex,ε sup

f∈F,‖w‖≤R
g

(
−

n∑
i=1

εiσ(wf(xi))

)
,

which, using the symmetry of the distribution of the Rademacher random variable εi, is equal to

2Ex,ε sup
f∈F,‖w‖≤R

g

(
n∑
i=1

εiσ(wf(xi))

)
. (66)

Recall that g is increasing and convex and note that σ(0) = 0. Then, based on the equation (4.20) 1

in [12], we further upper-bound (66) by

2Ex,ε sup
f∈F,‖w‖≤R

g

(
LR

∥∥∥∥∥
n∑
i=1

εif(xi)

∥∥∥∥∥
)

= 2Ex,ε sup
f∈F

exp

ηR2L2

∥∥∥∥∥
n∑
i=1

εif(xi)

∥∥∥∥∥
2
 . (67)

The proof of the second result follows from that of Lemma 2 in [8].
1Although this result requires σ(·) to be 1-Lipchitz, it can be directly extended to any Lipchitz constant

L > 0 by replacing the Lipchitz constant 1 with L in its proof.
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Next, we provide the main part of the proof.

Case 1: parameter setWF . Let Fi(x) = σi−1(Wi−1σi−2(· · ·σ1(W1x)). Then, for any λ > 0,

nRn(Fnn, µ) = Ex,ε sup
Fd−1,wd,Wd−1

∣∣∣∣∣
n∑
i=1

εiw
T
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
=

√√√√√ 1

λ
log

expλ

(
Ex,ε sup

Fd−1,wd,Wd−1

∣∣∣∣∣
n∑
i=1

εiwT
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
)2


(i)
≤

√√√√√ 1

λ
log

Ex,ε exp

(
λ sup
Fd−1,wd,Wd−1

∣∣∣∣∣
n∑
i=1

εiwT
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
)2


(ii)
=

√√√√√ 1

λ
log

Ex,ε sup
Fd−1,wd,Wd−1

exp

λ ∣∣∣∣∣
n∑
i=1

εiwT
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
2


≤

√√√√√ 1

λ
log

Ex,ε sup
Fd−1,Wd−1

exp

λMF (d)2

∥∥∥∥∥
n∑
i=1

εiσd−1(Wd−1Fd−1(xi))

∥∥∥∥∥
2


(iii)
≤

√√√√√ 1

λ
log

Ex,ε sup
Fd−1

exp

λMF (d)2MF (d− 1)2L2
d−1

∥∥∥∥∥
n∑
i=1

εiFd−1(xi)

∥∥∥∥∥
2
, (68)

where (i) follows from Jensen’s inequality, (ii) follows from the fact that the function exp(λx2) is
strictly increasing over [0,∞] and (iii) follows from Lemma 4. Repeating the step (iii) in (68) for
d− 1 times yields

nRn(Fnn, µ) ≤
√

1

λ
log
(

2d−1Ex,ε

(
eλM

2‖∑n
i=1 εixi‖2

))
. (69)

where we define M :=
∏d
i=1MF (i)

∏d−1
i=1 Li. Next, we upper-bound the following term from (69)

Ex,ε exp

λM2

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
 = Eε

Ex exp

λM2

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
∣∣∣∣∣ε1, ..., εn

 (70)

Conditioned on ε1, ..., εn, we define z =
∑n
i=1 εixi. Recall that each xi is a sub-Gaussian random

vector with variance τ2 and mean u. Thus, we have, for any vector a ∈ Rh,

Ez e
aT (z−Ez) =

n∏
i=1

Exi e
aT εi(xi−Exi) ≤ e‖a‖

2nτ2/2,

which implies that z is a sub-Gaussian random vector with variance nτ2 and mean uz = u
∑n
i=1 εi.

Then, using Lemma 3 in the proof of Theorem 5, we obtain, for any 0 ≤ λM2 ≤ 1/(2nτ2),

Ez exp
(
λM2‖z‖2

)
≤ exp

(
nτ2hλM2 +

n2τ4hλ2M4 + ‖uz‖2λM2

1− 2nτ2λM2

)
(i)
≤ exp

(
nτ2hλM2 +

n2τ4hλ2M4

1− 2nτ2λM2

)
exp

(
Γ2

uBλM
2 |
∑n
i=1 εi|

2

1− 2nτ2λM2

)
,

where (i) follows from the fact that ||u||2 ≤ Γ2
uB. Pick λ = (1− 2nτ2λM2)/(4Γ2

uBnM
2). Then, we

have λM2 ≤ 1/(2nτ2), and

Ez exp
(
λM2‖z‖2

)
≤ exp

(
nτ2hλM2

(
1 +

τ2

4Γ2
uB

))
exp

(
|
∑n
i=1 εi|

2

4n

)
,
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which, in conjunction with (70), yields

Ex,ε exp

(
λM2

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2)
≤ exp

(
nτ2hλM2

(
1 +

τ2

4Γ2
uB

))
Eε exp

(∣∣∑n
i=1 εi

∣∣2
4n

)
. (71)

Based on the equation (1) in [17], we have

P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ √nδ
)
≤ 2e−δ

2/2,

which implies that

P

(
exp

(
|
∑n
i=1 εi|

2

4n

)
≥ exp

(
δ2

4

))
= P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ √nδ
)
≤ 2e−δ

2/2. (72)

Defining a random variable Y = exp
(
|
∑n
i=1 εi|

2
/(4n)

)
, and letting t = exp

(
δ2/4

)
≥ 1, the

inequality (72) can be rewritten as P (Y ≥ t) ≤ 2/t2. Then, we can obtain

Eε exp

(
|
∑n
i=1 εi|

2

4n

)
= E(Y) =

∫ ∞
1

P(Y ≥ t) dt ≤
∫ ∞

1

2

t2
dt = 2,

which, combined with (71), implies that

Ex,ε exp

λM2

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
 ≤ 2 exp

(
nτ2hλM2

(
1 +

τ2

4Γ2
uB

))
. (73)

Combining (69) and (73) and recalling that λ = 1/(4Γ2
uBnM

2 + 2nτ2M2), we have

nRn(Fnn, µ) ≤
√
nΓuBM

√
6d log 2 + 5h/4,

which further yields

Rn(Fnn, µ) ≤
ΓuBM

√
6d log 2 + 5h/4√

n
.

Case 2: parameter setW1,∞. Using an approach similar to (68) and applying Lemma 4, we obtain,
for any λ > 0,

nRn(Fnn, µ) ≤ 1

λ
log

(
2d−1Ex,ε exp

(
λM

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
∞

))
, (74)

where M =
∏d
i=1M1,∞(i)

∏d−1
i=1 Li. Letting xij be the jth coordinate of xi, the expectation term

in (74) can be rewritten as

Ex,ε exp

(
λM max

j

∣∣∣∣∣
n∑
i=1

εixij

∣∣∣∣∣
)
≤

h∑
j=1

Ex,ε exp

(
λM

∣∣∣∣∣
n∑
i=1

εixij

∣∣∣∣∣
)

≤
h∑
j=1

Ex,ε

(
exp

(
λM

n∑
i=1

εixij

)
+ exp

(
−λM

n∑
i=1

εixij

))

=2

h∑
j=1

Ex,ε exp

(
λM

n∑
i=1

εixij

)
(i)
= 2

h∑
j=1

Eε

(
n∏
i=1

Ex exp (λMεixij)

∣∣∣∣ε1, ..., εn
)

(ii)
≤2

h∑
j=1

Eε

(
n∏
i=1

exp
(
M2λ2τ2/2

))
= 2h exp

(
λ2M2nτ2/2

)
, (75)

where (i) follows from the fact that x1, ...,xn are independent and (ii) follows from the definition of
the sub-Gaussian random variable. Combining (74) and (75) yields

nRn(Fnn, µ) ≤ d log 2 + log h

λ
+ λ

M2nτ2

2

(i)
= Mτ

√
2n
√
d log 2 + log h

(ii)
≤ MΓuB

√
2n
√
d log 2 + log h,

where (i) is obtained by picking λ =
√

2(d log 2 + log h)/(M2nτ2) and (ii) follows from the fact
that τ ≤ ΓuB. Then, the proof is complete.
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D Proof of Theorem 4

The proof is similar to that of Theorem 6. First, we have

|dFnn(µ, ν)− dFnn(µ̂, ν̂)| ≤ F (x1, ...,xn,y1, ...,ym).

where the function F is defined in (55). We start with the case when the parameter set isWF , and
then adapt the proof to the parameter setW1,∞.

Case 1: parameter setWF . Using an approach similar to (58) and (59), we can obtain,

|F (...,xi, ...)− F (...,x′i, ...)| ≤
d∏
i=1

MF (i)

d−1∏
i=1

Li‖xi − x′i‖/n ≤ 2ΓB

d∏
i=1

MF (i)

d−1∏
i=1

Li/n

|F (...,yi, ...)− F (...,y′i, ...)| ≤
d∏
i=1

MF (i)

d−1∏
i=1

Li‖yi − y′i‖/m ≤ 2ΓB

d∏
i=1

MF (i)

d−1∏
i=1

Li/m,

which, using the standard McDiarmid inequality [16], implies

P (F (x1, ...,xn, ....,ym)− EF (x1, ...,xn, ....,ym) ≥ ε) ≤ exp

(
−ε2mn

2K2(m+ n)

)
(76)

where K := ΓB
∏d
i=1MF (i)

∏d−1
i=1 Li. In order to upper-bound the expectation term in (76), using

an approach similar to (62) yields

EF (x1, ...,xn, ....,ym) ≤ 2Rn(Fnn, µ) + 2Rm(Fnn, ν). (77)

Let δ = exp
(
−ε2mn/(2K2(m+ n))

)
. Combining (76) and (77) implies that , with probability at

least 1− δ,

F (x1, ...,xn, ....,ym) ≤ 2Rn(Fnn, µ) + 2Rm(Fnn, ν)

+ ΓB

d∏
i=1

MF (i)

d−1∏
i=1

Li

√
2 log

1

δ

√
1

n
+

1

m
, (78)

where the Rademacher complexity

Rn(Fnn, µ) = Ex,ε sup
f∈Fnn

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ = Ex

(
Eε

(
sup

f∈Fnn

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
) ∣∣∣∣∣x1, ...,xn

)
. (79)

Conditioned on x1, ...,xn, we define

R̂n(Fnn) = Eε sup
f∈Fnn

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ .
Let Fi(x) = σi−1(Wi−1σi−2(· · ·σ1(W1x)). Then, we can obtain

nR̂n(Fnn) = Eε sup
Fd−1,wd,Wd−1

∣∣∣∣∣
n∑
i=1

εiw
T
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
=

1

λ
log

(
expλ

(
Eε sup

Fd−1,wd,Wd−1

∣∣∣∣∣
n∑
i=1

εiw
T
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
))

(i)
≤ 1

λ
log

(
Eε sup

Fd−1,wd,Wd−1

expλ

(∣∣∣∣∣
n∑
i=1

εiw
T
d σd−1(Wd−1Fd−1(xi))

∣∣∣∣∣
))

≤ 1

λ
log

(
Eε sup

Fd−1,Wd−1

expλ

(
MF (d)

∥∥∥∥∥
n∑
i=1

εiσd−1(Wd−1Fd−1(xi))

∥∥∥∥∥
))

. (80)

where (i) follows from the Jensen’s inequality. Recall that ||xi|| ≤ ΓB for i = 1, 2, ..., n. Then,
combining (80) and the steps of the proof of Theorem 1 in [8] yields

R̂n(Fnn) ≤
ΓB
∏d
i=1MF (i)

∏d−1
i=1 Li(

√
2d log 2 + 1)√

n
,
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which, in conjunction with (78) and (79), yields the first result of Theorem 4.

Case 2: parameter setW1,∞. Using an approach similar to (78), we can obtain

F (x1, ...,xn, ....,ym) ≤ 2Rn(Fnn, µ) + 2Rm(Fnn, ν)

+ ΓB

d∏
i=1

M1,∞(i)

d−1∏
i=1

Li

√
2 log

1

δ

√
1

n
+

1

m
, (81)

Then, similarly to the proof of Theorem 2 in [8], we can obtain

R̂n(Fnn) ≤
2ΓB

∏d
i=1M1,∞(i)

∏d−1
i=1 Li

√
d+ 1 + log h√

n
,

which, in conjunction with (81), implies the second result of Theorem 4.
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