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A Update of V, ci, and di

Hereinafter, we use Y wg to denote the set after the earliest added item h is removed. We will show
how to update V, ci, and di when h is removed from {h} ∪ Y wg .

A.1 Update of V

Since the Cholesky factor of L{h}∪Y w
g

is V,[
Lhh Lh,Y w

g

LY w
g ,h LY w

g

]
=

[
V11 0
V2:,1 V2:

] [
V11 0
V2:,1 V2:

]>
, (14)

where 2: denotes the indices starting from 2 to the end. For simplicity, hereinafter we use v = V2:,1

and V̈ = V2:. Let V′ denote the Cholesky factor of LY w
g

. Equ. (14) implies

V′V′> = LY w
g

= V̈V̈> + vv>. (15)

Since V′ and V̈ are lower triangular matrices of the same size, Equ. (15) is a classical rank-one
update for Cholesky decomposition. We follow the procedure described in [41] for this problem. Let

V′ =

[
V′11 0
V′2:,1 V′2:

]
, V̈ =

[
V̈11 0

V̈2:,1 V̈2:

]
, v =

[
v1

v2:

]
.

Then Equ. (15) is equivalent to

V′211 = V̈2
11 + v2

1, (16)

V′2:,1V
′
11 = V̈2:,1V̈11 + v2:v1,

V′2:V
′>
2: +V′2:,1V

′>
2:,1 = V̈2:V̈

>
2: + V̈2:,1V̈

>
2:,1 + v2:v

>
2:

which imply

V′2:,1 = (V̈2:,1V̈11 + v2:v1)/V
′
11, (17)

V′2:V
′>
2: = V̈2:V̈

>
2: + v′v′>, (18)

v′ = (v2:V
′
11 −V′2:,1v1)/V̈11. (19)

The first column of V′ can be determined by Equ. (16) and Equ. (17). For the rest part, notice that
Equ. (18) together with Equ. (19) is again a rank-one update but with a smaller size. We can repeat
the aforementioned procedure until the last diagonal element of V′ is obtained.

A.2 Update of ci

According to Equ. (3), [
V11 0

v V̈

]
[ci,1 ci,2:]

>
=

[
Lhi
LY w

g ,i

]
,

where ci,1 denotes the first element of ci and ci,2: is the remaining sub-vector. Let ai = ci,1 and
c̈i = ci,2:. Define c′i as the vector of item i after h is removed. Then

V′c′>i = LY w
g ,i = V̈c̈>i + vai. (20)

Let
c′i =

[
c′i,1 c′i,2:

]
, c̈i = [c̈i,1 c̈i,2:] .

Then Equ. (20) is equivalent to

c′i,1V
′
11 = c̈i,1V̈11 + aiv1,

V′2:c
′>
i,2: +V′2:,1c

′
i,1 = V̈2:c̈

>
i,2: + V̈2:,1c̈i,1 + v2:ai
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which imply

c′i,1 = (c̈i,1V̈11 + aiv1)/V
′
11, (21)

V′2:c
′>
i,2: = V̈2:c̈

>
i,2: + v′a′i, (22)

a′i = (aiV
′
11 − c′i,1v1)/V̈11. (23)

The first element of c′i can be determined by Equ. (21). For the rest part, since Equ. (22) together
with Equ. (19) and (23) has the same form as Equ. (20), we can repeat the aforementioned procedure
until we get the last element of c′i.

A.3 Update of di

According to Equ. (4),
d2i = Lii − a2i − ‖c̈i‖22.

Define d′i as the scalar of item i after h is removed. Then

d′2i = Lii − ‖c′i‖22
= d2i + a2i + ‖c̈i‖22 − ‖c′i‖22 (24)

= d2i + a2i + c̈2i,1 + ‖c̈i,2:‖22 − c′2i,1 − ‖c′i,2:‖22
= d2i + a′2i + ‖c̈i,2:‖22 − ‖c′i,2:‖22 (25)

where Equ. (25) is due to

a2i + c̈2i,1 − c′2i,1
Equ.(21)
==== a2i + (c′i,1V

′
11 − aiv1)

2/V̈2
11 − c′2i,1

= (a2i (V̈
2
11 + v2

1) + c′2i,1(V
′2
11 − V̈2

11)− 2c′i,1V
′
11aiv1)/V̈

2
11

Equ.(16)
==== (a2iV

′2
11 + c′2i,1v

2
1 − 2c′i,1V

′
11aiv1)/V̈

2
11

Equ.(23)
==== a′2i .

Notice that Equ. (25) has the same form as Equ. (24). Therefore, after c′i has been updated, we can
directly get d′2i = d2i + a′2i .

B Discussion on Numerical Stability

As introduced in Section 3, updating ci and di involves calculating ei, where d−1j is involved. If dj is
approximately zero, our algorithm encounters the numerical instability issue. According to Equ. (5),
dj satisfies

d2j =
det(LYg∪{j})

det(LYg
)

. (26)

Let jk be the selected item in the k-th iteration. Theorem 1 gives some results about the sequence
{djk}.
Theorem 1. In Algorithm 1, {djk} is non-increasing, and djk > 0 if and only if k ≤ rank(L).

Proof. First, in the k-th iteration, since jk is the solution to Opt. (6), djk ≥ djk+1
. After jk is added,

djk+1
does not increase after update Equ. (9). Therefore, sequence {djk} is non-increasing.

Now we prove the second part of the theorem. Let Vk ⊆ Z be the items that have been selected
by Algorithm 1 at the end of the k-th step. Let Wk ⊆ Z be a set of k items such that det(LWk

) is
maximum. According to Theorem 3.3 in [13], we have

det(LVk
) ≥

(
1

k!

)2

· det(LWk
).

When k ≤ rank(L), Wk satisfies det(LWk
) > 0, and therefore

det(LVk
) > 0, k ≤ rank(L).
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Figure 5: Impact of trade-off parameter θ on PW Recall on Netflix dataset.

0.05 0.06 0.07
MRR

0.08

0.10

0.12

0.14

0.16

PW
 R

ec
al

l

MMR
MSD
Entropy
Cover
DPP

0.120 0.125 0.130 0.135
MRR

0.250

0.275

0.300

0.325

PW
 R

ec
al

l

MMR
MSD
Entropy
Cover
DPP

Figure 6: Comparison of trade-off performance between MRR and PW Recall under different choices
of trade-off parameters on Netflix Prize (left) and Million Song Dataset (right).
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Figure 7: Comparison of trade-off performance between nDCG and PW Recall under different
choices of trade-off parameters on Netflix Prize (left) and Million Song Dataset (right).

According to Equ. (26), we have

d2jk =
det(LVk

)

det(LVk−1
)
.

As a result, for k = 1, . . . , rank(L), djk > 0. When k = rank(L) + 1, Vk contains rank(L) + 1
items, and LVk

is singular. Therefore, djk = 0 for k = rank(L) + 1.

According to Theorem 1, when kernel L is a low rank matrix, Algorithm 1 returns at most rank(L)
items. For Algorithm 2 with a sliding window, according to Subsection A.3, di is non-decreasing
after the earliest item is removed. This allows for returning more items, and alleviates the numerical
instability issue.

C More Simulation Results

We have also compared the metric popularity-weighted recall (PW Recall) [42] of different algorithms.
Its definition is

PW Recall =

∑
u∈U

∑
t∈Tu

wtIt∈Ru∑
u∈U

∑
t∈Tu

wt
,

where Tu is the set of relevant items in the test set, wt is the weight of item t with wt ∝ C(t)−0.5

where C(t) is the number of occurrences of t in the training set, and IP is the indicator function. PW
Recall measures both relevance and diversity.
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Similar to Figure 2, the impact of trade-off parameter θ on PW Recall on Netflix Prize is shown in
Figure 5. As θ increases, MRR improves at first, achieves the best value when θ ≈ 0.5, and then
decreases. Therefore, moderate amount of diversity also leads to better PW Recall.

Similar to Figure 3, by varying the trade-off parameters, the trade-off performance between MRR
and PW Recall are compared in Figure 6. Similar conclusions can be drawn.

Similar to Figure 4, by varying the trade-off parameters, the trade-off performance between nDCG and
PW Recall are compared in Figure 7. DPP enjoys the best trade-off performance on both datasets.
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