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Abstract

This supplementary article contains an appendix to our paper “Mean Field for
the Stochastic Blockmodel: Optimization Landscape and Convergence Issues”,
providing derivation of stationarity equations for the mean field log-likelihood and
the proofs of our main results.

1 The Variational principle and mean field

We start with the following simple observation:

log P(A; B, ) = logZ P(4,2;B,m) = log (Z - )w(Z)>
7 Z
(Jensen) ; log (W) ’(/J(Z) v’(/} prOb. on Z.

In fact, equality holds for ¢*(Z) = P(Z|A; B, 7). Therefore, if U denotes the set of all probability
measures on Z, then

AZBW)
(Z)

The crucial idea from variational inference is to replace the set ¥ above by some easy-to-deal-with
subclass ¥ to get a lower bound on the log-likelihood.

log P(A; B, 7) maleog ( ) V(Z). (A1)

log P(A; B,7) > max Zlog( ZJ)B’”)>¢(Z). (A2)

PYeW CW

Also the optimal 1, € Wy is a potential candidate for an estimate of P(Z|A; B, ). Estimating
P(Z|A; B, ) is profitable since then we can obtain an estimate of the community membership
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matrix by setting Z;, = 1 for the ¢th agent where
a = arg m?XP(Zib = 1]|4; B, 7). (A.3)

The goal now has become optimizing the lower bound in (A.2).

2 Derivation of stationarity equations

8% = 4¢ Z —A) — log (1 7/%)

J:g#i
- ;i;jwm )+ (=) (A”(; . > 1;)- "
Therefore
8122;% = 4t(Ayy = A)(1 = 0i5) = m%‘,
2oty (o)l ) o)

9% 1 1 11 1
didg 2 Z <wi_2> (Aij(qJr 1—Q> 1-4q

0% 1 1 1 1
a5 i ¥4 1-— 7 1-—- Az Y - )
8p2 2223](1]&1/}] ( 1/))( dh))( J< pz + (1—]))2) (1—}9)2)
0% 1 1 1 1
i 1— 1—w )| A S —
9> 2 & =95 +( m)%)( ”< q2+(1—q)2> (1—q)2>’
1,§:1F£]
0%
_ A5
340D (A.5)
3 Proofs of main results
Proof of Proposition[3.1] For any a > b > 0, we have
b g (¢) < 90
a &\ b
which can be proved using the inequality log(1 + x) < z for x > —1,x # 0. Therefore
1— _
pq<log<><pq, andpq<1g<q)<pq.
p q q l—q L—p L—p
So
rP—9)(1+p—q) 1( (p) (1—q>) (P—q)A—-p+q)
<t=—-(log|=]+log|— < ,
2(1—q)p 2 q 1—p 2(1-p)g
and )
N = T (= e
R T e los(h) T B
This completes the proof. O



3.1 Proofs of results in Section[3.1]

Proof of Proposition[3.2] That = %1 is a stationary point is obvious from the stationarity equations
(AZ). The eigenvalues of —41 + 4tM, the Hessian at 1, are h; = —4 + 4ty;. We have v =

nay — (p — A) = O(n), and hence so is hy. Also, p — A > 0, so that v3 < 0, and hence hz < 0.
Thus we have two eigenvalues of the opposite sign. O

Proof of Theorem[3.3] From (3)), we have
4 = g(nall) +6,7) = g(nal)) + 5.7,

where |0(*| = O(exp(—nla%?

)), where we have used the fact that
g(nz +y) — g(nz) = g(nz)g(nx + y)(e’ — 1) exp(—(nz + y)).
Writing as a vector, we have

Pt = g(nas_si)lcl + g(na(_si)lc2 + 66 (A.6)

where |60 = max; \5§3)| = O(exp(fnmin{|a(s)\ \a \})) Note that by our assumption,
18 s0 = O(exp(—nmin{la?], [a[})) = o(1). Now

i1 (@WETD uy) g(nal)) + g(nal?)
(o+1) _

_ (s)
~ - +0(169 1),

and

(s) (s)
) _ 60D ) gnal) —g(nal)
ot = W) _ gtnen) —90as) | o500,

Note that g(nag) = 1{a§f{>0} + O(]|6*)] ). Now, using (A.G),we have

[ — e )13

n

[(9(na) = 11,00, + (9(na) = 1,01 )1e, + 60|

n
2((9(nal)) = 1,00l I3 + g(nal™) =10 )es 13 + 15¢)]2)
n
l9(na]) =10 > +lg(nal™)) = 10 o)+ 206 1%
=Ny ~ 1{af1)>0}|2 0y ~ 1{a(f’2>0}|2 +O0(I81I%). (A7)

| /\

IN

From the above representation and our assumption on n|a(i0 % |, the bound for s = 1 follows. We will

now consider the four different cases of different signs of a(is i

Case 1: ag >0, a(s) > 0. In this case g(nag )) g(na (e )) =14 O(||6®]|00), so that

s+1 s+1
(G, 6T) = (1,0) + O(15 -
This implies that
aY = 2tay + 069 0).
If oy > 0, ay have the same sign as alf i Otherwise, if a; < 0, both of them become
negative (and we thus have to go to Case 2 below). Note that, here and in the subsequent cases,
we are using that fact that ||6(*)||.c = o(1), for s = 0, by our assumption and it stays the same

fors > 1 because of relations like the above (that is ag = —2ta + o(1), so that ||6(V)]|, =

(S+1)

exp(—n min{\a \ \ \}) O(exp(—Cntay)) = o(1), and so on).



Case 2: a\” < 0,a"%) < 0. Inthis case 1 — g(na'”) = 1 — g(na')) = 1+ O(||5||»). so that

(€, ¢8YY = (0,0) + O([|69)|oo).

This implies that
s+1 s
o = —2tay + O[5 o).
Ifay >0, agffr D have the same sign as ag. Otherwise, if a4 < 0, both of them become positive
(and we thus have to go to Case 1 above).

Case 3: ags) > 0, afl < 0. In this case g(nags)) =1- g(na(fi) =14 O0(||6®]|s0), so that
s s 11 s
(G, 67 ) = (5 5) + 015 )-
This implies that
a7V = £2ta + 0109 ).
Since a_ > 0, aﬁffl) have the same sign as a(ﬂ.

Case 4: ags) <0, a(fi > 0. In this case 1 — g(nags)) = g(na(fi) =14 O0(||6®]|s0), so that

s+1 s+1 1 1 s
(GG = (5 -5) + 0315 ).
This implies that
al = F2ta_ + O(||69]|s0)-

Since a— > 0, aﬁf” have the same sign as ag.

Note that, in the case ay = 0, ag = j:4tC2(s)a_, so that a(ﬂ have opposite signs and we land in

Cases 3 or 4.

We conclude that, if ;. > 0, then we stay in the same case where we began, and otherwise if ay < 0
we have a cycling behavior between Cases 1 and 2. Now the desired conclusion follows from the

bound (A7).
In the proof above, we can allow sparser graphs, with p, ¢ > % More explicitly, let p = ppa,q =

pnb, witha > b > 0and p,, > L. Then, ¢t = Q(1),and vy < p—q = ppla—b),a_ = (p—q)/2 =
pn(a —b)/2. So, we do have ntﬁaﬂ — 00. O

Proof of Theorem[3.4] We begin by noting that M—M=A—E(A|Z) := A— P. For the first
iteration, we rewrite the sample iterations (7)) as

£V = gt <¢<°> - ;1> + 44(M — M) (¢<0> - 11)

=¢M 4y at(A-P) («W - ;1> .

[\

=:nr(0)
Therefore, similar to the population case, we have
1[)51) = g(na((,(z) + bgo) + nrgo)).
Note that
(0) _ 4t 5 © 1
= > (Aij = Pl Zi, Z;) (1 — ) (A.8)
i

Assume that 1)(?) is independent of A. Since our probability statements will be with respect to
the randomness in A, we may assume that ¢)() is fixed. Let Y;; = (A;; — IBij)(¢§O) — 1). Then



the Y;; are independent random variables for j # 4, and E(Y;;) = 0. Also, |Yj;| < |z/)j(-0) -3 <

[ — Ll = A, say, and EY;2 = (¢(O 1)2Var(4;5) = O(pn(wj(.o) —3)?). So, by Bernstein’s
inequality,
1,22

1 —sn’e
P(— Y,i >¢) <ex 2
(n;; 5> ) p(zj;&i]E}/g—l-éAne)
o 7
< exp
Canz/JO)—*Hz 3Ane

122
< exp ( 2 ) (A9)
- Cnp, A% + £ Ane

It follows from here that nr = O(, /npnA logn) with high probability, if . /pr = Q(logn).
In fact, by taking a suitably large constant in the big “Oh”, we can show, via a union bound, that

max; nr§0> = O(y/np,Alogn) with high probability.

Now, from our assumption n|a${| > max{,/np,|[¢¥? — || logn, 1}, it follows that nagq) >
nrgo) + b§°) with high probability, simultaneously for all ¢. Thus, similar to the population case, we

can write ) © ©) .

¢(1) = g(na’+1)1cl + g(nafl)lcz + 5(0)7
where [|6(0)]|o = O(exp(—n min{\af{\7 \a@i\})) = o(1), with high probability. After this the
proof proceeds like the the proof of Theorem and so we omit it.

Let us consider the case with s = 2 and we will show nrl(l)

€2 = at(A - A(J (M —1/2)

= 4tM (™M —1/2) 4+ nrW
= 4tM B — 1/2) + 41(A = PO — 0 ) +41(4 — P)(e(w®) - 11).

Ry

can be bounded in a general way. Now

Ra

Now the analysis of the first term follows from Theorem It is also easy to see max; | Ry ;| =
Op(y/Tpn), since £(y(0) € {1¢,,1¢,,1,0,11}. For Ry,

max |Ryi| < | Rillz < [[A = Plloplld™ — €)1

= Op(y/Apn)vn - Ofexp(=O(nmin{|a{}], [} [})) = 0p (1),
under our assumption that n|ag| > max{y/np, ||¥® — 1| logn,1}. Hence max; |m“( )| =

Op(y/npy), and nagli) > nrgl) + bgl) with high probability, simultaneously for all <. The same
analysis as in the s = 1 case follows.

The case for general s can be proved by induction using the same decomposition of (%), replacing
£(x(0) with a more general £()(?)) € {£(1)(*)),0,1} depending on the signs of asrl), a( ) o as
described in Theorem [3.3]for s > 2. O
Proof of Corollary[3.5] From Theorem 3.3] it follows that, when a.y > 0,
M(S1) > M{p@ | a(o) > 0, a(o) >0, na(o) > 1}
1
—m({p® o) > 0D > 1)
0 I © 1
> [} > —.al% > o)),

for any 0 < v < 1 and so on for the other other limit points.



More explicitly,
oo L _ o 1 (0) 1
{w(o) layi > et a_y > 7} = {7/’(0) (G — §)O‘+ +Gan > T

o 1 0 1
(E)*i)‘h* 2()04—>m}

— HInH o, 1",

All in all, we have
M(S1) = lim M(HT N HLO[0,1]").
P

This completes the proof. O

3.2 Proofs of results in Section[3.2]

Proof of Proposition[3.6] That the described point is a stationary point is easy to verify, because of
the presence of the (¢; — 3) terms in the stationarity equations (A-4). Now, from (A-3), we see that

11 1741 141
277 n(n—1)? n(n—1)"

the Hessian matrix at ( %) is given by

—41 0 0
H=|0" - féﬁiz)) 0
o 0 —di
where a = ( ) H is negative definite. This completes the proof. O

Proof of Lemma[3.1} First note that conditioning on the true labels Z, E(A|Z) = P. For the update
of p(M), we have

0 TPy + (1= )T P(1 - )
T T+ A — )7 - DL - 1)
L VTA= P+ (L= )T (A= P)(1- )
AT Do+ 10T - DI —9)

where the first term can be written as
T (P + 25— pI)g 4 (1 )T (] + Bt ph(1 )
¢T(U1u1 D+ (1 =) (wuf — 1)1 — )
BG4 (1= )P+ 2 — ) — po
SR TR
_pta . (p=a)(G — /%)
2 G+(1-4G)2—z/n%

where = = ¢ + (1 — ¢)T(1 — ¢) > n?/4. The second term can be bounded by noting
E(y" (A — P)¢) = 0 and Var(y" (A — P)y) < 2n(n — 1)p. By Chebyshev’s inequality, 1" (A —
PYy = Op(y/pan).

This is because

Eyal6" (A — P)y] = EyEalw” (A - P)g|v] =0,
and
Vary, a[" (A — P)] = EVar(u” (A = P)y| ) + Var(E[4" (4 = P)| )
— EVar(47 (4~ Pyu|v)

i<j



(1 —)T(A — P)(1 — v) can be handled similarly, and
YT =Dy + (1 =)' D)1~ y)

2
=<Zﬂ0-+0f§:m>—wT —(1=-9)T1-v)
>n?/2 — 2n,

since the first two terms are minimized at ) _, 1); = n/2.

The result for ¢(!) is proved analogously. O

Proof of Proposition[3.7} Let ) = (uq + Cous +w, w € span{uy,us}*, be a stationary point. We
will consider the population version of all the updates and replace A with E(A|Z) := P and p,, — 0.
By Lemma[31]

5Pt (p—q)(¢G —x/2n?)
P 2 G+(1—¢)2—x/n?

’
€1

P+a  (p—q)(C +y/2n%)

q = : A.10
T TG0 -G) -y (A.10)
In this case, the update equation (@) becomes
§=4i(P = A(J = D)™ - 51)
—4t~n<(C1—;) <p2+q_5\> U1+p_qC2uz)+4t( )<7J1—1>
=na+b (A.11)

where ) and £ are defined in terms of p and ¢. Since ) is a stationary point, the above update gives
¥ =g().

We consider the following cases.

Case 1: ¢ = Q(1). Since (1 (1 — {1) > (3, itis easy to see that (A-I0) implies that § > 224 > g,
thus p — § = Q(pn), £ = 1), p < A < §. It follows then b; = O(p,,), and |a;| = Q(p,,) fori € C;
ori € Cy = O(pnv/n) = o(y/n).

Case 2: (» = o(1). Note that 1) (1 — 1)) > 0 implies that ¢; (1 — (1) — 2 If [|w||? = o(n),
we are done. If ||w||? = Q(n), (1(1 — ¢1) = Q(1). In this case, p = ZH + O(p,(3), and
similarly for ¢. It follows then that { = O((3) = o(1), A = 219 + o(p,) (we defer the details

to (A.14)- (A18)). Also note that b; = O(p,¢3). When n|a;| > bz, 9(&) = g(na;) + o(1). Since
g(na) € span{u;,uy}, this implies that ||w|| = o(y/n). When n|a;| =< b;, & = o(1), and so we have

lw]| = o(y/n) again. O

Proof of Lemma[3.2] Leta = (p+q)/2. By @), define x1 := 4t (1 — 3) (a—\) and k3 = 4t(, 251

Consider the initial distribution 1(?) (i) *' f,, where f is a distribution supported on (0, 1) with
mean 4. Note that we have the following:

T
G = % = pu+O0p(1/vn), (A.12)

G =L = 0p(1/vm).



Now using (I0), recall that

W _pta . (p—q)(G —x/2n?)
pl - 2 +<12+(1—2<1)2—33/7’L2 +OP(\/p7n/n)7

2 2G(1—G) —y/n?

’
€2

€2

6 =¢ +0p (“f") =0p(f)+op(“f) =OP<WT”>7
€2 = e+ Op (\/F”> =O0p <‘/7§T”>

n

This gives

We will use the following logarithmic inequalities for a > ¢ > 0:
2e a+e€ < 2e

<lo .
a+e gafe_afe

1 1-—

t=—|log ate + log 7a+62 ,
2 a— €9 l1—a—e€

o > €1 + €2 €1 1+ €2 > (61 -+ 62) 7

T at+e l—a+e " (ate)(l—a+e)

(€1 +e€2)

(a—e)(l—a—¢€)

For A, if €1 + €5 > 0, we have

Now we have

2t <

1— (1)
\ 1og1_7§<1> < €1+ € /(€1+€2+ €1+ € ):a+61
1og§§%+1og}:g$; - ]._a_€1 a+€1 1_04_61
> €1 + €2 €1+€2+ €1 + €2 e
T l—a+e a—e  1l—a-+e 2z
Ifeg +e2 <0,
log =42
5= 8 1=,m S €1 + € /(61+62+ €1+ € ):a+61
logf;i—iiﬂog}:gﬁ; T l-a-¢g ate l-a-—e ’

A< €1+ € €1+€2+ €1+ € —a— e
1—a+e a— €9 1—a+e
Now we are ready to estimate &;. We define:
2(61 —|—€2)
(a—e)(l—a—e€)

4max{e? 3} 1
Sui-a+ Or(von/m) |1~ 2 +Op(1/Vn)

3t < [ 0or (35)

S f?ﬁw%/n) (p — )Op(1/v/n) = Op(y/pn/n/?).

Ky = 4G — %)(a <

=0p(1/n?),

Ko = 41(2

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

<” _ % + Op(l/\/ﬁ)> max(|e1], 62)‘

(A.19)



From () and adding the noise term from the sample version of the update,

¢ = n(ky + oik2) + b + nrl?, (A.20)
where max; |b§o)| = t-Op(pn) = Op(\/pn/n), since t = Op(1/(n\/pn)) by (AT3), and
max; |nr£0)| =4t - Op(y/npn logn) = Op(logn/+/n) if np, > (logn)?, following the bound in
Eq (A29)). Now applying the update for 1, we have ¢§1) = g(éW) = L + Op(logn/\/n) uniformly
for all 7. J

Proof of Lemma[3.3} In this setting, we write p(*), ¢(*) as follows:
G+0-¢)? o2
G

P =p—(p- Q)Clz - (12_41)2133/”2 +Op(/pu/n),
q(l) =g+ (p_q)CI(l - Cl) — <22 _y/n2 _’_OP(\//Tn/n) (A.21)

2G(1-G) —y/n?
From the proof of Lemma Equation , and Equation , we have: €1, €2 < ”Qﬁ

Also note that €1, €2 = Qp(—(p — q)(3 + \/pn/n). Hence, by the same argument as in Lemma
(p+9)/2 — Al < max([ea], [e2]) = B5% 4+ Op(1/n) by (A21).

Finally we see that
€1 + €2

Pn
In addition, condition (T3) implies that (3 = Qp(1), we see that t = Qp(1) using (AT3).

Next, using (12) and [A.19]
tus—1 (p+ - -
)14 g — df (m 12 (p q A) L= )P —a) +Op(pn/\/ﬁ)) ,

t =6 ) =0 ((p—a)E/pn) -

2 2 4
m_@:4t<m+gg—1 <p—;q_)\> B (MI_MZ)(p_Q)_i_OP(pn/\/E))_

In (A.20), bgo) is of smaller order than the other terms and it suffices to consider (k1 + o;k2 + 1"50)).

Since |7’§O)| =0Op (\/ ’“l‘;gz"> (see proof of Theorem, for any pair ¢ € C; and j € Cy we

have
(k1 + Ko + 7’50))(/@1 — Ko + TSO))
(% = 13) + O (max(ir”, r{”|) max(|al, ] )

n 1O n

PN R o=
2 2 2 9 1 pnloan

= =0 | (2 =17 = (=2 + Op | o= A[Z= == | | <0.

Thus n (k1 + ke +7‘§0)) and n(ky — ko + r§0) ), for 7, j in different blocks, have opposite signs. We will

now check if n(k; + oyko + 7*2(0)) — 00, and it suffices to lower bound n(|ka| — |k1| — max; |T§O) ).

. \/pnlogZn/n
Since [p1 — pa| > 2|p1 + pa — 1| + Op <pg/)

pP—q

2
0 pnlog®n
n(Jrea| = [ia| = max i) = nt | i1 = piol (0 = @) = i + 2 = 1(p = @) = Op | |/ ==

2
p—q
> net(p = )l ol =6 (I~ pafn P25

n



1/
for some constant ¢, so as long as |1 — ua| > ( 5&713%1)2) .

Thus k1 + ok + rfo) is growing to infinity with an order bounded below by Q2 p(logn).

If n(k1 + ko + r§°>) > 0, since %(1) = g(n(ky + oik2) + bz(-o) + nrl(o)), we have (1) = 1., +
Op(exp(—$2(logn))). The case k1 + k2 + 7’50) < 0 is similar. O
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