
A Basics of Riemannian geometry

We briefly introduce basic concepts of differential geometry largely needed for a principled general-
ization of Euclidean neural networks. For more rigorous and in-depth expositions, see [23, 14].

An n-dimensional manifoldM is a space that can locally be approximated by Rn: it is a generalization
to higher dimensions of the notion of a 2D surface. For x ∈ M, one can define the tangent space
TxM of M at x as the first order linear approximation of M around x. A Riemannian metric
g = (gx)x∈M onM is a collection of inner-products gx : TxM× TxM → R varying smoothly
with x. A Riemannian manifold (M, g) is a manifoldM equipped with a Riemannian metric g.
Although a choice of a Riemannian metric g onM only seems to define the geometry locally onM,
it induces global distances by integrating the length (of the speed vector living in the tangent space)
of a shortest path between two points:

d(x, y) = inf
γ

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt, (32)

where γ ∈ C∞([0, 1],M) is such that γ(0) = x and γ(1) = y. A geodesic γ is a smooth path
of locally minimal length, and can be seen as the generalization of a straight-line in Euclidean
space. In certain spaces, such as the hyperbolic space, there is a unique geodesic between two
points, which allows to consider the parallel transport from x to y (implicitly taken along this unique
geodesic) Px→y : TxM → TyM , which is a linear isometry between tangent spaces corresponding
to moving tangent vectors along geodesics and defines a canonical way to connect tangent spaces.
The exponential map expx at x, when well-defined, gives a way to project back a vector v of the
tangent space TxM at x, to a point expx(v) ∈ M on the manifold. This map is often used to
parametrize a geodesic γ starting from γ(0) := x ∈M with unit-norm direction γ̇(0) := v ∈ TxM
as t 7→ expx(tv). For geodesically complete manifolds, such as the Poincaré ball considered in this
work, expx is well-defined on the full tangent space TxM. Finally, a metric g̃ is said to be conformal
to another metric g if it defines the same angles, i.e.

g̃x(u, v)√
g̃x(u, u)

√
g̃x(v, v)

=
gx(u, v)√

gx(u, u)
√
gx(v, v)

, (33)

for all x ∈ M, u, v ∈ TxM \ {0}. This is equivalent to the existence of a smooth function
λ :M→ R, called the conformal factor, such that g̃x = λ2xgx for all x ∈M.

B Hyperbolic Trigonometry

Hyperbolic angles. For A,B,C ∈ Dnc , we denote by ∠A := ∠BAC the angle between the two
geodesics starting from A and ending at B and C respectively. This angle can be defined in two
equivalent ways: i) either using the angle between the initial velocities of the two geodesics as given
by Eq. 3, or ii) using the formula

cos(∠A) =

〈
(−A)⊕c B
‖(−A)⊕c B‖

,
(−A)⊕c C
‖(−A)⊕c C‖

〉
, (34)

In this case, ∠A is also called a gyroangle in the work of [26, section 4].

Hyperbolic law of sines. We state here the hyperbolic law of sines. If for A,B,C ∈ Dnc , we
denote by ∠B := ∠ABC the angle between the two geodesics starting from B and ending at A and
C respectively, and by c̃ = dc(B,A) the length of the hyperbolic segment BA (and similarly for
others), then we have:

sin(∠A)

sinh(
√
cã)

=
sin(∠B)

sinh(
√
cb̃)

=
sin(∠C)

sinh(
√
cc̃)

. (35)

Note that one can also adapt the hyperbolic law of cosines to the hyperbolic space.

12

C Proof of Theorem 4

Theorem 4.
In the manifold (Dnc , gc), the parallel transport w.r.t. the Levi-Civita connection of a vector v ∈ T0Dnc
to another tangent space TxDnc is given by the following isometry:

P c0→x(v) = logcx(x⊕c expc0(v)) =
λc0
λcx
v. (36)

Proof. The geodesic in Dnc from 0 to x is given in Eq. (8) by γ(t) = x ⊗c t, for t ∈ [0, 1]. Let
v ∈ T0Dnc . Then it is of common knowledge that there exists a unique parallel10 vector field X along
γ (i.e. X(t) ∈ Tγ(t)Dnc , ∀t ∈ [0, 1]) such that X(0) = v. Let’s define:

X : t ∈ [0, 1] 7→ logcγ(t)(γ(t)⊕c expc0(v)) ∈ Tγ(t)Dnc . (37)

Clearly, X is a vector field along γ such that X(0) = v. Now define

P c0→x : v ∈ T0Dnc 7→ logcx(x⊕c expc0(v)) ∈ TxDnc . (38)

From Eq. (10), it is easily seen that P c0→x(v) =
λc0
λcx
v, hence P c0→x is a linear isometry from T0Dnc

to TxDnc . Since P c0→x(v) = X(1), it is enough to prove that X is parallel in order to guarantee that
P c0→x is the parallel transport from T0Dnc to TxDnc .

Since X is a vector field along γ, its covariant derivative can be expressed with the Levi-Civita
connection∇c associated to gc:

DX

∂t
= ∇cγ̇(t)X. (39)

Let’s compute the Levi-Civita connection from its Christoffel symbols. In a local coordinate system,
they can be written as

Γijk =
1

2
(gc)il(∂jg

c
lk + ∂kg

c
lj − ∂lgcjk), (40)

where superscripts denote the inverse metric tensor and using Einstein’s notations. As gcij = (λc)2δij ,
at γ(t) ∈ Dnc this yields:

Γijk = cλcγ(t)(δikγ(t)j + δijγ(t)k − δjkγ(t)i). (41)

On the other hand, since X(t) = (λc0/λ
c
γ(t))v, we have

∇cγ̇(t)X = γ̇(t)i∇ciX = γ̇(t)i∇ci

(
λc0
λcγ(t)

v

)
= vj γ̇(t)i∇ci

(
λc0
λcγ(t)

ej

)
. (42)

Since γ(t) = (1/
√
c) tanh(t tanh−1(

√
c‖x‖)) x

‖x‖ , it is easily seen that γ̇(t) is colinear to γ(t).
Hence there exists Kx

t ∈ R such that γ̇(t) = Kx
t γ(t). Moreover, we have the following Leibniz rule:

∇ci

(
λc0
λcγ(t)

ej

)
=

λc0
λcγ(t)

∇ciej +
∂

∂γ(t)i

(
λc0
λcγ(t)

)
ej . (43)

Combining these yields

DX

∂t
= Kx

t v
jγ(t)i

(
λc0
λcγ(t)

∇ciej +
∂

∂γ(t)i

(
λc0
λcγ(t)

)
ej

)
. (44)

Replacing with the Christoffel symbols of∇c at γ(t) gives

λc0
λcγ(t)

∇ciej =
λc0
λcγ(t)

Γkijek = 2c[δkj γ(t)i + δki γ(t)j − δijγ(t)k]ek. (45)

Moreover,
∂

∂γ(t)i

(
λc0
λcγ(t)

)
ej =

∂

∂γ(t)i

(
−c‖γ(t)‖2

)
ej = −2cγ(t)iej . (46)

10i.e. that DX
∂t

= 0 for t ∈ [0, 1], where D
∂t

denotes the covariant derivative.

13

Putting together everything, we obtain

DX

∂t
= Kx

t v
jγ(t)i

(
2c[δkj γ(t)i + δki γ(t)j − δijγ(t)k]ek − 2cγ(t)iej

)
(47)

= 2cKx
t v

jγ(t)i
(
γ(t)jei − δijγ(t)kek

)
(48)

= 2cKx
t v

j
(
γ(t)jγ(t)iei − γ(t)iδijγ(t)kek

)
(49)

= 2cKx
t v

j
(
γ(t)jγ(t)iei − γ(t)jγ(t)kek

)
(50)

= 0, (51)

which concludes the proof.

D Proof of Eq. (20)

Proof. Two steps proof:

i) expcp({a}⊥) ⊆ {x ∈ Dnc : 〈−p⊕c x, a〉 = 0}:

Let z ∈ {a}⊥. From Eq. (10), we have that:

expcp(z) = −p⊕c βz, for some β ∈ R. (52)

This, together with the left-cancellation law in gyrospaces (see section 2.2), implies that

〈−p⊕c expcp(z), a〉 = 〈βz, a〉 = 0 (53)

which is what we wanted.

ii) {x ∈ Dnc : 〈−p⊕c x, a〉 = 0} ⊆ expcp({a}⊥):

Let x ∈ Dnc s.t. 〈−p⊕c x, a〉 = 0. Then, using Eq. (10), we derive that:

logcp(x) = β(−p⊕c x), for some β ∈ R, (54)

which is orthogonal to a, by assumption. This implies logcp(x) ∈ {a}⊥, hence x ∈ expcp({a}⊥).

E Proof of Theorem 5

Theorem 5.

dc(x, H̃
c
a,p) := inf

w∈H̃ca,p
dc(x,w) =

1√
c

sinh−1
(

2
√
c|〈−p⊕c x, a〉|

(1− c‖ − p⊕c x‖2)‖a‖

)
. (55)

Proof. We first need to prove the following lemma, trivial in the Euclidean space, but not in the
Poincaré ball:

Lemma 7. (Orthogonal projection on a geodesic) Any point in the Poincaré ball has a unique
orthogonal projection on any given geodesic that does not pass through the point. Formally, for all
y ∈ Dnc and for all geodesics γx→z(·) s.t. y /∈ Im γx→z , there exists an unique w ∈ Im γx→z s.t.
∠(γw→y, γx→z) = π/2.

Proof. We first note that any geodesic in Dnc has the form γ(t) = u⊕c v ⊗c t as given by Eq. 9, and
has two "points at infinity" lying on the ball border (v 6= 0):

γ(±∞) = u⊕c
±v√
c‖v‖

∈ ∂Dnc . (56)

Using the notations in the lemma statement, the closed-form of γx→z is given by Eq. (8):

γx→z(t) = x⊕c (−x⊕c z)⊗c t

14

We denote by x′, z′ ∈ ∂Dnc its points at infinity as described by Eq. (56). Then, the hyperbolic angle
∠ywx′ is well defined from Eq. (34):

cos(∠(γw→y, γx→z)) = cos(∠ywz′) =
〈−w ⊕c y,−w ⊕c z′〉

‖ − w ⊕c y‖ · ‖ − w ⊕c z′‖
. (57)

We now perform 2 steps for this proof.

i) Existence of w:

The angle function from Eq. (57) is continuous w.r.t t when w = γx→z(t). So we first prove existence
of an angle of π/2 by continuously moving w from x′ to z′ when t goes from −∞ to ∞, and
observing that cos(∠ywz′) goes from −1 to 1 as follows:

cos(∠yx′z′) = 1 & lim
w→z′

cos(∠ywz′) = −1. (58)

The left part of Eq. (58) follows from Eq. (57) and from the fact (easy to show from the definition
of ⊕c) that a ⊕c b = a, when ‖a‖ = 1/

√
c (which is the case of x′). The right part of Eq. (58)

follows from the fact that ∠ywz′ = π − ∠ywx′ (from the conformal property, or from Eq. (34)) and
cos(∠yz′x′) = 1 (proved as above).

Hence cos(∠ywz′) has to pass through 0 when going from −1 to 1, which achieves the proof of
existence.

ii) Uniqueness of w:

Assume by contradiction that there are two w and w′ on γx→z that form angles ∠ywx′ and ∠yw′x′
of π/2. Since w,w′, x′ are on the same geodesic, we have

π/2 = ∠yw′x′ = ∠yw′w = ∠ywx′ = ∠yw′w (59)

So ∆yww′ has two right angles, but in the Poincaré ball this is impossible.

Now, we need two more lemmas:
Lemma 8. (Minimizing distance from point to geodesic) The orthogonal projection of a point to
a geodesic (not passing through the point) is minimizing the distance between the point and the
geodesic.

Proof. The proof is similar with the Euclidean case and it’s based on hyperbolic sine law and the fact
that in any right hyperbolic triangle the hypotenuse is strictly longer than any of the other sides.

Lemma 9. (Geodesics through p) Let H̃c
a,p be a Poincaré hyperplane. Then, for any w ∈ H̃c

a,p \ {p},
all points on the geodesic γp→w are included in H̃c

a,p.

Proof. γp→w(t) = p⊕c (−p⊕c w)⊗c t. Then, it is easy to check the condition in Eq. (20):

〈−p⊕c γp→w(t), a〉 = 〈(−p⊕c w)⊗c t, a〉 ∝ 〈−p⊕c w, a〉 = 0. (60)

We now turn back to our proof. Let x ∈ Dnc be an arbitrary point and H̃c
a,p a Poincaré hyperplane.

We prove that there is at least one point w∗ ∈ H̃c
a,p that achieves the infimum distance

dc(x,w
∗) = inf

w∈H̃ca,p
dc(x,w), (61)

and, moreover, that this distance is the same as the one in the theorem’s statement.

We first note that for any point w ∈ H̃c
a,p, if ∠xwp 6= π/2, then w 6= w∗. Indeed, using Lemma 8

and Lemma 9, it is obvious that the projection of x to γp→w will give a strictly lower distance.

Thus, we only consider w ∈ H̃c
a,p such that ∠xwp = π/2. Applying hyperbolic sine law in the right

triangle ∆xwp, one gets:

dc(x,w) = (1/
√
c) sinh−1

(
sinh(

√
c dc(x, p)) · sin(∠xpw)

)
. (62)

15

One of the above quantities does not depend on w:

sinh(
√
c dc(x, p)) = sinh(2 tanh−1(

√
c‖ − p⊕c x‖)) =

2
√
c‖ − p⊕c x‖

1− c‖ − p⊕c x‖2
. (63)

The other quantity is sin(∠xpw) which is minimized when the angle ∠xpw is minimized (be-
cause ∠xpw < π/2 for the hyperbolic right triangle ∆xwp), or, alternatively, when cos(∠xpw) is
maximized. But, we already have from Eq. (34) that:

cos(∠xpw) =
〈−p⊕c x,−p⊕c w〉

‖ − p⊕c x‖ · ‖ − p⊕c w‖
. (64)

To maximize the above, the constraint on the right angle at w can be dropped because cos(∠xpw)
depends only on the geodesic γp→w and not on w itself, and because there is always an orthogonal
projection from any point x to any geodesic as stated by Lemma 7. Thus, it remains to find the
maximum of Eq. (64) when w ∈ H̃c

a,p. Using the definition of H̃c
a,p from Eq. (20), one can easily

prove that

{logcp(w) : w ∈ H̃c
a,p} = {a}⊥. (65)

Using that fact that logcp(w)/‖ logcp(w)‖ = −p⊕c w/‖ − p⊕c w‖, we just have to find

max
z∈{a}⊥

(
〈−p⊕c x, z〉
‖ − p⊕c x‖ · ‖z‖

)
, (66)

and we are left with a well known Euclidean problem which is equivalent to finding the minimum
angle between the vector −p ⊕c x (viewed as Euclidean) and the hyperplane {a}⊥. This angle
is given by the Euclidean orthogonal projection whose sin value is the distance from the vector’s
endpoint to the hyperplane divided by the vector’s length:

sin(∠xpw∗) =
|〈−p⊕c x, a

‖a‖ 〉|
‖ − p⊕c x‖

. (67)

It follows that a point w∗ ∈ H̃c
a,p satisfying Eq. (67) exists (but might not be unique). Combining

Eqs. (61),(62),(63) and (67) concludes the proof.

�

F Derivation of the Hyperbolic GRU Update-gate

In [24], the authors recover the update/forget-gate mechanism of a GRU/LSTM by requiring that the
class of neural networks given by the chosen architecture be invariant to time-warpings. The idea is
the following.

Recovering the update-gate from time-warping. A naive RNN is given by the equation

h(t+ 1) = ϕ(Wh(t) + Ux(t) + b) (68)

Let’s drop the bias b to simplify notations. If h is seen as a differentiable function of time, then a
first-order Taylor development gives h(t+ δt) ≈ h(t) + δtdhdt (t) for small δt. Combining this for
δt = 1 with the naive RNN equation, one gets

dh

dt
(t) = ϕ(Wh(t) + Ux(t))− h(t). (69)

As this is written for any t, one can replace it by t← α(t) where α is a (smooth) increasing function
of t called the time-warping. Denoting by h̃(t) := h(α(t)) and x̃(t) := x(α(t)), using the chain rule
dh̃
dt (t) = dα

dt (t)dhdt (α(t)), one gets

dh̃

dt
(t) =

dα

dt
(t)ϕ(Wh̃(t) + Ux̃(t))− dα

dt
(t)h̃(t). (70)

16

Removing the tildas to simplify notations, discretizing back with dh
dt (t) ≈ h(t+ 1)− h(t) yields

h(t+ 1) =
dα

dt
(t)ϕ(Wh(t) + Ux(t)) +

(
1− dα

dt
(t)

)
h(t). (71)

Requiring that our class of neural networks be invariant to time-warpings means that this class should
contain RNNs defined by Eq. (71), i.e. that dαdt (t) can be learned. As this is a positive quantity, we
can parametrize it as z(t) = σ(W zh(t) + Uzx(t)), recovering the forget-gate equation:

h(t+ 1) = z(t)ϕ(Wh(t) + Ux(t)) + (1− z(t))h(t). (72)

Adapting this idea to hyperbolic RNNs. The gyroderivative [4] of a map h : R→ Dnc is defined
as

dh

dt
(t) = lim

δt→0

1

δt
⊗c (−h(t)⊕c h(t+ δt)). (73)

Using Möbius scalar associativity and the left-cancellation law leads us to

h(t+ δt) ≈ h(t)⊕c δt⊗c
dh

dt
(t), (74)

for small δt. Combining this with the equation of a simple hyperbolic RNN of Eq. (27) with δt = 1,
one gets

dh

dt
(t) = −h(t)⊕c ϕ⊗c(W ⊗c h(t)⊕c U ⊗c x(t)). (75)

For the next step, we need the following lemma:
Lemma 10 (Gyro-chain-rule). For α : R→ R differentiable and h : R→ Dnc with a well-defined
gyro-derivative, if h̃ := h ◦ α, then we have

dh̃

dt
(t) =

dα

dt
(t)⊗c

dh

dt
(α(t)), (76)

where dα
dt (t) denotes the usual derivative.

Proof.

dh̃

dt
(t) = lim

δt→0

1

δt
⊗c [−h̃(t)⊕c h̃(t+ δt)] (77)

= lim
δt→0

1

δt
⊗c [−h(α(t))⊕c h(α(t) + δt(α′(t) +O(δt)))] (78)

= lim
δt→0

α′(t) +O(δt)

δt(α′(t) +O(δt))
⊗c [−h(α(t))⊕c h(α(t) + δt(α′(t) +O(δt)))] (79)

= lim
δt→0

α′(t)

δt(α′(t) +O(δt))
⊗c [−h(α(t))⊕c h(α(t) + δt(α′(t) +O(δt)))] (80)

= lim
u→0

α′(t)

u
⊗c [−h(α(t))⊕c h(α(t) + u)] (81)

=
dα

dt
(t)⊗c

dh

dt
(α(t)) (Möbius scalar associativity) (82)

where we set u = δt(α′(t) +O(δt)), with u→ 0 when δt→ 0, which concludes.

Using lemma 10 and Eq. (75), with similar notations as in Eq. (70) we have

dh̃

dt
(t) =

dα

dt
(t)⊗c (−h̃(t)⊕c ϕ⊗c(W ⊗c h̃(t)⊕c U ⊗c x̃(t))). (83)

Finally, discretizing back with Eq. (74), using the left-cancellation law and dropping the tildas yields

h(t+ 1) = h(t)⊕c
dα

dt
(t)⊗c (−h(t)⊕c ϕ⊗c(W ⊗c h(t)⊕c U ⊗c x(t))). (84)

Since α is a time-warping, by definition its derivative is positive and one can choose to parametrize
it with an update-gate zt (a scalar) defined with a sigmoid. Generalizing this scalar scaling by the
Möbius version of the pointwise scaling � yields the Möbius matrix scaling diag(zt)⊗c ·, leading to
our proposed Eq. (31) for the hyperbolic GRU.

17

G Experimental details

G.1 RNN

Models architecture. Our neural network layers can be used in a plug-n-play manner exactly like
standard Euclidean layers. They can also be combined with Euclidean layers. However, optimization
w.r.t. hyperbolic parameters is different (see below) and based on Riemannian gradients which
are just rescaled Euclidean gradients when working in the conformal Poincaré model [21]. Thus,
back-propagation can be applied in the standard way.

In our setting, we embed the two sentences using two distinct hyperbolic RNNs or GRUs. The
sentence embeddings are then fed together with their squared distance (hyperbolic or Euclidean,
depending on their geometry) to a FFNN (Euclidean or hyperbolic, see Sec. 3.2) which is further
fed to an MLR (Euclidean or hyperbolic, see Sec. 3.1) that gives probabilities of the two classes
(entailment vs neutral). We use cross-entropy loss on top. Note that hyperbolic and Euclidean layers
can be mixed, e.g. the full network can be hyperbolic and only the last layer be Euclidean, in which
case one has to use log0 and exp0 functions to move between the two manifolds in a correct manner
as explained for Eq. 24.

Optimization. Our models have both Euclidean (e.g. weight matrices in both Euclidean and
hyperbolic FFNNs, RNNs or GRUs) and hyperbolic parameters (e.g. word embeddings or biases for
the hyperbolic layers). We optimize the Euclidean parameters with Adam [16] (learning rate 0.001).
Hyperbolic parameters cannot be updated with an equivalent method that keeps track of gradient
history due to the absence of a Riemannian Adam. Thus, they are optimized using full Riemannian
stochastic gradient descent (RSGD) [5, 11]. We also experiment with projected RSGD [21], but
optimization was sometimes less stable. We use a different constant learning rate for word embeddings
(0.1) and other hyperbolic weights (0.01) because words are updated less frequently.

Numerical errors. Gradients of the basic operations defined above (e.g. ⊕c, exponential map) are
not defined when the hyperbolic argument vectors are on the ball border, i.e.

√
c‖x‖ = 1. Thus, we

always project results of these operations in the ball of radius 1 − ε, where ε = 10−5. Numerical
errors also appear when hyperbolic vectors get closer to 0, thus we perturb them with an ε′ = 10−15

before they are used in any of the above operations. Finally, arguments of the tanh function are
clipped between ±15 to avoid numerical errors, while arguments of tanh−1 are clipped to at most
1− 10−5.

Hyperparameters. For all methods, baselines and datasets, we use c = 1, word and hidden state
embedding dimension of 5 (we focus on the low dimensional setting that was shown to already be
effective [21]), batch size of 64. We ran all methods for a fixed number of 30 epochs. For all models,
we experiment with both identity (no non-linearity) or tanh non-linearity in the RNN/GRU cell, as
well as identity or ReLU after the FFNN layer and before MLR. As expected, for the fully Euclidean
models, tanh and ReLU respectively surpassed the identity variant by a large margin. We only report
the best Euclidean results. Interestingly, for the hyperbolic models, using only identity for both
non-linearities works slightly better and this is likely due to the fact that our hyperbolic layers already
contain non-linearities by their nature.

For the results shown in Tab. 1, we run each model (baseline or ours) exactly 3 times and report the
test result corresponding to the best validation result from these 3 runs. We do this because the highly
non-convex spectrum of hyperbolic neural networks sometimes results in convergence to poor local
minima, suggesting that initialization is very important.

G.2 MLR

We use different embedding dimensions : 2, 3, 5 and 10. For the hyperbolic MLR, we use full
Riemannian SGD with a learning rate of 0.001. For the two Euclidean models we use ADAM
optimizer and the same learning rate. During training, we always sample the same number of negative
and positive nodes in each minibatch of size 16; thus positive nodes are frequently resampled. All
methods are trained for 30 epochs and the final F1 score is reported (no hyperparameters to validate
are used, thus we do not require a validation set). This procedure is repeated for four subtrees of
different sizes.

18

H More Experimental Investigations

The following empirical facts were observed for both hyperbolic RNNs and GRUs.

We observed that, in the hyperbolic setting, accuracy is often much higher when sentence embeddings
can go close to the border (hyperbolic "infinity"), hence exploiting the hyperbolic nature of the space.
Moreover, the faster the two sentence norms go to 1, the more it’s likely that a good local minima
was reached. See figures 3 and 5.

We often observe that test accuracy starts increasing exactly when sentence embedding norms do.
However, in the hyperbolic setting, the sentence embeddings norms remain close to 0 for a few
epochs, which does not happen in the Euclidean case. See figures 3, 5 and 4. This mysterious fact
was also exhibited in a similar way by [21] which suggests that the model first has to adjust the
angular layout in the almost Euclidean vicinity of 0 before increasing norms and fully exploiting
hyperbolic geometry.

(a) Test accuracy

(b) Norm of the first sentence. Averaged over all sentences in the test set.

Figure 3: PREFIX-30% accuracy and first (premise) sentence norm plots for different runs of the same
architecture: hyperbolic GRU followed by hyperbolic FFNN and hyperbolic/Euclidean (half-half)
MLR. The X axis shows millions of training examples processed.

19

(a) Test accuracy

(b) Norm of the first sentence. Averaged over all sentences in the test set.

Figure 4: PREFIX-30% accuracy and first (premise) sentence norm plots for different runs of the
same architecture: Euclidean GRU followed by Euclidean FFNN and Euclidean MLR. The X axis
shows millions of training examples processed.

(a) Test accuracy

(b) Norm of the first sentence. Averaged over all sentences in the test set.

Figure 5: PREFIX-30% accuracy and first (premise) sentence norm plots for different runs of the
same architecture: hyperbolic RNN followed by hyperbolic FFNN and hyperbolic MLR. The X axis
shows millions of training examples processed.

20

