
A Proof of Theorem 3.1

A.1 Preliminaries

In this section, we introduce certain key tools and lemmas that we need for our proof.
Definition A.1. a ∼ D is defined to be a sub-Gaussian isotropic random vector with sub-Gaussian
norm ψ(D) if:

E [a] = 0,E
[
aaT

]
= I, ψ(D) = sup

v∈Sd−1

sup
p≥1

p−
1
2 (Ea∼D|〈a,v〉|p)1/p

Theorem A.2 (Theorem 5.39 of [34]). Let A be an d× n matrix who columns Ai are independent
sub-Gaussian isotropic random vectors in Rd sampled i.i.d. from distribution D. Then, the following
holds w.p. ≥ 1− δ:
√
n− Cψ

√
d−

√
cψ log(1/δ) ≤ smin(A) ≤ smax(A) ≤

√
n+ Cψ

√
d+

√
cψ log(1/δ),

where smin is the smallest singular value of A, smax is the largest singular value of A. Cψ >
0, cψ > 0 are constants dependent only on the sub-Gaussian norm ψ of D (see Definition A.1).

We also need the following lemma about sub-Gaussian rows.

Lemma A.3. Let A be an d × n matrix who columns Ai
i.i.d.∼ D ∈ Rd and let S ∈ [n] be a fixed

index set. Let AS ∈ Rd×|S| contains columns of A in index set S. Then, the following holds w.p.
≥ 1− δ:

‖AS1S‖ ≤
√
|S|

(
√
d+ Cψ

√
log

1

δ

)
,

where Cψ > 0 is a constant dependent only on the sub-Gaussian norm ψ of D.

Lemma A.4. Let E ∈ Rd×d be such that ‖E‖2 ≤ 1/2, then the following holds for all a,b ∈ Rd:

aT (I + E)−1b ≤ aTb + ‖E‖2 · ‖a‖‖b‖.
Lemma A.5. Let M ∈ Rd×2 and let Cr = MMT + Σr. Let smin(MTΣ−1

r M) > 0. Then for all
v ∈ R2, we have:

smin(MTΣ−1
r M)

1 + smin(MTΣ−1
r M)

‖v‖2 ≤ vTMTC−1
r Mv.

Furthermore, if smin(MTΣ−1
r M) ≥ 2, we have:

2

3
· ‖v‖2 ≤ vTMTC−1

r Mv.

Finally, if smin(MTΣ−1
r M) ≥ 2, then the following holds for all u, v:

uTC−1
r Mv = ‖(MTΣ−1

r M)−1‖ · ‖uTΣ−1
r M‖ · ‖v‖

Proof. Using Sherman-Morrison-Woodbury formula:

C−1
r = Σ−1

r − Σ−1
r M(I +MTΣ−1

r M)−1MTΣ−1
r .

That is,

C−1
r Mv = Σ−1

r M(I − (I +MTΣ−1
r M)−1MTΣ−1

r M)v = Σ−1
r M(I +MTΣ−1

r M)−1v.
(A.1.1)

Hence,

vTMC−1
r Mv = vTAv − vTA(I +A)−1Av = vT (I +A−1)−1v,

where A = MTΣ−1
r M . First part of Lemma now follows by using the assumption that smin(A) ≥ 2.

Similarly,

uTC−1
r Mv = uTΣ−1

r Mv − uTΣ−1
r M(I + (MTΣ−1

r M)−1)−1v

≤ ‖(MTΣ−1
r M)−1‖‖uTΣ−1

r M‖‖v‖. (A.1.2)
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A.2 Main Proof

We first introduce some notation for our proof. Let, xPi,τ = 0.5(yPi,τ +1)µ+ +0.5(1−yPi,τ )µ−+gPi,τ
be the i-th positive bag’s τ -th data point. Similarly, let xNi,τ = µ− + gNi,τ be the i-th negative bag’s
τ -th data point. ZP ∈ Rd×nT denotes the data matrix for positive bags, where ((i− 1) · T + τ)-th
column of ZP is given by ZP(i,τ) = xPi,τ . Similarly, GP ∈ Rd×nT and GN ∈ Rd×nT contain the
noise term in each point s.t. ((i−1) ·T +τ)-th column ofGP isGP(i,τ) = gi,τ and ((i−1) ·T +τ)-th
column of GN ∈ Rd×nT is given by: GN(i,τ) = gNi,τ . That is, GPS ∈ Rd×|S| s.t. `-th column of GPS is
given by GP(i`,τ`).

Proof of Theorem 3.1. Note that set Sr is an estimate for the true set of positives i.e., S∗ =
{(i, τ), ȳPi,τ = +1}. Also let βr · n = |Sr\S∗| be the number of "incorrect" elements in Sr.
Now, our proof relies on two key results: a) assuming βr is small, we show that βr+1 ·n = |Sr+1\S∗|
decreases by a constant multiplicative factor, b) our initial estimate w0 ensures that β1 · n = |S1\S∗
is indeed small, hence we can apply the result in (a) inductively to obtain the result. In particular,
using Theorem A.7 and Lemma A.6, we have after T round:

βr+1 ≤ .99−R.

Hence, after R = log n steps, we have Sr+1 = S∗.

Lemma A.6. Consider the setting of Theorem 3.1. Also, let S1 be computed using (3.1.2). Let
∆µ = µ+ − µ− and ‖∆µ‖ ≥ 400Cψγ · log(nT ). Then, the following holds w.p. ≥ 1− 30/n20:

β1 ≤
1

20γ · Cψ ·
√

log(nT )
.

Proof. As w0 is the least squares solution to first equation of (3.1.2), we have:

w0 = C−1
0 (ZP1− ZN1),

where,

C0 = nk · µ+(µ+)T + n(2T − k) · µ−(µ−)T +GP (GP )T +GN (GN )T

= nk · µ+(µ+)T + n(2T − k) · µ−(µ−)T + Σ0, (A.2.1)

where Σ0 = GP (GP )T +GN (GN )T . Using Theorem A.2, we have (w.p. ≥ 1− 1/n20):

Σ0 � 2nT (I + E), where, ‖E‖2 ≤ Cψ

√
d+ log n

2nT
≤ 1

10
, (A.2.2)

where Cψ is a constant dependent only on ψ(D) and nT ≥ 100C2
ψ(d+ log n).

Also, using (3.1.2), we have:

1T (ZPS1
− ZPS∗)

TC−1
0 (ZP1− ZN1) ≥ 0,

i.e.,1T (ZPS∗\S1
− ZPS1\S∗)

TC−1
0 (ZP1− ZN1) ≤ 0. (A.2.3)

Note that ZPS∗\S1
1 = β1nk · µ+ + GPS∗\S1

1 and ZPS1\S∗1 = β1nk · µ− + GPS1\S∗1. Similarly,
ZP1−ZN1 = nk(µ+−µ−) +GP1−GN1. Combining these observations with (A.2.3), we have:

Q2
1 +Q2 +Q3 +Q4 ≤ 0,

Q2
1 = β1n

2k2 ·∆T
µC
−1
0 ∆µ, Q2 = nk · bT1 C−1

0 ∆µ,

Q3 = β1nk · aT0 C−1
0 ∆µ, Q4 = b1C

−1
0 a0, (A.2.4)

where b1 := (GPS∗\S1
− GPS1\S∗)1 and a0 = (GP − GN )1. Now, using Lemma A.5 and (A.2.2),

we have:

1

nk
· k‖µ+ − µ−‖2

4T + k‖µ+ − µ−‖2
≤ ∆T

µC
−1
0 ∆µ, β1nk ·

k‖µ+ − µ−‖2

4T + k‖µ+ − µ−‖2
≤ Q2

1, (A.2.5)
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where we use the fact that smin([µ+ µ−])2 ≥ .5‖µ+ − µ−‖2.

Now, we consider Q2:

1

nk
Q2 =

bT1 ∆µ

‖∆µ‖2
∆T
µC
−1
0 ∆µ + bT⊥C0∆µ ≤

‖b1‖
‖∆µ‖

∆T
µC
−1
0 ∆µ + bT⊥C

−1
0 ∆µ, (A.2.6)

where b⊥ = (I −∆µ∆T
µ/‖∆µ‖2)b1.

We need to consider two cases now: a) if ‖∆µ‖2 ≤ 10T/k, and b) if ‖∆µ‖2 ≥ 10T/k. Proof for the
second case follows using similar arguments to Theorem A.7. So, here we focus on the case when
‖∆µ‖2 ≤ 10T/k. Let M = [

√
nkµ+

√
2nT − nkµ−]. Then, using Sherman-Morrison-Woodbury

formula, we have:

bT⊥C
−1
0 ∆µ = bT⊥Σ−1

0 ∆µ − bT⊥Σ−1
0 M(I +MTΣ−1

0 M)−1MTΣ−1
0 ∆µ,

|bT⊥C−1
0 ∆µ| ≤

1.2

nT
‖b1‖‖∆µ‖, (A.2.7)

where the inequality follows using ‖b⊥‖ ≤ ‖b1‖, ‖Σ0 − 2nT · I‖ ≤ ‖E‖ ≤ 1
10 , and ‖Σ−1/2

0 M(I +

MTΣ−1
0 M)−1MTΣ

−1/2
0 ‖2 ≤ 1. The above inequality holds with probability ≥ 1− 10/n20. Using

(A.2.6), (A.2.7), we have (w.p. ≥ 1− 20/n20):

|Q2| ≤ nk‖b1‖
(

2

‖∆µ‖
∆T
µC
−1
0 ∆µ +

2

nT
· ‖∆µ‖

)
. (A.2.8)

Using same argument as above, the following holds (w.p. ≥ 1− 21/n20):

|Q3| ≤ β1nk · ‖a0‖ ·
(

2

‖∆µ‖
∆T
µC
−1
0 ∆µ +

2

nT
· ‖∆µ‖

)
. (A.2.9)

Finally, the following holds (w.p. ≥ 1− 21/n20):

|Q4| ≤
‖b1‖
nT

· ‖a0‖. (A.2.10)

Now, using Lemma A.3 and the assumption on GPS∗ , we have (w.p. ≥ 1− 5/n20):

‖b1‖ ≤
√
β1nk(

√
d+ Cψ

√
β1nk log nT ) + γβ1nk, ‖a0‖ ≤

√
nk(
√
d+ Cψ

√
log nT ) + γnk,

(A.2.11)
Combining (A.2.4), (A.2.8), (A.2.9), (A.2.10), (A.2.11), we have (w.p. ≥ 1− 25/n20):(
β1n

2k2 − 2(‖b1‖+ β1‖a0‖)nk
‖∆µ‖

)
·∆T

µC
−1
0 ∆µ −

2nk(‖b1‖+ β1‖a0‖)
nT

‖∆µ‖ −
‖b1‖‖a0‖

nT
≤ 0

(A.2.12)

Using (A.2.9), (A.2.11), and the assumption that ‖∆µ‖ ≥ 20Cψγ · log(nT ) and n ≥ d·T ·C2
ψ

k2 , we
note that coefficient of ∆T

µC
−1
0 ∆µ term above is positive and greater than β1n

2k2/2. Lemma now
follows by combining (A.2.9), (A.2.11) with above equation.

Theorem A.7. Consider the setting of Theorem 3.1. Also, let Sr, Sr+1 be computed using (3.1.2)
in t-th and (t + 1)-th iteration, respectively. Let ∆µ = µ+ − µ−, ‖∆µ‖2 ≥ 400Cψ · (‖µ+‖ +
‖µ−‖) log(nT ). Then, the following holds w.p. ≥ 1− 30/n20:

βr+1 ≤ 0.9βr.

Proof. As wr is the least squares solution to third equation of (3.1.2), we have:

wr = C−1
r (ZPSr1−

k

T
ZN1),

where,

Cr = (1− βr)nk · µ+(µ+)T + (1 + βr)nk · µ−(µ−)T +GPSr (G
P
Sr )

T +
k

T
GN (GN )T

= (1− βr)nk · µ+(µ+)T + (1 + βr)nk · µ−(µ−)T + Σr, (A.2.13)
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where Σr = GPSr (G
P
Sr

)T + k
TG

N (GN )T . Using Theorem A.2, we have (w.p. ≥ 1− 1/n20):

Σr = nk(I + E) +GPSr (G
P
Sr )

T , where, ‖E‖2 ≤ Cψ

√
d+ log n

nT
≤ 1

10
, (A.2.14)

where Cψ is a constant dependent only on ψ(D) and nT ≥ 100C2
ψ(d+ log n).

Also, using (3.1.2), we have:

1T (ZPSr+1
− ZPS∗)

TC−1
r (ZPSr1−

k

T
ZN1) ≥ 0,

i.e.,1T (ZPS∗\Sr+1
− ZPSr+1\S∗)

TC−1
r (ZPSr1−

k

T
ZN1) ≤ 0. (A.2.15)

Note that ZPS∗\Sr1 = βr+1nk · µ+ +GPS∗\Sr and ZPSr\S∗1 = βr+1nk · µ− +GPSr+1\S∗ . Similarly,
ZPSr1−

k
T Z

N1 = (1− βr)nk(µ+ − µ−) + GPSr1−
k
TG

N1. Combining these observations with
(A.2.15), we have:

Q2
1 +Q2 +Q3 +Q4 ≤ 0,

Q2
1 = βr+1(1− βr)n2k2 ·∆T

µC
−1
r ∆µ, Q2 = (1− βr)nk · bTr+1C

−1
r ∆µ,

Q3 = βr+1nk · aTr C−1
r ∆µ, Q4 = br+1C

−1
r ar, (A.2.16)

where br+1 := (GPS∗\Sr+1
−GPSr+1\S∗)1 and ar = (GPSr −

k
TG

N )1. Now, using Lemma A.5 and
(A.2.14), we have:

1

nk
· 2‖µ+ − µ−‖2

2 + (1− βr)‖µ+ − µ−‖2
≤ ∆T

µC
−1
r ∆µ, βr+1nk ·

2‖µ+ − µ−‖2

2 + (1− βr)‖µ+ − µ−‖2
≤ Q2

1,

(A.2.17)
where we use the fact that smin([µ+ µ−])2 ≥ .5‖µ+ − µ−‖2.

Now, we consider Q2:

1

(1− βr)nk
Q2 =

bTr+1∆µ

‖∆µ‖2
∆T
µC
−1
r ∆µ + bT⊥Cr∆µ ≤

‖br+1‖
‖∆µ‖

∆T
µC
−1
r ∆µ + bT⊥C

−1
r ∆µ,

(A.2.18)

where b⊥ = (I −∆µ∆T
µ/‖∆µ‖2)br+1.

We consider the second term above. Let M =
√

(1− βr)nk[µ+ µ−]. Then, using Lemma A.5 we
have (w.p. ≥ 1− 20/n20):

|bT⊥C−1
r ∆µ| ≤ ‖br+1‖ ·

4√
1− βr‖∆µ‖2

· ‖µ
+‖+ ‖µ−‖
nk

, (A.2.19)

where the inequality follows using ‖b⊥‖ ≤ ‖br+1‖, ‖(MTΣ−1
r M)−1‖ ≤ 2

(1−βr)‖∆µ‖2 , and ‖M‖ ≤
√
nk(‖µ+‖+ ‖µ−‖). Using (A.2.18), (A.2.19), we have (w.p. ≥ 1− 20/n20):

|Q2| ≤ (1− βr)nk‖br+1‖
(

1

‖∆µ‖
∆T
µC
−1
r ∆µ +

4√
1− βr‖∆µ‖2

· ‖µ
+‖+ ‖µ−‖
nk

)
. (A.2.20)

Using same argument as above, the following holds (w.p. ≥ 1− 21/n20):

|Q3| ≤ βr+1nk · ‖ar‖ ·
(

1

‖∆µ‖
∆T
µC
−1
r ∆µ +

4√
1− βr‖∆µ‖2

· ‖µ
+‖+ ‖µ−‖
nk

)
. (A.2.21)

Finally, the following holds (w.p. ≥ 1− 21/n20):

|Q4| ≤
2‖br+1‖‖ar‖

nk
. (A.2.22)

Now, using Lemma A.3 and the assumption about GPS∗ , we have (w.p. ≥ 1− 5/n20):

‖br+1‖ ≤
√
βr+1nk(

√
d+ Cψ

√
βr+1nk log nT ) + βr+1γnk,

‖ar‖ ≤
√
βrnk(

√
d+ Cψ

√
βrnk log nT ) + βrγnk +

√
4nk(d+ C2

ψ log n). (A.2.23)
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Combining (A.2.16), (A.2.20), (A.2.21), (A.2.22), (A.2.23), we have (w.p. ≥ 1− 25/n20):(
βr+1(1− βr)n2k2 − 2(‖br+1‖+ βr+1‖ar‖)nk

‖∆µ‖

)
·∆T

µC
−1
r ∆µ

− 4(‖br+1‖+ βr+1‖ar‖)√
1− βr‖∆µ‖2

(‖µ+‖+ ‖µ−‖)− 2‖br+1‖‖ar‖
nk

≤ 0 (A.2.24)

Using (A.2.21), (A.2.23), and the assumption that ‖∆µ‖ ≥ 20Cψ · γ · log(nT ), βr ≤
1/(20γCψ log(nT )), and n ≥ dmC2

ψ

k2 , we note that coefficient of ∆T
µC
−1
r ∆µ term above is pos-

itive and greater than βr+1n
2k2/2. Lemma now follows by combining (A.2.21), (A.2.23) with

assumptions on ‖∆µ‖, βr and the above equation.
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B Details of the data sets

Datasets Source

#S
te

ps

Fe
at

ur
e

di
m

en
si

on
#

In
st

an
ce

s
pe

rb
ag

#
Po

si
tiv

e
in

st
an

ce
s

pe
rb

ag
(k

)

Positive
Examples

Negative
Examples

Train Val. Test Train Val. Test

HAR-6 URL1 128 9 6 2 6220 1132 2947 0 0 0
Google-13 URL2 99 32 4 17 20883 2827 2817 30205 3971 4018

STCI-2 Proprietary 162 32 10 28 32496 3921 3916 10292 1302 1308
GesturePod-6 URL3 400 6 3 11 10154 1496 198 3278 1188 2354

DSA-19
(SPORTS) URL4 129 45 4 19 4560 2280 2280 0 0 0

Table 4: Details of the time series data sets: numbers of time steps in each data point; feature
dimension of each data point; and the number of train, test and validation data points for positive and
negative classes. The fraction of noisy labels in the positive set is just 1− k/(#Instances per bag).
From the Google-13 dataset, for this study, we use 12 commands as 12 separate positive classes and
the rest as grouped as negative examples. The positive commands are go, no, on, up, bed, cat, dog,
off, one, six, two and yes. The train-test-validate split for DSA-19 is 4− 2− 2 in terms of the number
of users. Complete URLs are listed below. Standard splits are used for other datasets.

URL1 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

URL2 http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

URL3 https://www.microsoft.com/en-us/research/publication/

gesturepod-programmable-gesture-recognition-augmenting-assistive-devices/

URL4 https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

C More experiments

(a) GesturePod-6

Figure 5: Variation in accuracy of EMI-RNN for various values of instance width (ω). We infer that
ω = 200 is the best instance width for this data set. For datasets where the estimate of signature
length (k) is unavailable the above graph can be used to pick a good k.
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(a)

(b)

(c)

Figure 6: Effectiveness of the MI-RNN method in detecting whether there is a zero in a strip of five
MNIST digits. We generate and label the training data set – a data point is a positive example if it
contains a zero, and negative otherwise. (a) A strip of pixels with five MNIST digits are overlayed, (b)
The classifier’s confidence at Round 0 of MI-RNN (before label refinement) that the current window
contains zero as the strip is rolled past, and (c) The confidence of the output of the MI-RNN method.
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(a)

(b)

Figure 7: In addition to the MIL based approach presented here, an attention mechanism based
approach was also explored. There the attempt was to have the attention layer focus only on the class
signature thereby facilitating the rejection of the noisy sections of the time series data. Due to the
structure in the data (signature being continuous), the hypothesis was that focus of the attention layer
would be on a sequence of continuous time steps. Experiments revealed that attention mechanism
tends to focus not just on the signature but other aspects as well making extracting the signature
difficult. Here a) and b) are representative attention scores obtained on the same task described in
Figure 6. It can be seen that the attention layer also focuses on other parts of the input signal along
with focusing on the signature (the presence of zero in this case).
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