
A Derivation of the VOGN Update

We can derive the VOGN update by using the Variational Online Newton (VON) method derived in
Appendix D of [19]. The VON updates are given as follows:

µt+1 = µt − βt Σt+1 [ĝ(θt) + λµt] , (12)

Σ−1t+1 = (1− βt)Σ−1t + βt

[
Ĥ(θt) + λI

]
, (13)

where t is the iteration number, βt > 0 is the learning rate, θt ∼ N (θ|µt,Σt), and ĝ(θt) and Ĥ(θt)
are the stochastic gradient and Hessian, defined respectively as follows:

ĝ(θt) := −N
M

∑
i∈M

gi(θt), (14)

Ĥ(θt) := −N
M

∑
i∈M
∇2
θθ log p(Di|θt). (15)

gi(θt) := ∇θ log p(Di|θt) is the back-propagated gradient obtained on the i’th data example, and
M is a minibatch of M data examples.

Dealing with Hessians can be difficult because they may not always be positive-definite and may
produce invalid Gaussian approximations. Following [19], we approximate the Hessian by the
Empirical Fisher (EF) matrix:

EF: Ĥ(θ) ≈ Ĝ(θ) :=
N

M

∑
i∈M

gi(θ)gi(θ)>. (16)

This is also known as the Generalized Gauss-Newton approximation. Using this approximation in
(13) gives us the VOGN update of (2).

The VON update is an exact natural-gradient method and uses a single learning rate β. The VOGN
update, on the other hand, is an approximate natural-gradient method because it uses the EF approxi-
mation. Due to this approximation, a single learning rate might not give good results and it can be
sensible to use different learning rates for the µ and Σ updates. In (2), we therefore use a different
learning rate for µ (denoted by α).

B An Alternative Low-Rank Update

We tried an alternative approach to learn the low-rank plus diagonal covariance approximation. We
call this method SLANG-OnlineEig. It forms the low-rank term in the precision approximation from
an online estimate of the L leading eigenvectors of Ĝ(θ). We now describe this procedure in detail.
Experimental results are presented and comparisons are made with SLANG.

B.1 Approximating Natural Gradients by Online Estimation of the Eigendecomposition
(SLANG-OnlineEig)

The following eigenvalue decomposition forms the basis of SLANG-OnlineEig:

Ĝ(θ) ≈ Q1:LΛ1:LQ>1:L = Q1:LΛ
1/2
1:L(Q1:LΛ

1/2
1:L)>. (17)

We emphasize that SLANG-OnlineEig involves the decomposition ofNĜ(θ), rather than the updated
matrix (1− β)UtU

>
t + βNĜ(θ) as in SLANG. This is cheaper by a factor of O(DL2), which is a

marginal difference as L� D in most applications. To mimic the update of Σ−1 in (2), we use the
following “moving-average“ update for U:

Ut+1 = (1− βt)Ut + βtQ1:LΛ
1/2
1:L , (18)

where βt ∈ [0, 1] is a scalar learning rate. Ut+1 is a thus an online estimate of weighted eigenvectors
of the EF.

12

Similar to SLANG, the diagonal D is updated to capture the curvature information lost in the
projection of Ĝ(θ) to Q1:LΛ1:LQ>1:L, i.e., the remaining M − L eigenvectors:

Dt+1 = (1− δt)Dt + δt

[
diag(Ĝ(θt))− diag(Q1:LΛ1:LQ>1:L + λI

]
. (19)

The updated covariance is then given by

Σ̂
−1
t+1 := Ut+1U

>
t+1 + Dt+1. (20)

The final step of SLANG-OnlineEig is identical to equation (11):

SLANG-Online-Eig: µt+1 = µt − αtΣ̂t+1 [ĝ(θt) + λµt] . (21)

SLANG-OnlineEig is amenable to the same algorithmic tools as SLANG, which were discussed in
3.1. Goodfellow’s trick can be used to compute the Jacobian needed for the EF and algorithms 2
and 3 are available for fast covariance-vector products and fast sampling, respectively. The overall
computational complexity is O(DL2 +DLM) and memory cost is O(DL+DM).

B.2 Comparison with SLANG

SLANG-OnlineEig has several promising properties. It has slightly better computational complexity
than SLANG and its update closely resembles the natural gradient update in (2). However, update
(18) involves the product approximation,

Ut+1U
>
t+1 =

(
(1− βt)Ut + βtQ1:LΛ

1/2
1:L

)(
(1− βt)Ut + βtQ1:LΛ

1/2
1:L

)>
≈ (1− βt)UtU

>
t + βtQ1:LΛ

1/2
1:L

(
Q1:LΛ

1/2
1:L

)>
,

where the second line is the true product of interest. The update assumes that the online estimate of the
factors of the eigendecomposition well-approximates the online estimate of the eigendecomposition
itself.

SLANG does not require the product approximation for efficient covariance learning. Instead, UtU
>
t

is updated exactly before the projection into the space of rank-L matrices. This is why SLANG with
L = D reduces to 2 using the EF approximation. SLANG-OnlineEig does not posses this property
because of the product approximation. It also does not necessarily match precision diagonals with
the L = D update, as SLANG does for all L < D.

A final issue is that SLANG-OnlineEig also requires matching stochastic eigenvector estimates to
their corresponding online estimates in Ut+1. This may introduce additional approximation error
when Ĝ(θ) is highly stochastic.

B.3 Experimental Results for SLANG-OnlineEig

Table 4 compares SLANG and SLANG-OnlineEig for logistic regression on the Australian, Breast
Cancer, USPS 3vs5, and a1a datasets from LIBSVM. The results presented for SLANG are identical
to those in Table 1. SLANG always matches or beats the best results for SLANG-OnlineEig.
Furthermore, as L is increased, the quality of posterior approximations computed by SLANG
improves while SLANG-OnlineEig approximations sometimes degrade. We speculate that this is due
to the product approximation.

Figure 5 presents results on the convergence of SLANG-OnlineEig for logistic regression and
regression with a Bayesian neural network.

Table 5 shows regression on the UCI datasets using Bayesian neural networks. The setup for this
experiment was similar to the experiment in Section 4.2, except that the learning rates were fixed
to α = 0.01 and β = (0.9, 0.999) for all datasets, both for SLANG-OnlineEig and for the Adam
optimizer used for BBB. Moreover, the search spaces for the Bayesian optimization were fixed (using
a normalized scale for the noise precision) and not adjusted to the individual datasets. Finally, BBB
used 40 MC samples for the 5 smallest datasets and 20 MC samples for the 3 largest datasets in this
experiment.

13

Table 4: Comparison of SLANG and SLANG-OnlineEig for logistic regression. SLANG obtains
as good or better loss under every metric for each dataset. Additionally, the quality of posterior
approximations computed by SLANG improves while SLANG-OnlineEig approximations sometimes
degrade as L is increased. The best result for each method is in bold.

SLANG-OnlineEig SLANG

Metrics L = 1 L = 2 L = 5 L = 1 L = 2 L = 5

Australian
ELBO 0.580 0.578 0.652 0.574 0.574 0.569
NLL 0.344 0.343 0.347 0.342 0.342 0.339
KL (×104) 0.057 0.032 0.012 0.033 0.031 0.008

Breast
Cancer

ELBO 0.114 0.116 0.123 0.112 0.111 0.111
NLL 0.092 0.093 0.093 0.092 0.092 0.092
KL (×100) 1.544 2.128 4.402 0.911 0.756 0.842

a1a
ELBO 0.380 0.380 0.383 0.377 0.376 0.374
NLL 0.339 0.339 0.339 0.339 0.339 0.339
KL (×102) 0.351 0.293 0.253 0.305 0.249 0.173

USPS 3vs5
ELBO 0.210 0.208 0.210 0.210 0.206 0.198
NLL 0.133 0.132 0.133 0.132 0.132 0.132
KL (×101) 1.497 1.353 1.432 1.492 1.246 0.755

 --- Mean-Field

0 Epochs 1000

101

102

S
ym

m
. K

L
 D

iv
.

(a)
L=1 L=2 L=5 L=10

5

10

15

S
ym

m
. K

L
 D

iv
.

(b)

0 2000 4000
Epoch

100

101

N
eg

.
av

e.
lo

g-
lik

.

(c)

Figure 5: (Left) This figure shows the convergence behavior of SLANG-OnlineEig on logistic
regression for USPS. We plot the KL divergence between Full-Gaussian and the approximate posterior.
The higher rank approximations give better results and all of them beat mean-field. (Middle) This
figure summarizes the results of 5 runs, showing that as we increase L the approximation gets better.
(Right) We show convergence of a Bayesian neural network on the Energy dataset. We see that better
structured approximation leads to faster convergence.

C Additional Algorithmic Details for SLANG

The following section gives more detail about the individual components of the algorithm required
to leverage the low-rank plus diagonal structure for computational efficiency. In general, we obtain
efficient algorithms by operating only on D × L or L× L matrices. This avoids the O(D2) storage
cost and the O(D3) computational cost of working in the D ×D space.

C.1 Fast Computation of Individual Gradients

Most deep-learning automatic differentiation packages, such as PyTorch [27] and TensorFlow [1],
are optimized to return the overall gradient of a minibatch, not individual gradients for each example
passed through the network. It is true that the naïve option of doing a forward and backward pass for
each example has a similar computational complexity as a fully parallel version. However, in practice

14

Table 5: Predictive performance on UCI datasets using Bayesian neural networks where SLANG-
OnlineEig beats BBB and performs comparably to Dropout.

Test RMSE Test log-likelihood

Dataset BBB Dropout OnlineEig BBB Dropout OnlineEig
Boston 4.04 ± 0.28 2.97 ± 0.19 3.17 ± 0.17 -2.75 ± 0.07 -2.46 ± 0.06 -2.61 ± 0.06
Concrete 6.16 ± 0.14 5.23 ± 0.12 5.79 ± 0.13 -3.22 ± 0.02 -3.04 ± 0.02 -3.19 ± 0.02
Energy 0.86 ± 0.04 1.66 ± 0.04 0.59 ± 0.01 -1.20 ± 0.05 -1.99 ± 0.02 -1.05 ± 0.01
Kin8nm 0.09 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 0.97 ± 0.01 0.95 ± 0.01 1.13 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 5.34 ± 0.07 3.80 ± 0.01 5.09 ± 0.08
Power 4.28 ± 0.03 4.02 ± 0.04 4.09 ± 0.04 -2.87 ± 0.01 -2.80 ± 0.01 -2.83 ± 0.01
Wine 0.66 ± 0.01 0.62 ± 0.01 0.64 ± 0.01 -0.99 ± 0.01 -0.93 ± 0.01 -0.98 ± 0.01
Yacht 1.07 ± 0.08 1.11 ± 0.09 0.72 ± 0.04 -1.45 ± 0.03 -1.55 ± 0.03 -1.41 ± 0.01

most of the computations involved can be either reused across examples, or sped up drastically by
batching them. Implementations that use matrix-matrix multiplications instead of repeatedly doing
matrix-vector operations are far more efficient on GPUs.

Ian Goodfellow’s note [11] outlines a method for efficiently computing per-example gradients. It
suggests saving the neuron activations and the linear combinations of activations computed during
the minibatch’s forward pass through the neural network. These values are then used in a manual
implementation of the per-example gradients, which avoids the summation defined by the cost
function. While much more efficient than the sequential approach, Goodfellow’s approach requires
more implementation effort; a separate implementation is required to handle each type of layer used.
This is partly why the experiments presented here are limited to standard Multi-Layer Perceptrons.
We hope to improve upon this in future implementations.

C.2 Fast Top-L Eigendecomposition

The goal is to get the top-L eigenvalues and eigenvectors of the matrix (1 − β)UtU
>
t + βĜ(θt)

defined in (6). Since we do not want to compute the D ×D matrix explicitly, we use the low-rank
structure of the update matrix to compute matrix-vector or matrix-matrix products with computations
in O(DL+DM). This can be seen by rewriting the matrix as follows:

(1− β)UtU
>
t + βĜ(θt) = (1− β)

L∑
l=1

u
(l)
t u

(l)
t
> + β

N

M

∑
i∈M

gi(θt)gi(θt)
>. (22)

These products can be used to compute eigendecomposition efficiently by using a randomized
algorithm.

The main idea behind the randomized eigendecomposition is to project a matrix A onto a randomly
selected subspace by sampling K vectors εk ∈ RD, each entry being selected uniformly at random,
and computing AK = A[ε1, ..., εK], where K is larger than L. A traditional eigendecomposition
can then be performed on the D ×K matrix AK to recover the top L eigenvectors, with K acting as
a precision-computation tradeoff parameter. More details on randomized eigenvalue methods can be
found in [13].

Our implementation of this procedure follows Facebook’s Fast Randomized SVD3closely; starting
with a random matrix, multiplies it by A and applies a QR decomposition on the result. This
process is repeated on the resulting matrix for a few iterations to improve stability, similarly to the
Lanczos iterations. As all operations are done on the smaller D ×K matrix, using K = L+ 2 as
recommended in 3), the computational cost of the QR decomposition and eigendecomposition are in
O(DL2), leading to an O(DL2 +DM) algorithm overall.

3 https://github.com/facebook/fbpca, https://research.fb.com/fast-randomized-svd/

15

https://github.com/facebook/fbpca
https://research.fb.com/fast-randomized-svd/

C.3 Fast multiplication by inverse of low-rank + diagonal

To implement the natural gradient update (11), we need to be able to multiply an arbitrary vector by
Σ̂, given Σ̂

−1
= UU> + D. Woodbury’s identity can be used to do so without forming the D ×D

matrix and doing the costly O(D3) inversion. The identity gives

(D + UU>)−1 = D−1 −D−1U(IL + U>D−1U)−1U>D−1. (23)
The only inversions remaining involve diagonal or L×L matrices. Correct ordering of the operations
allows the O(D2) storage cost to be avoided when computing the product

(
UU> + D

)−1
x and

ensures that we only need to store D × L,L× L or diagonal matrices,(
D + UU>

)−1
x =

(
D−1x

)
−D−1

(
U

((
IL + U>D−1U

)−1 (
U>

(
D−1x

))))
, (24)

yielding a O(DL2) algorithm.

C.4 Fast sampling

To generate a sample from N (µ, Σ̂), it is sufficient to generate a sample ε ∼ N (0, ID) and compute
µ+Aε, where AA> = Σ̂. Σ̂ can be factorized efficiently by exploiting its "low-rank plus diagonal"
structure:

Σ̂ =
(
UU> + D

)−1
, (25)

=

D1/2

D−1/2UU>D−1/2︸ ︷︷ ︸
VV>

+I

D1/2

−1 , (26)

= D−1/2
(
VV> + I

)−1
D−1/2. (27)

Letting W be a symmetric factor for VV> + I, we then have that D−1/2W−1 is a symmetric factor
for Σ̂. Such a factorization can be found using the work of [4], which showed that by taking

A = Cholesky(V>V),

B = Cholesky(V>V + IL),

C = A−>(B− IL)A−1,

(28)

W = ID + VCV> is a symmetric factorization for ID + VV>. We can then use Woodbury’s
Identity to avoid taking the inverse in the D ×D space,

D−1/2
(
ID + VCV>

)−1
ε = D−1/2

(
ID −V

(
C−1 + V>V

)−1
V>
)
ε (29)

and careful ordering of operations, as above, leads to a O(DL2) complexity. This subroutine is
implemented in Algorithm 3.

D Diagonal Correction

In this section, we prove that the diagonal of the precision computed by SLANG when L < D is
identical to the diagonal computed when L = D.

Consider the precision Σ̂
−1
t = Dt + UtU

>
t , where the diagonal and low rank components are

updated by (7), (10) and (9). Recall that when L = D,

Σ̂
−1
t = Σ−1t ,

where Σ−1t was the precision matrix updated by (2). Assume both methods use the same initial
diagonal precision matrix and that they are updated by same sequence of EF matrices {Ĝ(θ)}. Then
we will show that at every iteration t,

diag
[
Σ̂
−1
t

]
= diag

[
Σ−1t

]
.

16

Figure 6: This figure compares the convergence behavior on Australian for two models: Bayesian
logistic regression (left) and Bayesian neural networks (BNN) (right). SLANG(1, 2, 3) refers to
L = 1, 5, 10 for logistic regression and L = 8, 16, 32 for BNN. The mean-field method is a natural-
gradient mean-field method for logistic regression (see text) and BBB [7] for the BNN experiment.

Proof:

Σ̂
−1
t and Σ−1t are initialized as the same diagonal matrix, so the claim holds trivially at t = 0.

Assume that the claim holds at some iteration t. The inductive hypothesis implies

diag
[
Σ−1t

]
= diag

[
UtU

>
t

]
+ Dt = diag

[
Σ̂
−1
t

]
.

Applying the update (2) gives the diagonal of Σ−1t+1 to be

diag
[
Σ−1t+1

]
= (1− β) diag

[
Σ−1t

]
+ βdiag

[
Ĝ(θ)

]
+ βλI

= (1− β) diag
[
UtU

>
t

]
+ (1− β) Dt + βdiag

[
Ĝ(θ)

]
+ βλI

The diagonal of the SLANG precision at t+ 1 is

diag
[
Σ̂
−1
t+1

]
= diag

[
Ut+1U

>
t+1

]
+ Dt+1

= diag
[
Ut+1U

>
t+1

]
+ (1− β)Dt + βλI + ∆D

= (1− β) diag
[
UtU

>
t

]
+ (1− β)Dt + βdiag

[
Ĝ(θ)

]
+ βλI,

where the last line is obtained by expanding ∆D and canceling the diag
[
Ut+1U

>
t+1

]
terms. This

completes the proof. In practice, the diagonal of the update might differ because the two methods
might update µ differently. Nevertheless, the above results shows a desirable property of SLANG.

E Details for Experiments on Bayesian Logistic Regression

We present additional results for SLANG on logistic regression and then provide algorithmic details
for all logistic regression experiments.

E.1 Additional Results

Additional convergence results for logistic regression are provided in Figure 6, which shows the
behavior of SLANG on the Australian dataset. These results are from the same experiments as those
presented in Figure 4.

Figure 7 shows qualitative comparisons of posterior means, variances, and covariances for the
Australian, Breast Cancer, and a1a datasets, similar to Figure 1. These results resemble those
for USPS, where the mean-field method (MF Exact) displays "trend-reversal" for the marginal
covariances when compared to the Full-Gaussian Exact method. In comparison, SLANG gives a

17

good approximation of the ground-truth Full-Gaussian covariance approximation for Australian and
Breast Cancer. For the a1a dataset, SLANG with L = 10 fails to learn the covariance structure and
shows mixed results on the marginal variances. We believe that this is because the dimensionality of
a1a is quite large (D = 1, 605). We expect SLANG to improve when L is sufficiently increased.

Tables 6 and 7 are more detailed versions of Table 1. The tables are split into baselines and SLANG
to improve readability. Table 7 also reports values for L = 2, which are not reported in Table 1 due to
space constraints.

18

Full Gaussian SLANG (Rank 1)

SLANG (Rank 5) SLANG (Rank 10)

-2.0

-1.5

-1.0

-0.5

0.0

0

5

10

15

20
Mean

Full Gaussian
MF
SLANG-1
SLANG-5
SLANG-10

0 2 4 6 8 10 12
Dimension

10 1

100

101

Variance

(a) Australian-scale

Full Gaussian SLANG (Rank 1)

SLANG (Rank 5) SLANG (Rank 10)

-0.3

-0.2

-0.2

-0.1

-0.1

0.0

0.0

0.0

0.5

1.0

1.5

2.0
Mean

Full Gaussian
MF
SLANG-1
SLANG-5
SLANG-10

0 1 2 3 4 5 6 7 8 9
Dimension

100
Variance

(b) Breast cancer

Full Gaussian SLANG (Rank 1)

SLANG (Rank 5) SLANG (Rank 10)

-0.1

-0.1

0.0

0.0

0.1

0.2

1.0

0.5

0.0

0.5

1.0

Mean
Full Gaussian
MF
SLANG-1
SLANG-5
SLANG-10

0 20 40 60 80 100 120
Dimension

10 2

10 1

Variance

(c) a1a

Dataset MF SLANG-1 SLANG-5 SLANG-10 Full-Gaussian
Australian 19.94, 0.04 10.02, 1.26 13.92, 2.82 18.49, 6.98 24.08, 56.93
Breast cancer 4.21, 0.12 4.47, 1.17 4.44, 1.72 4.41, 1.75 4.26, 1.54
A1A −2.13, 0.01 −2.04, 0.16 −2.13, 0.25 −2.17, 0.37 −2.11, 1.37
USPS 3 vs. 5 2.28, 0.03 2.17, 0.67 2.06, 0.95 1.98, 1.38 1.80, 2.09

(d) Table of (mean, variance) for the bias term

Figure 7: Comparison of the posterior approximations of SLANG, full-Gaussian and Mean-Field
(MF) methods. The figures on the left compare the structure of the off-diagonal covariance and the
figures on the right compare the means and diagonal variances. While the means are closely matched
for all methods, the MF approximation underestimates the variances on all three datasets. Note that
the diagonal of the covariance is not included in the covariance plot on the left, and the bias term
is only shown in the last table - as the off-diagonal, diagonal and bias covariances are of different
magnitude, a single scale would make comparison difficult.

19

Table 6: Comparison of SLANG to many mean-field and full-Gaussian methods. Results for mean-field and full-Gaussian methods are shown in this table, while
results for SLANG are shown in Table 7 due to space constraints. We see that SLANG with L = 1 shows better performance than mean-field methods. It is also quite
close to the performance of full-Gaussian method, except in a1a. We expect SLANG to do better on a1a if we increase the rank further.

Mean-Field Methods Full-Gaussian

Datasets Metrics EF Hessian Exact EF Hessian Exact

Australian
ELBO 0.6139 ± 0.0059 0.6125 ± 0.0059 0.5933 ± 0.0058 0.5601 ± 0.0059 0.5583 ± 0.0059 0.5589 ± 0.0059
NLL 0.3480 ± 0.0069 0.3472 ± 0.0068 0.3413 ± 0.0072 0.3396 ± 0.0072 0.3386 ± 0.0072 0.3377 ± 0.0069

KL (×104) 2.2398 ± 0.3459 2.0301 ± 0.3146 0.1946 ± 0.0214 0.0001 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Breast
Cancer

ELBO 0.1217 ± 0.0028 0.1208 ± 0.0028 0.1205 ± 0.0028 0.1107 ± 0.0028 0.1086 ± 0.0029 0.1087 ± 0.0029
NLL 0.0950 ± 0.0024 0.0943 ± 0.0023 0.0937 ± 0.0024 0.0920 ± 0.0023 0.0912 ± 0.0023 0.0912 ± 0.0024
KL 8.0188 ± 0.2540 9.0706 ± 0.1750 7.7713 ± 0.1173 0.6373 ± 0.0221 0.0017 ± 0.0003 0.0000 ± 0.0000

a1a
ELBO 0.3838 ± 0.0000 0.3833 ± 0.0000 0.3828 ± 0.0000 0.3686 ± 0.0000 0.3678 ± 0.0000 0.3679 ± 0.0000
NLL 0.3390 ± 0.0000 0.3389 ± 0.0000 0.3385 ± 0.0000 0.3386 ± 0.0000 0.3385 ± 0.0000 0.3386 ± 0.0000

KL (×102) 2.5896 ± 0.0000 2.2082 ± 0.0000 1.2946 ± 0.0000 0.0141 ± 0.0000 0.0001 ± 0.0000 0.0000 ± 0.0000

USPS
(3vs5)

ELBO 0.2679 ± 0.0029 0.2675 ± 0.0029 0.2672 ± 0.0028 0.1886 ± 0.0022 0.1860 ± 0.0022 0.1860 ± 0.0022
NLL 0.1390 ± 0.0020 0.1388 ± 0.0020 0.1383 ± 0.0020 0.1309 ± 0.0020 0.1300 ± 0.0020 0.1301 ± 0.0020

KL (×101) 7.6836 ± 0.1485 7.1878 ± 0.0978 7.0834 ± 0.0893 0.1797 ± 0.0022 0.0012 ± 0.0002 0.0000 ± 0.0000

Table 7: Comparison of SLANG to many mean-field and full-Gaussian methods. The performance of SLANG for different L is shown in this table, while results for
mean-field and full-Gaussian methods are reported in Table 6.

SLANG

Datasets Metrics L = 1 L = 2 L = 5 L = 10

Australian
ELBO 0.5744 ± 0.0055 0.5743 ± 0.0055 0.5690 ± 0.0056 0.5659 ± 0.0058
NLL 0.3415 ± 0.0065 0.3416 ± 0.0065 0.3392 ± 0.0065 0.3382 ± 0.0066

KL (×104) 0.0332 ± 0.0068 0.0313 ± 0.0067 0.0084 ± 0.0020 0.0017 ± 0.0003

Breast
Cancer

ELBO 0.1117 ± 0.0029 0.1111 ± 0.0028 0.1114 ± 0.0028 0.1107 ± 0.0028
NLL 0.0921 ± 0.0023 0.0918 ± 0.0023 0.0919 ± 0.0023 0.0920 ± 0.0023
KL 0.9112 ± 0.0177 0.7560 ± 0.0290 0.8418 ± 0.0240 0.6376 ± 0.0222

a1a
ELBO 0.3766 ± 0.0000 0.3759 ± 0.0000 0.3744 ± 0.0000 0.3732 ± 0.0000
NLL 0.3386 ± 0.0000 0.3385 ± 0.0000 0.3386 ± 0.0000 0.3386 ± 0.0000

KL (×102) 0.3051 ± 0.0000 0.2490 ± 0.0000 0.1731 ± 0.0000 0.1179 ± 0.0000

USPS
(3vs5)

ELBO 0.2096 ± 0.0025 0.2059 ± 0.0024 0.1979 ± 0.0024 0.1929 ± 0.0023
NLL 0.1325 ± 0.0019 0.1325 ± 0.0019 0.1317 ± 0.0019 0.1314 ± 0.0019

KL (×101) 1.4924 ± 0.0199 1.2457 ± 0.0175 0.7547 ± 0.0110 0.4481 ± 0.0058

20

Table 8: A list of datasets for logistic regression. NTrain is the number of training data. λ is the
precision of the prior distribution used in our logistic regression experiments.

Dataset N D NTrain Prior Precision M
USPS3vs5 1,781 256 884 λ = 25 64
a1a 32,561 123 1,605 λ = 2.8072 128
Australian-scale 690 14 345 λ = 10−5 32
Breast-cancer-scale 683 10 341 λ = 1.0 32

Table 9: Learning rates for the logistic regression convergence experiments in Figures.

Mean-Field SLANG Full-Gaussian

Dataset EF Hess. L = 1 L = 2 L = 5 L = 10 EF Hess.
Australian 0.0215 0.0215 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117
Breast Cancer 0.0215 0.0215 0.0398 0.0398 0.0398 0.0398 0.0398 0.0398
USPS 3vs5 0.0063 0.0063 0.0117 0.0117 0.0215 0.0398 0.0398 0.0398

E.2 Algorithmic Details for Logistic Regression Results (Table 1)

Datasets for logistic regression are available at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html. We used the model hyper-parameters found by [17] for all
datasets except for USPS. All details are given in Table 8, which is reproduced from their paper. We
selected a relatively strong prior for USPS to avoid overfitting, but did not search for an optimal
precision.

For all datasets except a1a, we ran each method on 20 different 50%-50% training-test splits of the
datasets. a1a is pre-split into a training and test set and so we only report values for the provided split.
Each method was run for 10,000 epochs. We initially set α0 = β0 = 0.05. We then decayed the
learning rates at every iteration as follows:

αt = βt =
α0

(1 + t0.51)

Using a large number of epochs and slowly decaying the learning rates ensured that the considered
methods converged. The number of MC samples used was 12. For each dataset, we used a batch
size that was roughly one-tenth of the total training set size. These sizes are shown in Table 8. On all
experiments, SLANG used momentum for the mean parameter µ, with the parameter set to γ = 0.9.

Finally, we used the final covariance matrices learned on the first training-test splits of the datasets to
generate Figures 1 and 7.

E.3 Algorithmic Details for Logistic Regression Convergence Experiment (Figure 4)

We used the same hyperparameters as in the previous logistic regression experiments on the LIBSVM
datasets. These are reported in Table 8. We used the following procedure to select the learning rates
separately for each method:

1. The learning rates that we considered were:
α = β ∈ {0.0010, 0.0018, 0.0034, 0.0063, 0.0117, 0.0215, 0.0398, 0.0736, 0.1359, 0.2512}

2. We ran three restarts with different random seeds on the same split of the data for each
potential learning rate. These restarts ran for 5,000 epochs with 12 MC samples and the
batch sizes listed in Table 8. We did not use a decay on the learning rate.

3. We visually inspected the mean and variance of the training loss against epochs. For each
method, we chose the learning rate assignment that produced the fastest convergence with
tolerable variance. Variances were compared across methods to ensure consistency.

The learning rates selected in this manner are reported in Table 9.

To obtain the final convergence results, each method was run with ten different random seeds on the
same training-test split of the datasets. We trained for 2,000 epochs on all datasets. The number of
MC samples used was 12. Once again, the minibatch sizes listed in Table 8 were used. The learning
rates were not decayed.

21

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

8 4 0 4 8
x

200

100

0

100

200

y

BBB

8 4 0 4 8
x

200

100

0

100

200 SLANG (L=1, best model)

8 4 0 4 8
x

200

100

0

100

200 SLANG (L=5, best model)

8000 9000 10000
Iteration

5

6

7

EL
BO

Convergence
BBB
SLANG L=1
SLANG L=5

8 4 0 4 8
x

200

100

0

100

200 SLANG (L=1, last model)

8 4 0 4 8
x

200

100

0

100

200 SLANG (L=5, last model)

Figure 8: Results for a synthetic toy data. Each plot shows the predictive distribution of a method
along with the data examples shown in blue, except for the first plot in the bottom row which shows
the value of the negative ELBO for the last 2,000 iterations. The stars in the convergence plot indicate
the selected model for SLANG-1 and SLANG-5.

F Details for Experiments on Bayesian Neural Networks

F.1 Algorithmic Details for Regression Curves Experiment

In Figure 8, we qualitatively examine the posterior approximations computed by SLANG for neural
network models using a synthetic regression data set. The data was generated from the noisy cubic
function

x ∼ U[−4, 4] and y = x3 + ε, ε ∼ N (0, 9).

We show the result of fitting a one-hidden-layer ReLU network with 10 units to 30 data points
generated in this manner using SLANG and BBB. During optimization, we the used full dataset and
100 MC samples to compute stochastic gradients. We decayed the learning rates for both the mean
and covariance.

All methods properly show increased uncertainty in the function when we move away from the
data. In comparison to BBB, SLANG allows for smoother transitions and better representation of
uncertainty at the junction of the piece-wise linear functions.

We found that the optimization procedure for SLANG did not necessarily converge on the synthetic
regression dataset. Figure 8 shows the value of the ELBO during the last part of the optimization
procedure to illustrate the convergence issue. This may be due to the EF matrix Ĝ(θ) used in the
VOGN update (2). We used the ELBO to select the best model.

F.2 Algorithmic Details for BNN Convergence Experiment

The datasets for this experiment can be found at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html. We used the same 50%-50% training-test splits of the datasets
as were used in the logistic regression convergence experiment. The models considered were feed-
forward neural networks with a single hidden layer of 50 units. The minibatch sizes were chosen
to be the same those given in Table 8. We used isotropic Gaussian priors for all datasets. On all
experiments, SLANG used momentum for the mean µ with the parameter set to γ = 0.9. Precisions
for the prior distributions were chosen by grid search over the following values:

λ ∈ {0.001, 0.01, 0.1, 1, 8, 32, 64, 128, 512}
5-fold cross validation on the each training set was used to estimate the test log-loss; the precisions
that resulted in the smallest cross-validated test log-loss were selected. This procedure was conducted

22

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Table 10: Prior precisions for BNN convergence experiments (Figure 4).

Dataset Australian Breast Cancer USPS 3vs5
Prior Precision λ = 8 λ = 8 λ = 32

separately for SLANG and Bayes by Backprop, but the selected values were found to agree on every
dataset. The prior precisions are listed in Table 10.

We used almost the same procedure as in the logistic regression convergence experiments to select the
learning rates for SLANG. For Bayes by Backprop, we used the Adam optimizer [20], but carefully
chose its learning rate using this procedure as well. The procedure was as follows:

1. The learning rates that we considered were:

α = β ∈ {0.0001, 0.00021544, 0.00046416, 0.001, 0.00215443,

0.00464159, 0.01, 0.02154435, 0.04641589, 0.1}

2. We ran three restarts with different random seeds for each potential learning rate. These
restarts ran for 1,000 epochs with 20 MC samples and the batch sizes listed in 8. Losses
were computed using 20 MC samples. We did not decay the learning rates.

3. We visually inspected the mean and variance of the training loss over training epochs. For
each method, we chose the learning rate assignment that produced the fastest convergence
with tolerable variance. Variances were compared across methods to ensure consistency.

The best learning rate found for SLANG was the same across each dataset and value of L: α = β =
0.02154435. Similarly, Bayes by Backprop performed best on each dataset with: α = 0.01.

To obtain the final convergence results, each method was run with ten different random seeds. We
trained for 500 epochs on all datasets. The number of MC samples used for training and for model
evaluation was 20. Once again, the minibatch sizes listed in Table 8 were used. The learning rates
were not decayed.

F.3 Algorithmic Details for UCI Experiments

Each dataset was split randomly 20 times with 90% of the data in the training set and 10% in the test
set. We used the same splits used in [10].

For both SLANG and BBB, we used an isotropic Gaussian prior

p(θ|λ) = N (θ|0, λ−1I) (30)

and a Gaussian likelihood
p(y|θ,x, τ) = N (y|f(x,θ), τ−1), (31)

where f(x,θ) is a neural network parameterized by θ. Following earlier work, we use 30 iterations
of Bayesian optimization (BO) to tune λ and τ . For each iteration of BO, 5-fold cross-validation was
used on the current training set (for one of the 20 random splits) to evaluate the parameter setting. For
the optimal setting found by BO, one network was trained on the current training set and evaluated
on the current test set. This was repeated for each of the 20 random splits. For each dataset, the final
values reported in the table are the mean and standard error from these 20 runs.

For the 5 smallest datasets, we used a mini-batch size of 10 and 4 Monte-Carlo samples during
training. For the 3 larger datasets, we used a mini-batch size of 100 and 2 Monte-Carlo samples
during training. For all runs we used 120 epochs for the methods to converge.

For BBB, we used the Adam [20] optimizer. The learning rates were set individually for each method
and dataset based on the cross-validation performances from an initial random search over learning
rates, prior precision and noise precisions. The random search was also used to determine the search
spaces for the Bayesian optimization used to tune the prior precision and the noise precision.

F.4 Algorithmic Details for MNIST Experiments

We fit a Bayesian neural network with two hidden layers, each with 400 hidden units and ReLU
activations, to the MNIST dataset. This was done using SLANG with L ∈ {1, 2, 4, 8, 16, 32}. During

23

training, a batch size of 200 was used along with 4 MC samples. The momentum was set to γ = 0.9.
The learning rates α and β were initialized to α0 = 0.1 and decayed according to

αt = βt =
α0

(1 + tω)
,

where ω is the decay rate.

The prior precision λ, along with the learning rate decay rate ω was tuned. Denote σ :=
√

1/λ. For
each value of L, we considered each combination of

(− log σ, ω) ∈ {0, 1, 2} × {0.52, 0.54, 0.56, 0.58, 0.60}.

The 60,000 training points for MNIST were split into a training set of 50,000 and a validation set
of 10,000. After training for 100 epochs, the best performing configuration, according to validation
error, was selected for each value of L. The models selected by the tuning procedure were trained
further on all 60,000 training points for 300 more epochs. Finally, each model made predictions on
the test set. Both during computation of the validation and the test loss, 1,000 MC samples were
used.

24

	Derivation of the VOGN Update
	An Alternative Low-Rank Update
	Approximating Natural Gradients by Online Estimation of the Eigendecomposition (SLANG-OnlineEig)
	Comparison with SLANG
	Experimental Results for SLANG-OnlineEig

	Additional Algorithmic Details for SLANG
	Fast Computation of Individual Gradients
	Fast Top-L Eigendecomposition
	Fast multiplication by inverse of low-rank + diagonal
	Fast sampling

	Diagonal Correction
	Details for Experiments on Bayesian Logistic Regression
	Additional Results
	Algorithmic Details for Logistic Regression Results (Table 1)
	Algorithmic Details for Logistic Regression Convergence Experiment (Figure 4)

	Details for Experiments on Bayesian Neural Networks
	Algorithmic Details for Regression Curves Experiment
	Algorithmic Details for BNN Convergence Experiment
	Algorithmic Details for UCI Experiments
	Algorithmic Details for MNIST Experiments

