
Appendix for “Efficient Projection onto the Perfect Phylogeny
Model”

A Further illustrations

1

Tree, T

T1
4

T2 T3

T4

Figure 4: Four subtrees of T induced by B(t), represented by the red squares. The root of T1, T2 and T4 is
node 1. The root of T3 is node 4. All subtrees must have nodes associated to free variables (free nodes). Any
subtree is uniquely identified by any free node in it. Within each subtree, any fixed node must be the root or a
leaf.

B Proof of Theorem 3.1 in Section 3

We prove Theorem 3.1, by first proving the following very similar theorem.
Theorem B.1. Problem (3) can be solved by solving

min
t
t+ L(t), (15)
L(t) = min

Z∈Rq

1

2
‖(U>)−1Z‖2 subject to Z +N ≤ t1, (16)

where N = U>F̂ . In particular, if t∗ minimizes (15), Z∗ minimizes (16) for t = t∗, and M∗, F ∗
minimize (3), then

M∗ = −U−1(U−1)>Z∗, F ∗ = −(U−1)>Z∗. (17)
Furthermore, t∗, M∗, F ∗ and Z∗ are unique.

Proof of Theorem B.1. Problem (3) depends on the tree T through the matrix of the ancestors, U . To
see how Theorem B.1 implies Theorem 3.1, it is convenient to make this dependency more explicit.
Any tree in T , can be represented through a binary matrix T , where Tij = 1 if and only if node i is
the closest ancestor of node j. Henceforth, let T denote the set of all such binary matrices. We need
the following lemma, which we prove later in this section of the appendix.

Lemma B.2. Consider an evolutionary tree and its matrices T ∈ T and U ∈ U . We have
U = (I − T)−1. (18)

Eq. (18) implies that ((U−1)>Z)i = (Z − T>Z)i = Zi − Zī, and that U−1((U−1)>Z)i =
Zi−Zī−

∑
r∈∂i(Zr −Zr̄), where ∂i denotes the children of i in T , ī represents the closest ancestor

of i in T . We assume by convention that Zī = 0 when i = r is the root of T . Furthermore, the
definition of U implies that Ni = (U>F̂)i =

∑
j∈∆i F̂j , where ∆i denotes the ancestors of j. Thus,

L(t) = min
Z∈Rq

1

2

∑

i∈V
(Zi − Zī)2 subject to (19)

Zi ≤ t−
∑

j∈∆i

F̂j ,∀i ∈ V,

M∗i = −Z∗i + Z∗ī +
∑

r∈∂i
(Z∗r − Z∗r̄) and (20)

F ∗i = −Z∗i + Z∗ī ,∀i ∈ V.

12

Proof of Theorem 3.1. Our proof is based on Moreau’s decomposition [33]. Before we proceed with
the proof, let us introduce a few concepts.

Given a convex, closed and proper function g : Rq 7→ R, we define its proximal operator by the map
G : Rq 7→ Rq such that

G(n) = arg min
x∈Rq

g(x) +
1

2
‖x− n‖2, (21)

where in our case ‖ · ‖ is the Euclidean norm. We define the Fenchel dual of g as

g∗(x) = sup
s∈Rq

{x>s− g(s)}, (22)

and we denote the proximal operator of g∗ by G∗. Note that G∗ can be computed from definition
(21) by replacing g by g∗.

Moreau’s decomposition identity states that

G(n) +G∗(n) = n. (23)

We can now start the proof. Consider the following indicator function

g(M̃) =

{
0, if (U−1M̃) ≥ 0 and 1T(U−1M̃) = 1,

+∞, otherwise,
(24)

where M̃ ∈ Rq , and consider its associated proximal operator G. Solving problem (3), i.e., finding a
minimizer M∗, is equivalent to evaluating U−1G(F̂). Using Moreau’s decomposition, we have

M∗ = U−1G(F̂) = U−1F̂ − U−1G∗(F̂). (25)

We will show that G∗(F̂) = F̂ + (U−1)>Z∗, where Z∗ is a minimizer of (5), which proves (6) and
essentially completes the proof.

To compute G∗, we first need to compute

g∗(Y) = sup
M̃

{Y >M̃ − g(M̃)} (26)

= max
M̃

Y >M̃ (27)

subject to U−1M̃ ≥ 0,1>(U−1M̃) = 1.

Making the change of variable M = U−1M̃ , the maximum in problem (27) can be re-written as

max
M

(U>Y)>M (28)

subject to M ≥ 0,1>M = 1.

It is immediate to see that the maximum in (28) is achieved if we set all components of M equal to
zero except the one corresponding to the largest component of the vector U>Y , which we should set
to one. Therefore, we have

g∗(Y) = max
i

(U>Y)i. (29)

Now we can write

G∗(F̂) = arg min
Y ∈Rq

g∗(Y) +
1

2
‖Y − F̂‖2 (30)

= arg min
Y ∈Rq,t∈R

t+
1

2
‖Y − F̂‖2 (31)

subject to U>Y ≤ t.

13

Making the change of variable Z = U>(Y − F̂), we can write G∗(F̂) as

G∗(F̂) = F̂ + (U−1)>Z∗, where (32)

(Z∗, t∗) = arg min
Z∈Rq,t∈R

t+
1

2
‖(U−1)>Z‖2 (33)

subject to Z + U>F̂ ≤ t.

To see that M∗ and F ∗ are unique, notice that problem (3) is a projection onto a convex set polytope,
which always has a unique minimizer. Moureau’s decomposition implies that G∗(F̂) is unique, hence
the minimizer Y ∗ of (30) is unique. Thus, Z∗ = U>(Y ∗− F̂) and t∗ = g∗(Y ∗) are also unique.

Proof of Lemma B.2. We assume that the tree has q nodes. The matrix T is such that Tv,v′ = 1 if and
only if v is the closet ancestor of v′. Because of this, the vth column of T k has a one in row v′ if and
only if v′ is an ancestor v separated by k generations. Thus, the vth column of I+T+T 2+· · ·+T q−1,
contains a one in all the rows v′ such that v′ is an ancestor of v, or if v = v′. But this is the definition
of the matrix U associated to the tree T . Since no two mutants can be separated by more than q − 1
generations, T k = 0 for all k ≥ q. It follows that

U = I + T + T 2 + · · ·+ T q−1 =

∞∑

i=0

T i = (I − T)−1.

C Proof of useful observations in Section 3.1

Proof of Lemma 3.2. The proof follows from the following generic fact, which we prove first. Let
g(W) = minZ∈Rq f(Z,W). If f is convex in (Z,W), then g is convex.

Indeed, let α ≥ 0 and α′ = 1 − α. We get αg(W1) + α′g(W2) = minZ1,Z2
αf(Z1,W1) +

α′f(Z2,W2) ≥ minZ1,Z2
f(αZ1 + α′Z2, αW1 + α′W2) = g(αW1 + α′W2).

To apply this result to our problem, let f1(Z) be the objective of (19) and let f2(Z, t,N) be a function
(on the extended reals) such that f2 = 0 if (Z, t,N) satisfy the constraints in (19) and +∞ otherwise.
Now notice that L(t) = minZ f1(Z) + f2(Z, t), where f1 + f2 is convex in (Z, t,N), since both f1

and f2 are convex in (Z, t,N). Convexity implies that L is continuous in N and t. It also implies
that L′(t) is non increasing in t.

Proof of Lemma 3.3. Continuity of Z∗(t): The objective function in (19) is convex as a function of
Z and has unique minimum at Zi = 0,∀i. Hence, it is strictly convex. Due to strict convexity, if the
objective takes values in a small interval, then Z must be inside some small ball.

Since we know, by the remark following Lemma 3.2, that L is continuous as a function of t, if t and
t′ are close, then L(t) and L(t′) must be close. Strict convexity then implies that Z∗(t) and Z∗(t′)
must be close. The same argument can be used to prove continuity with respect to N .

Continuity of Z∗(t∗): Recall that Z∗(t∗) = Z∗, the solution of (3). Z∗ is a continuous function of
M∗, which is the solution to (3), and thus is fully determined by U and F̂ . Since, F̂ = (U>)−1N ,
F̂ is a continuous function of N , and it suffices to prove that M∗ is continuous in F̂ . Problem (3)
finds the projection of F̂ onto a convex polytope. Let F ∗ be this projection. Since F ∗ changes
continuously with F̂ , M∗ = U−1F ∗ also changes continuously with F̂ .

Proof of Lemma 3.4. Since Z∗(t) is continuous, if Z∗(t)i 6= t−Ni then Z∗(t′)i 6= t′ −Ni for t′ in
some neighborhood of t.

Proof of Lemma 3.6. First note that, by definition of B(t), we know the value of all variables in B(t).
Hence, the unknowns in problem (19) are the variables in V\B(t), which can be partitioned into
disjoint sets {Vi\B(t)}ki=1.

14

Second notice that for each term in the objective (19) that involves not known variables, there is some
subtree Ti that contains both of its variables. It follows that, given B(t), problem (19) breaks into
k independent problems, the ith problem having as unknowns only the variables in Vi\B(t) and all
terms in the objective where either j or j̄ are in Vi\B(t).

Obviously, if j ∈ Vw∩B(t), then, by definition, Z∗(t)j = c1t+c2, with c1 = 1. To find the behavior
of Z∗(t)j for j ∈ Vw\B(t), we need to solve 7. To solve (7), notice that the first-order optimality
conditions for problem (19) imply that, if j ∈ V\B(t), then

Zj =
1

|∂j|
∑

r∈∂j
Zr, (34)

where ∂j denotes the neighbors of node j. We can further write

Zj =
1

|∂j|
∑

r∈∂j∩B(t)

Zr +
1

|∂j|
∑

r∈∂j\B(t)

,

Zr =
1

|∂j|
∑

r∈∂j∩B(t)

(t−Nr) +
1

|∂j|
∑

r∈∂j\B(t)

Zr. (35)

It follows that Zj = c1t+ c2, for some c1 and c2 that depend on T , N and B. If we solve for Zj by
recursively applying (35), it is immediate to see that c1 ≥ 0.

To see that c1 ≤ 1, we study how Zj , defined by (35), depends on t algebraically. To do so, we treat
t as a variable. The study of this algebraic dependency in the proof should not be confused with t
being fixed in the statement of the theorem.

Define ρ = |∂i ∪ B(t)|/|∂j|, and notice that

max
j
{Zj} ≤ ρt+ (1− ρ) max

j
{Zj}+ C, (36)

in which C is some constant. Recursively applying the above inequality we get

max
j
{Zj} ≤ t+ C ′, (37)

in which C ′ is some constant. This shows that no Zj can grow with t faster than 1 × t and hence
c1 ≤ 1.

Proof of Lemma 3.7. Lemma 3.6 implies that, for any j, Z∗j (t) depends linearly on t. The particular
linear dependency, depends on B(t), which is piecewise constant by Lemma 3.4. Therefore, Z∗j (t)
is a continuous piecewise linear function of t. This in turn implies that L′(t) is a continuous
piecewise linear function of t, since it is the derivative of the continuous piecewise quadratic L(t) =
(1/2)

∑
i∈V(Z∗(t)i − Z∗(t)ī)2. Finally, since the particular linear dependency of Z∗, depends on

B(t), it follows that Z∗(t) and L′(t) change linear segment if and only if B(t) changes.

Proof of Lemma 3.8. Let us assume that there exists t < t′ for which B(t) ⊂ B(t′). We can assume
without loss of generality that t is sufficiently close to t′ such that B(s) is constant for s ∈ [t, t′). Let
j be such that j ∈ B(t′) but j /∈ B(t). This means that Z∗j (s) < s−Nj for all s ∈ [t, t′) and that
Z∗j (t′) = t′ −Nj . Since by Lemma 3.6, Z∗j (s) = c1s+ c2, for some constants c1 and c2, the only
way that Z∗j (s) can intersect s−Nj at s = t′ is for c1 > 1, which is a contradiction.

If B(t) decreases as t increase, and given that the largest that B(t) can be is {1, . . . , q}, it follows that
B(t) can only take q+ 1 different configurations. One configuration per size of B(t), from q to 0.

Proof of Lemma 3.9. Lemma 3.8 implies that B(t) changes at most q + 1 times. Lemma 3.7 then
implies that Z∗(t) and L′(t) have less than q + 1 different linear segments.

D Proofs of the properties of the algorithm in Section 3.2

Proof of Theorem 3.10. Run-time: Recall that Z∗, Z ′∗ ∈ Rq and that L′ ∈ R. Line 1 is done in
O(q) steps by doing a DFS on T . Here, we assume that T is represented as a linked list. Specifically,

15

starting from the root, we keep a variable x where we accumulate the values of F̂j visited from the
root to the current node being explored in T as we move down the tree. As we move up the tree, we
subtract values of the nodes F̂j from x. Then, at each node i visited by the DFS, we can read from x
the value Ni. Line 2 takes O(q) steps to finish. The procedure ComputeRates takes O(q) steps to
finish, which we prove in Theorem 3.19. All of the other lines inside the for-loop are manipulations
that take at most O(q) steps. Lines 13 and 12 take O(q) steps. From (6), the complexity to compute
F ∗ is O(q), and the complexity to compute M∗ is O(

∑
i∈V |∂i|) = O(|E|) = O(q).

Memory: The DFS in line 1 only requires O(q) memory. Throughout the algorithm, we only need
to keep the two most recent values of ti, B(ti), Z∗(ti), Z ′∗(ti), L′(ti) and L′′(ti). This takes O(q)
memory. The procedure ComputeRates takes O(q) memory, which we prove in Theorem 3.19.

Proof of Theorem 3.11. The proof of Theorem 3.11 amounts to checking that, at every step of
Algorithm 1, the quantities computed, e.g., the paths {Z∗(t)} and {L′(t)}, are correct.

Lemmas 3.7 and 3.9 prove that Z∗(t) and L′(t) are piecewise linear and continuous with at most q
changes in linear segment. Hence, the paths {Z∗(t)} and {L′(t)} are fully specified by their value at
{ti}ki=1, and k ≤ q.

Lemma 3.7 proves that these critical values are determined as the instants, at which B(t) changes.
Furthermore, Lemma 3.8 proves that, as t decreases, variables are only added to B(t). Hence, to find
{ti} and {B(ti)}, we only need to find the times and components at which, as t decreases, Z∗(t)r
goes from Z∗(t)r < t − Nr to Z∗(t)r = t − Nr. Also, since B can have at most q variables, the
for-loop in line 3 being bounded to the range 1-q, does not prevent the algorithm from finding any
critical value.

Theorem 3.19 tells us that we can compute Z ′∗(ti) from B(ti) and T . Since we have already proved
that the path {Z∗(t)} is piecewise linear and continuous, we can compute ti+1, and the variables that
become fixed, by solving (10) for t for each r /∈ B(ti), and choosing for ti+1 the largest such t, and
choosing for the new fixed variables, i.e., B(ti+1)− B(ti), the components r for which the solution
of (10) is ti+1.

Since we have already proved that that Z∗(t) and L′(t) are piecewise linear and constant, we can
compute Z∗(ti+1) and L′(ti+1) from Z∗(ti), L′(ti), Z ′∗(ti) and L′′(ti) using (9).

Lemma 3.2 proves that L′(t) decreases with t, and Theorem 3.1 proves that t∗ is unique. Hence,
as t decreases, there is a single t at which L′(t) goes from > −1 to < −1. Since we have already
proved that we correctly, and sequentially, compute L′(ti), L′′(ti), and that L′(t) is piecewise
linear and constant, we can stop computing critical values whenever we can determine that L′(t) =
L′(tk) + (t− tk)L′′(tk) will cross the value −1, where tk is the latest computed critical value. This
is the case when L′(tk) > −1 and L′(tk+1) < −1, or when L′(tk) > −1 and tk is the last possible
critical value, which happens when |B(ti)| = q. From this last critical value, tk, we can then find t∗
and Z∗ by solving −1 = L′(tk) + (t∗ − tk)L′′(tk) and Z∗ = Z∗(tk) + (t∗ − tk)Z ′∗(tk). Finally,
once we have Z∗, we can use (6) in Theorem 3.1 to find M∗ and F ∗.

E Proofs for computing the rates in Section 3.3

Proof of Lemma 3.12. Let t ∈ (ti+1, ti). We have,

L′(t) =
d

dt

1

2

∑

j∈V
(Z∗(t)j − Z∗(t)j̄)2 =

∑

i∈V
(Z∗(t)j − Z∗(t)j̄)(Z∗′(t)j − Z∗′(t)j̄). (38)

Taking another derivative, and recalling that Z ′′∗(t) = 0 for t ∈ (ti+1, ti), we get

L′′(t) =
∑

j∈V
(Z∗′(t)j − Z∗′(t)j̄)2, (39)

and the lemma follows by taking the limit t ↑ ti.

16

Proof of Lemma 3.14. The (T,B, α, β, γ)-problem is unconstrained and convex, hence we can solve
it by taking derivatives of the objective with respect to the free variables, and setting them to zero.
Let us call the objective function F (Z). If j ∈ V\B is a leaf, then dF

dZj
= 0 implies that Z∗j = Z∗

j̄
.

We now prove the second part of the lemma. Let F̃ (Z) be the objective of the modified problem.
Clearly, dF

dZi
= dF̃

dZi
for all i ∈ T̃\j̄. Let C be the children of j̄ in T and C̃ be the children of j̄ in T̃ .

We have C̃ = C\j. Furthermore, dF̃
dZj

= 0 is equivalent to γj(Zj − Zj̄) +
∑
s∈C̃ γs(Zj − Zs) = 0,

and dF
dZj

= 0 is equivalent to γj(Zj − Zj̄) +
∑
s∈C γs(Zj − Zs) = 0. However, we have already

proved that the optimal solution for the original problem has Z∗j = Z∗
j̄

. Hence, this condition can
be replaced in dF

dZj
, which becomes γj(Zj − Zj̄) +

∑
s∈C̃ γs(Zj − Zs) = 0. Therefore, the two

problems have the same optimality conditions, which implies that Z∗i = Z̃∗i , for all i ∈ Ṽ .

Proof of Lemma 3.15. The proof follows directly from the first order optimality conditions, a linear
equation that we solve for Z∗1 .

Proof of Lemma 3.16. The first order optimality conditions for both problems are a system of linear
equations, one equation per free node in each problem. All the equations associated to the ancestral
nodes of j are the same for both problems. The equation associated to variable j in the (T,B, α, β, γ)-
problem is

γj(Zj̄ − Zj) +

r∑

i=1

γi(Zi − Zj) = 0, (40)

which implies that

Zj =
γjZj̄ +

∑r
i=1 γiZi

γj +
∑r
i=1 γi

. (41)

The equation associated to the variable j̄ in the (T,B, α, β, γ)-problem is

F (Z,α, β, γ) + γj(Zj − Zj̄) = 0, (42)

where F (Z) is a linear function of Z determined by the tree structure and parameters associated to
the ancestral edges and nodes of j̄. The equation associated to the variable j̄ in the (T̃, B̃, α̃, β̃, γ̃)-
problem is

F (Z̃, α̃, β̃, γ̃) + γ̃j(α̃jt+ β̃j − Z̃j̄) = 0, (43)

for the same function F as in (42). Note that the components of α̃, β̃ and γ̃ associated to the ancestral
edges and nodes of j̄ are the same as in α, β and γ. Hence, F (Z̃, α̃, β̃, γ̃) = F (Z̃, α, β, γ).

By replacing (41) into (42), one can easily check the following. Equations (42) and (43), as linear
equations on Z and Z̃ respectively, have the same coefficients if (14) holds. Hence, if (14) holds, the
solution to the linear system associated to the optimality conditions in both problem gives the same
optimal value for all variables ancestral to j̄ and including j̄.

Proof of Theorem 3.17. Although T changes during the execution of the algorithm, in the proof we
let T = (r,V, E) be the tree, passed to the algorithm at the zeroth level of the recursion. Recall that
|V| = q and E = q − 1.

Correctness: The correctness of the algorithm follows directly from Lemmas 3.14, 3.15, and 3.16
and the explanation following these lemmas.

Run-time: It is convenient to think of the complexity of the algorithm by assuming that it is running
on a machine with a single instruction pointer that jumps from line to line in Algorithm 2. With this
in mind, for example, the recursive call in line 6 simply makes the instruction pointer jump from line
6 to line 1. The run-time of the algorithm is bounded by the sum of the time spent in each line in
Algorithm 2, throughout its entire execution. Each basic step costs one unit of time. Each node in V
is only chosen as j at most once, throughout the entire execution of the algorithm. Hence, line 1 is
executed at most q times, and thus any line is executed at most q times, at most once for each possible
choice for j.

17

Assuming that we have T.b updated, j in line 1 can be executed in O(1) time, by reading the first
element of the linked list T.b. Lines 2 and 6 also take O(1) time. Here, we are thinking of the cost of
line 6 as simply the cost to make the instruction pointer jump from line 1 to line 6, not the cost to fully
completing the call to ComputeRatesRec on the modified problem. The modification made to the
(T,B, α, β, γ)-problem by lines 5 and 7, is related to the addition, or removal, of at most degree(j)
nodes, where degree(j) is the degree of j in T . Hence, they can be executed in O(degree(j)) steps.
Finally, lines 3 and 8 require solving a star-shaped problem with O(degree(j)) variables, and thus
take O(degreej), which can be observed by inspecting (13).

Therefore, the run-time of the algorithm is bounded by O(
∑
j degree(j)) = O(q).

To see that it is not expensive to keep T updated, notice that, if T changes, then either T.b loses j
(line 5) or has j reinserted (line 7), both of which can be done in O(1) steps. Hence, we can keep T.b
updated with only O(1) effort each time we run line 5 and line 7. Throughout the execution of the
algorithm, the tree T either shrinks by loosing nodes that are children of the same parent (line 5),
or T grows by regaining nodes that are all siblings (line 7). Hence, the linked list T.a can be kept
updated with only O(1) effort each time we run line 5 and line 7. Across the whole execution of the
algorithm, T.a and T.b can be kept updated with O(

∑
j degree(j)) = O(q) effort.

Memory: All the variables with a size that depend on q are passed by reference in each call of
ComputeRatesRec, namely, Y , T , B, α, β and γ. Hence, we only need to allocate memory for them
once, at the zeroth level of the recursion. All these variables take O(q) memory to store.

Proof of Lemma 3.18. From Definition 3.13, we know that the (T,B,1,−N,1)-problem and the
(T,B)-problem are the same. Hence, it is enough to prove that the solutions of (i) any (T,B, α, β, γ)-
problem and of (ii) the (T,B, α, 0, γ)-problem change at the same rate as a function of t.

We have already seen that the (T,B, α, β, γ)-problem can be solved by recursively invoking Lemma
3.16 until we arrive at problems that are small enough to be solved via Lemma 3.15.

We now make two observations. First, while recursing, Lemma 3.16 always transform a
(T̃, B̃, α̃, β̃, γ̃)-problem into a smaller problem (˜̃T, ˜̃B, ˜̃α,

˜̃
β, ˜̃γ)-problem where, by (14), ˜̃γ and ˜̃α

only depend on α̃ and γ̃ but not on β̃.

Second, while recursing, and each time Lemma 3.15 is invoked to compute an explicit value for some
component of the solution via solving some star-shaped (˜̃T, ˜̃B, ˜̃α,

˜̃
β, ˜̃γ)-problem, the rate of change

of this component with t, is a function of ˜̃α and ˜̃γ only. We can see this from (13).

Hence, the rate of change with t of the solution of the (T,B, α, β, γ)-problem does not depend on β.
So we can assume β = 0.

Proof of Theorem 3.19. Correctness: The correctness of Algorithm 3 follows from the correctness
of Algorithm 2.

Run-time and memory: We can prune each Tw in O(|Tw|) steps and O(1) memory using DFS. In
particular, once we reach a leaf of Tw that is free, i.e., not in Bw, and as DFS travels back up the
tree, we can prune from Tw all the nodes that are free. By Theorem 3.17, the number of steps and
memory needed to completely finish line 4 is O(|Tw|). The same is true to complete line 5. Hence,
the number of steps and memory required to execute the for-loop is O(

∑
w |Tw|) = O(|T |) = O(q).

Finally, by Theorem 3.12, L′′ can be computed from Z ′∗ in O(q) steps using O(1) memory.

F Details of the ADMM and the PGD algorithms in Section 5

Here we explain the details of our implementations of the Alternating Direction Method of Multipliers
(ADMM) and the Projected Gradient Descent (PGD) methods, applied to our problem.

18

F.1 ADMM

F.1.1 ADMM for the primal problem

We start by putting our initial optimization problem (3) into the following equivalent form:

min
M∈Rq

{f(M) =
1

2
‖F − UM‖2}+ g(M), (44)

where g(M) is the indicator function imposing the constraints on M :

g(M) :=

{
0, M ≥ 0,M>1 = 1,

+∞, otherwise.
(45)

In this formulation, our target function is a sum of two terms. We now proceed with the standard
ADMM procedure, utilizing the splitting f , g. Our ADMM scheme iterates on the following variables
M,M1,M2, u1, u2,∈ Rq. M1 and M2 are primal variables, M is a consensus variable, and u1 and
u2 are dual variables. It has tunning parameters α, ρ ∈ R.

First, we evaluate the proximal map associated with the first term

M1 ← arg min
S∈Rq

1

2
‖F − US‖2 +

ρ

2
‖S −M + u1‖2, (46)

where S is a dummy variable. This map can be evaluated in closed form,

M1 = (ρI + U>U)−1(ρM − ρu1 + U>F). (47)

Second, we evaluate the proximal map associated with the second term

M2 ← arg min
S∈Rq

g(S) +
ρ

2
‖S −M + u2‖2, (48)

where S is again a dummy variable. This map is precisely the projection onto the simplex, which
has been extensively studied in the literature; there are many fast algorithms that solve this problem
exactly. We implemented the algorithm proposed in [16].

Lastly, we perform the rest of the standard ADMM updates:

M ← 1

2
(M1 + u1 +M2 + u2),

u1 ← u1 + α(M1 −M),

u2 ← u2 + α(M2 −M).

(49)

We repeat the above steps until a satisfactory precision is reached, and read off the final solution from
the variable M .

F.1.2 ADMM for the dual problem

We now apply ADMM to the dual problem (4). We start by incorporating the constraints into the
target function to rewrite (4) as

min
Z,t
{f(t) = t}+ {h(Z) =

1

2
‖(U>)−1Z‖2}+ g(t, Z), (50)

where

g(t, Z) :=

{
0, t1− Z ≥ N,
+∞, otherwise,

(51)

is the indicator function imposing the constraints on t, Z. ADMM now splits the problem into three
parts, each associated to one of the functions f, g and h.

Our ADMM scheme will iterate on the following variables Z,XZ , XgZ , uZ , ugZ ∈ Rq, and
t,Xt, Xgt, ut, ugt ∈ R. The variables XZ , XgZ , Xt, Xgt are primal variables, t, Z are consensus
variables, and uZ , ugZ , ut, ugt are dual variables. It has tunning parameters α, ρ ∈ R.

19

First, we evaluate the proximal map for the first term

XZ ← arg min
S∈Rq

1

2
‖(U>)−1S‖2 +

ρ

2
‖S − Z + uZ‖2, (52)

where S is a dummy variable. This map can be evaluated using an closed form formula:

XZ = (ρI + U−1(U−1)>)−1ρ(Z − uZ). (53)

Next, we evaluate the proximal map for the second term

Xt ← arg min
S∈R

S +
ρ

2
(S − t+ ut)

2, (54)

where S is a dummy variable. Again, this can be solved straightforwardly:

Xt =
ρt− ρut − 1

ρ
. (55)

We then evaluate the proximal map for the third term, which involves the constraints

(XgZ , Xgt)← arg min
S∈Rq,St∈R

g(S, St) +
ρ

2
‖(S, St)

− (Z − ugZ , t− ugt)‖2, (56)
where S, St are dummy variables. This problem is a projection onto the polyhedron defined by the
constraints, t1− Z ≥ N , in Rq+1. We developed an algorithm that solves this problem exactly in
O(q log q) steps. This is discussed in Section F.3.

What is left to be done is the following part of the ADMM:

Z ← 1

2
(XZ + uZ +XgZ + ugZ),

uZ ← uZ + α(XZ − Z),

ugZ ← ugZ + α(XgZ − Z),

t← 1

2
(Xt + ut +Xgt + ugt),

ut ← ut + α(Xt − t),
ugt ← ugt + α(Xgt − t).

(57)

We repeat the above steps until a satisfactory precision is reached, and read off the final solution from
the variables t and Z.

F.2 PGD

F.2.1 PGD for the primal problem

Implementing PGD is rather straightforward. For the initial problem (3), we simply do the following
update:

M ← Proj-onto-Simplex(M + αU>(F − UM)), (58)
where Proj-onto-Simplex() refers to projection onto the simplex, for which we implemented the
algorithm proposed in [16]. α ∈ R is the step size, a tuning parameter. We perform this update
repeatedly until a satisfactory precision is reached.

F.2.2 PGD for the dual problem

For the dual problem (4) , the updates we need are

Z ← Z − αU−1(U−1)>Z,

t← t− α,
(Z, t)← Proj-onto-Polyhedron((Z, t)),

(59)

where Proj-onto-Polyhedron() refers to projection onto the polyhedron defined by t1− Z ≥ N in
Rq+1, while α ∈ R is the step size. This is explicitly explained in F.3. Again, we perform these
updates repeatedly until a satisfactory precision is reached, and tune the parameters to achieve the
best possible performance.

20

F.3 Projection onto the polyhedron t1− Z ≥ N

We would like to solve the following optimization problem:

arg min
Z∈Rq,t∈R

1

2
‖(Z, t)− (A,B)‖2, (60)

subject to t1− Z ≥ N, (61)

which is the problem of projection onto the polyhedron t1− Z ≥ N in Rq+1. The Lagrangian of
this optimization problem is

L =
1

2
‖(Z, t)− (A,B)‖2 + λ>(Z +N − t1), (62)

where λ ∈ Rq is the Lagrange multiplier. We solve problem (60) by solving the dual problem
maxλ≥0 minZ,t L.

We first solve the minimization over variables Z and t. It is straightforward to find the closed form
solutions:

Z∗ = A− λ, t∗ = B + 1>λ. (63)
Using these expressions, we can rewrite the Lagrangian as

L = −1

2
λ>(I + 11>)λ+R>λ, (64)

where R = A+N −B1.

Now our goal becomes solving the following optimization problem:

arg min
1

2
λ>(I + 11>)λ−R>λ, (65)

subject to λ ≥ 0. (66)

The KKT conditions for (65) are

λi + 1>λ−Ri − si = 0, λi ≥ 0, si ≥ 0, λisi = 0, i = 1, .., q, (67)

where si are Lagrange multipliers associated with the constraint λ ≥ 0.

We proceed with sorting the vector R first, and maintain a map f : {1, 2, ..., q} → {1, 2, ..., q} that
maps the sorted indices back to the unsorted indices of R. Let us call the sorted R by R̃. Then, from
the above KKT conditions, it is straightforward to derive the following expression for λi:

λi =

{
R̃i − 1>λ, i ≥ τ,
0, i < τ,

i = 1, 2, ..., q (68)

where
τ = min{i | R̃i − 1>λ ≥ 0}. (69)

Then it follows that

1>λ =

q∑

i=τ

(R̃i − 1>λ) =
1

2 + q − τ

q∑

i=τ

R̃i, (70)

and hence we have that

c(τ) := R̃τ − 1>λ = R̃τ −
1

2 + q − i

q∑

j=τ

R̃j . (71)

According to (69), to find τ , we only need to find the smallest value of i that makes c(i) non negative.
That is, τ = min{i | c(i) ≥ 0}.
Therefore, by sorting the components ofR from small to large, and checking c(i) for each component,
from large i to small i, we can obtain the desired index τ . Combining equations (68) and (70) with
τ , we find a solution that equals λ∗, the solution to problem (65), apart from a permutation of its
components. We then use our index map f to undo the sorting of the components introduced by
sorting R.

Finally, by plugging λ∗ back into equation (63), we obtain the desired solution to our problem (60).
The whole projection procedure can be done in O(q log q), the slowest step being the sorting of R.

21

G More results using our algorithm

In this section, we use our fast projection algorithm to infer phylogenetic trees from frequency of
mutation data.

The idea is simple. We scan all possible trees, and, for each tree T , we project F̂ into a PPM for this
T using our fast projection algorithm. This gives us a projected F and M such that F = UM , the
columns of M are in the probability simplex, and ‖F̂ − F‖ is small. Then, we return the tree whose
projection yields the smallest ‖F̂ − F‖. Since all of these projections can be done in parallel, we
assign the projection for different subsets of the set of all possible trees to different GPU cores. Since
we are performing an exhaustive search over all possible trees, we can only infer small trees. As
such, when dealing with real-size data, similar to several existing tools, we first cluster the rows of F̂ ,
and produce an “effective” F̂ with a small number of rows. We infer a tree on this reduced input.
Each node in our tree is thus associated with multiple mutated positions in the genome, and multiple
mutants, depending on the clustering. We cluster the rows of F̂ using k-means, just like in [6]. We
decide on the numbers of clusters, and hence tree size, based on the same BIC procedure as in [6]. It
is possible that other pre-clustering, and tree-size-selection strategies, yield better results. We call the
resulting tool EXACT.

We note that it is not our goal to show that the PPM is adequate to extract phylogenetic trees from
data. This adequacy, and its limits, are well documented in well-cited biology papers. Indeed, several
papers provide open-source tools based on the PPM, and show their tools’ good performance on data
containing the frequencies of mutation per position in different samples, F̂ in our paper. A few tools
are PhyloSub [5], AncesTree [3], CITUP [6], PhyloWGS [14], Canopy [34], SPRUCE [35], rec-BTP
[36], and LICHeE [7]. These papers also discuss the limitations of the PPM regarding inferring
evolutionary trees, and others propose extensions to the PPM to capture more complex phenomena,
see e.g., [37].

It is important to further distinguish the focus of our paper from the focus of the papers cited in the
paragraph above. In this paper, we start from the fact that the PPM is already being used to infer
trees from F̂ , and with substantiated success. However, all of the existing methods are heuristics,
leaving room for improvement. We identify one subproblem that, if solved very fast, allows us to do
exact PPM-based tree inference for problems of relevant biological sizes. It is this subproblem, a
projection problem in Eq. (3), that is our focus. We introduce the first non-iterative algorithm to
solve this projection problem, and show that it is 74× faster than different optimally-tuned iterative
methods. We are also the first to show that a full-exact-enumeration approach to inferring U and M
from F̂ is possible, in our case, using a GPU and our algorithm to compute and compare the cost of
all the possible trees that might explain the data F̂ . EXACT often outperforms the above tools, none
of which does exact inference. Our paper is not about EXACT, whose development challenges and
significance for biology go beyond solving our projection problem, and which is the focus of our
future work.

Despite this difference in purpose, in this section we compare the performance of inferring trees from
a full exact search over the space of all possible PPM models with the performance of a few existing
algorithms. In Figure 5, we compare EXACT, PhyloWGS, CITUP and AncesTree on recovering the
correct ancestry relations on biological datasets also used by [3]. A total of 30 different datasets [38],
i.e., F̂ , were tested. We use the default parameters in all of the algorithms tested.

0 0.2 0.4 0.6
0

2

4

6

0 0.1 0.2 0.3
0

2

4

6

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

0.2 0.4 0.6 0.8
0

2

4

6

y-
ax

is
: #

 o
f t

es
ts

x-axis: fraction of misidentified ancestral relations for our method v.s. others: a random guess would give a value of 0.75

EXACT (our method)
Mean: 0.13
Std: 0.11
Mean runtime: 0.89s

PhyloWGS
Mean: 0.15
Std: 0.10
Mean runtime: 1.71h

Ancestree
Mean: 0.34
Std: 0.12
Mean runtime: 2.95s

CITUP
Mean: 0.54
Std: 0.17
Mean runtime: 2.0h

Figure 5: Comparison of different phylogenetic tree inference algorithms.

22

In each test, and for every pair of mutations i and j, we use the tree output by each tool to determine
if (a) i is an ancestor of j or if j is an ancestor of i, (b) if i and j are in the same node, (c) if either i
or j are missing in the tree, or, otherwise, (d) if i and j are incomparable. We give these four possible
ancestral relations, the following names: ancestral, clustered, missing, and incomparable. A random
guess correctly identifies 25% of the ancestral categories, on average. If the fraction of misidentified
relations is 0, the output tree equals the ground-truth tree. All methods do better than random guesses.

For example, in Figure 6, according to EXACT, mutation 63, at the root, is an ancestor of mutation
57, at node 3. However, according to the ground truth, in Figure 6, they belong to the same node.
So, as far as comparing 63 with 57 goes, EXACT makes a mistake. As another example, according
tp EXACT, mutations 91 and 55 are incomparable, while according to the ground truth, 91 is a
descendent of 55. Hence, as far as comparing 91 with 55 goes, EXACT makes another mistake.
The fraction of errors, per ancestral relation error type, that each of these tools makes is: EXACT
= {23%, 10%, 0%, 13%}; PhyloWGS = {3%, 2%, 0%, 1%}; AncesTree = {54%, 16%, 95%, 25%};
CITUP = {27%, 13%, 0%, 21%}.
In our experiments, EXACT performs, on average, better than the other three methods. PhyloWGS
performs close to EXACT, however, it has a much longer run time. Although AncesTree does fairly
well in terms of accuracy, we observe that it often returns trees with the same topology, a star-shaped
tree. The other methods, produce trees whose topology seems to be more strongly linked to the input
data. Finally, AncesTree’s inferred tree does not cover all of the existing mutations. This behaviour is
expected, as, by construction, AncesTree tries to find the largest tree that can be explained with the
PPM. See Figure 6, and Figure 7, for an example of the output produced by different algorithms, and
the corresponding ground truth.

EXACT

2 8

4

3

6

7

1

5

9

58, 62, 63
65, 69, 71
80, 82, 83

59, 60, 66
72, 75, 76

77, 79, 86, 87

61, 64, 67
68, 70, 73
74, 78, 81
84, 85, 88

56, 57

89, 90, 91(1-11),
(50-55)

(23-49)

(12-22)

(92-100)

AncesTree

1

9

8 2

3

546

7

(58-88) 56, 57

89, 90
91

(50-55)

(1-11)

(97-100) (23-49)(12-22)

(92-96)

PhyloWGS CITUP

5
4

7

6

89

2

3

1

97, 99

95

94, 96

93

9255

100

98

66

10
(1-11)

1 423

56, 57,
(89-91)

(58-88)(12-49)(1-11),
(50-55),
(92-100)

Figure 6: Tree reconstructed by different algorithms for the first file in the folder [38]. AncesTree often outputs
star-shaped trees. The small numbers listed next to each node represent mutations. Mutations indexed by the
same number in different trees are the same real mutation. The root of each tree is circled in thick red. Nodes
are labeled by numbers, and these labels are assigned automatically by each tool. Labels of different trees are
incomparable.

We end this section by discussing a few extra properties that distinguished an approach like EXACT
from the existing tools. Because our algorithm’s speed allows a complete enumeration of all of the
trees, EXACT has two unique properties. First, EXACT can exactly solve

min
U∈U
J (C(U)) +Q(U), (72)

where U encodes ancestral relations, C(U) is the fitness cost as defined in our paper, J is an arbitrary,
fast-to-compute, 1D scaling function, andQ(U) is an arbitrary, fast-to-compute, tree-topology penalty
function. No other tool has this flexibility. Second, EXACT can find the k trees with the smallest
objective value in (72). A few existing tools can output multiple trees, but only when these all have the
same “heuristically-optimal” objective value. This feature is very important because, given that the
input data is noisy, and the number of samples is often small, it allows, e.g., one to give a confidence
score for the ancestry relations in the output tree. Furthermore, experiments show that the ground-
truth tree can often be found among these k best trees. Hence, using other biological principles, the
ground-truth tree can often be identified from this set. Outputting just “heuristically-optimal” trees
prevents this finding.

23

1

9

8

2

3

5 67

(58-88)

56, 57

(89-91)

(50-55)

(1-11)

(97-100) (92-96)

(28-49)

(23-27)

10

4

(12-22)

Ground Truth

Figure 7: Ground truth tree for the input file that generated Figure 6. The small numbers listed next to each
node represent mutations. Mutations indexed by the same number in different trees are the same real mutation.
The root of each tree is circled in thick red. Nodes are labeled by numbers, and these labels are assigned
automatically by each tool. Labels of different trees are incomparable.

24

	Further illustrations
	Proof of Theorem 3.1 in Section 3
	Proof of useful observations in Section 3.1
	Proofs of the properties of the algorithm in Section 3.2
	Proofs for computing the rates in Section 3.3
	Details of the ADMM and the PGD algorithms in Section 5
	ADMM
	ADMM for the primal problem
	ADMM for the dual problem

	PGD
	PGD for the primal problem
	PGD for the dual problem

	Projection onto the polyhedron t 1- Z N

	More results using our algorithm

