
A Figures

Figures 6, 8 and 9 are referenced from the main paper.

(a) Smiling (b) Pale Skin

(c) Blond Hair (d) Narrow Eyes

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image.

Figure 7: Samples from model trained on 5-bit LSUN bedrooms, at temperature 0.875. Resolutions
64, 96 and 128 respectively 4.

Figure 8: Effect of change of temperature. From left to right, samples obtained at temperatures
0, 0.25, 0.6, 0.7, 0.8, 0.9, 1.0.

11

Figure 9: Samples from shallow model on left vs deep model on right. Shallow model has L = 4
levels, while deep model has L = 6 levels.

12

B Additional quantitative results

See Table 3.

Table 3: Quantiative results in bits per dimension on the test set.
Dataset Glow

CIFAR-10, 32×32, 5-bit 1.67

ImageNet, 32×32, 5-bit 1.99

ImageNet, 64×64, 5-bit 1.76

CelebA HQ, 256×256, 5-bit 1.03

C Simple python implementation of the invertible 1× 1 convolution

Invertible 1x1 conv
def invertible_1x1_conv(z, logdet, forward=True):

Shape
height, width, channels = z.shape[1:]

Sample a random orthogonal matrix to initialise weights
w_init = np.linalg.qr(np.random.randn(channels,channels))[0]
w = tf.get_variable("W", initializer=w_init)

Compute log determinant
dlogdet = height * width * tf.log(abs(tf.matrix_determinant(w)))

if forward:
Forward computation
_w = tf.reshape(w, [1,1,channels,channels])
z = tf.nn.conv2d(z, _w, [1,1,1,1], ’SAME’)
logdet += dlogdet

return z, logdet
else:

Reverse computation
_w = tf.matrix_inverse(w)
_w = tf.reshape(_w, [1,1,channels,channels])
z = tf.nn.conv2d(z, _w, [1,1,1,1], ’SAME’)
logdet -= dlogdet

return z, logdet

D Optimization details

We use the Adam optimizer (Kingma and Ba, 2015) with α = 0.001 and default β1 and β2. In out
quantitative experiments (Section 5, Table 2) we used the following hyperparameters (Table 4).

In our qualitative experiments (Section 6), we used the following hyperparameters (Table 5)

E Extra samples from qualitative experiments

For the class conditional CIFAR-10 and 32×32 ImageNet samples, we used the same hyperparameters
as the quantitative experiments, but with a class dependent prior at the top-most level. We also added

13

Table 4: Hyperparameters for results in Section 5, Table 2.
Dataset Minibatch Size Levels (L) Depth per level (K) Coupling

CIFAR-10 512 3 32 Affine

ImageNet, 32×32 512 3 48 Affine

ImageNet, 64×64 128 4 48 Affine

LSUN, 64×64 128 4 48 Affine

Table 5: Hyperparameters for results in Section 6.
Dataset Minibatch Size Levels (L) Depth per level (K) Coupling

LSUN, 64×64, 5-bit 128 4 48 Additive

LSUN, 96×96, 5-bit 320 5 64 Additive

LSUN, 128×128, 5-bit 160 5 64 Additive

CelebA HQ, 256×256, 5-bit 40 6 32 Additive

a classification loss to predict the class label from the second last layer of the encoder, with a weight
of λ = 0.01. The results are in Figure 10.

F Extra samples from the quantitative experiments

For direct comparison with other work, datasets are preprocessed exactly as in Dinh et al. (2016).
Results are in Figure 11 and Figure 12.

14

(a) Class conditional CIFAR-10 samples.

(b) Class conditional 32× 32 ImageNet samples.

Figure 10: Class conditional samples on 5-bit CIFAR-10 and 32× 32 ImageNet respectively. Tem-
perature 0.75

15

Figure 11: Samples from 8-bit, 64×64 LSUN bedrooms, church and towers respectively. Temperature
1.0.

16

Figure 12: Samples from an unconditional model with affine coupling layers trained on the CIFAR-10
dataset with temperature 1.0.

17

	Figures
	Additional quantitative results
	Simple python implementation of the invertible 1 1 convolution
	Optimization details
	Extra samples from qualitative experiments
	Extra samples from the quantitative experiments

