
A The Sampled Mean Method

Recall that for a bundle x = {x
1

, . . . , xc} we defined xij = x \ {xi} [{xj} and the mean value is:

F (S [x) = E
z⇠BS(x)

[f(z)] =
1

c

cX

i=1

0

@1

t

tX

j=1

f(S [xij)

1

A

Throughout this section we make some technical assumptions that essentially hold w.l.o.g:

• First, we assume that fS(x?
) 2 ⌦

⇣
f(S)

k

⌘
. Since we run the algorithm for  = bk/cc

iterations, ignoring iterations for which this does not hold will cost at most �✏OPT for some
small fixed � of our choice;

• Next, we can assume that k < (1� �)n for some small fixed �. Otherwise, by selecting k
elements u.a.r we obtain an approximation that beats 1� 1/e. Since c 2 O(1/✏) we have
that n� |S|� c 2 ⌦(n) and there are ⌦(n) elements that we can use to swap with elements
in x;

• Another assumption we make is that t 2 !(n1/2k2) (the choice of n1/2 is arbitrary, and we
can use n1�↵ for any fixed ↵ > 0). Note that even when k 2 ⌦(n) we can make t 2 ⌦(nd

)

by defining the ball BS(x) to be all bundles obtained by removing and swapping d elements
from x, instead of swapping a single element as in the current description. Using d = 3 for
example, suffices. For readability we chose to describe the sampled mean approximation
method with a single swap. Since in the worst case we may need to increase the size of the
bundles by a factor of 3, we account for this blowup in the description of SM-GREEDY.
That is, instead of setting c = 18/✏ which suffices when k 2 O(n1/4

), we use c = 56/✏;

• Throughout the entire paper we assume that the values of the distribution are independent
of n. As discussed in the Introduction, without this assumption no algorithm can obtain
any finite approximation. Therefore, since we do not necessarily assume the distribution is
bounded, we assume that n is sufficiently large.

Weak concentration bound. We now turn to prove the weak concentration bound. This bound
implies that choosing the element that maximizes the noisy sampled mean is an arbitrarily good
approximation to choosing the element that maximizes the (non-noisy) sampled mean.

Lemma. 2.1 Let x 2 argmax

z:|z|=c
˜F (S [z) where c = 2/✏. Then, w.p. at least 1 �

exp

�
�⌦

�
n1/4

��
:

FS(x) � (1� ✏) max

z:|z|=c
FS(z).

The proof uses lemmas A.1 and A.2. The first lemma lower bounds the noisy mean value of x?

against its (non-noisy) mean value, and the second upper bounds the noisy mean value of an arbitrary
bundle against its (non-noisy) mean value. We use µ to denote the mean of the distribution.

Lemma A.1. For a fixed ✏ > 0, let x? 2 argmax

z:|z|=1/✏ fS(z) and let ⌘ > 0 be a constant. For
any � > 0 we have that with probability at least 1� exp

�
�⌦(�2t1/2�⌘

)

�
:

˜F (S [x

?
) � (1� �)µ · (f(S) + (1� ✏)FS(x

?
))

13

Proof. Let ! = max

xij2BS(x)

⇠ij be the upper bound on values of noise multipliers in the ball, and
t = n� c� |S|, where c = 1/✏. We can break up the sampled mean value to two terms:

˜F (S [x

?
) =

1

c

cX

i=1

0

@1

t

tX

j=1

˜f(S [x

?
ij)

1

A

=

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S [x

?
ij)

1

A

=

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S) + ⇠ijfS(x
?
ij)

1

A

=

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S)

1

A
+

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijfS(x
?
ij)

1

A

For the first term, by a straightforward application of the Chernoff bound we know that it is lower
bounded by (1� �)µf(S) with probability at least 1� exp(

��2c ˙t
!).

To bound the second term, we make the following observations:

• There is at most one set x?
-i for which fS(x?

�i) <
fS(x

?
)

2

. To see this, assume for purpose
of contradiction there are x

?
-i and x

?
-j s.t. fS(x?

-i)  fS(x?
-j) < fS(x?

)/2, then since
x

?
= x

?
-i [x

?
-j , by subadditivity we get a contradiction:

fS(x
?
) = fS(x

?
-i [x

?
-j)  fS(x

?
-i) + fS(x

?
-j) < 2 · fS(x

?
)

2

= fS(x
?
).

• Let l be in the index of the set with lowest value. Since there is at most one i 2 [c] for
which fS(x?

-i) < fS(x?
), for all i 6= l we know that the minimal value is at least fS(x?

)/2.
Due to the maximality of x? we also know that fS(x?

ij)  fS(x?
), for all i 2 [c]. We can

therefore apply a Chernoff bound on
Pt

j=1

⇠ijfS(x?
ij) for every i 6= l and get that w.p. at

least 1� exp(

�2t
!):

1

t

tX

j=1

⇠ijfS(x
?
ij) � (1� �)µ

1

t

tX

j=1

fS(x
?
ij);

• By the minimality of l, and since c = 1/✏, we know that:

1

c · t
X

i 6=l

tX

i=1

fS(x
?
ij) � (1� ✏)

1

c · t

cX

i=1

tX

i=1

fS(x
?
ij) = (1� ✏)FS(x

?
)

Together, these observations give us our desired bound:

˜F (S [x

?
) =

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S)

1

A
+

1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijfS(x
?
ij)

1

A

� 1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S)

1

A
+

1

c

X

i 6=l

0

@1

t

tX

j=1

⇠ijfS(x
?
ij)

1

A

� (1� �)µf(S) + (1� �)µ
1

c

X

i 6=l

tX

j=1

fS(x
?
ij)

� (1� �)µf(S) + (1� �)µ(1� ✏)FS(x
?
)

= (1� �)µ (f(S) + (1� ✏)FS(x
?
))

14

Finally, to upper bound !, since the noise distribution is a generalized exponential tail we have that
for any � > 0 and sufficiently large m:

Pr[! < m�
] > 1� exp

✓
�⌦

✓
m�

logm

◆◆

To see this, note that this is trivially true when m tends to infinity when the noise distribution is
bounded, or has finite support. If the noise distribution is unbounded, since its tail is subexponential,
at any given sample the probability of seeing the value m� is at most exp(�O(m�

)) and iterating
this a polynomial number of times achieves the bound.

Therefore we know that with probability 1� exp

�
�⌦(
p
c · t log�1

(c · t))
�

all c · t = |BS(x)| noise
multipliers are bounded from above by ! =

p
ct. Thus by a union bound, the bound above holds

with probability of at least 1� exp

�
�⌦(�2t1/2�⌘

)

�
for some arbitrarily small ⌘ > 0.

The following bound shows that for sufficiently large t (which is proportional to n), we have that
eF (S) ⇡ (1 + �)µ(F (S) + 3t�1/4fS(x?

)) for small � > 0 .
Lemma A.2. For ✏ > 0, let x be a bundle of size c = 1/✏ and let ⌘ > 0 be a constant. For any
� > 0 we have that with probability at least 1� exp

�
�⌦

�
�2t1/2�⌘

��
:

eF (S [x) < (1 + �)µ ·
⇣
f(S) + FS(x) + 3t�⌘/3fS(x

?
)

⌘
.

Proof. As in the proof of the previous lemma, let ! be the upper bound on the value of a noise
multipliers. Since ˜F (x) is an average of these values over all i 2 [c], a concentration bound that
holds for every i 2 [c] will give us the desired result.

For a given i 2 [c], let z
1

, . . . , zt denote the bundles xi1, . . . ,xit. For each bundle zi we will use ↵i

to denote the marginal value fS(zi) and ⇠i to denote the noise multiplier ⇠S[zi . We have two sums:

1

t

tX

i=1

˜f(S [xij) =
1

t

tX

i=1

⇠if(S) +
1

t

tX

i=1

⇠i↵i. (2)

As before, we can immediately apply a Chernoff bound on the first term and what remains is to show
concentration on the second term. Define ↵?

= maxi ↵i. Note that due to the maximality of x? we
have that ↵?  fS(x?

). To apply concentration bounds on the second term, we partition the values
of {↵i}i2[t] to bins of width ↵? · t�⌫ for some arbitrarily small constant ⌫ > 0. We call a bin dense
if it has at least t1�2⌫ values and sparse otherwise. Using this terminology:

tX

i=1

⇠i↵i =

X

i2dense

⇠i↵i +

X

i2sparse

⇠i↵i.

Let BIN` be the dense bin whose elements have the largest values. Consider the t1�2⌫/2 largest
values in BIN` and call the set of indices associated with these values L. We can rewrite the sum as:

tX

i=1

⇠i↵i =

X

i2dense\L

⇠i↵i +

X

i2L[sparse

⇠i↵i

The set L [sparse is of size at least t1�2⌫/2 and at most t1�2⌫/2 + t1�⌫ . This is because L is of size
exactly t1�2⌫/2 and there are at most t1�⌫ values in bins that are sparse since there are t⌫ bins, and
sparse bins have less than t1�2⌫ values. Thus, when ! is an upper bound on the value of the noise
multiplier, from Chernoff, for any � < 1 with probability 1� exp(�⌦(�2t1�2⌫!�1

)):
X

i2L[sparse

⇠i↵i 
X

i2L[sparse

⇠i↵
?

< (1 + �)µ · |L [sparse| · ↵?

 (1 + �)µ ·
✓
t1�2⌫

2

+ t1�⌫

◆
↵?

< (1 + �)µ · 2t1�⌫↵?

15

We will now apply concentration bounds on the values in the dense bins. For a dense bin BINq, let
↵
max(q) and ↵

min(q) be the maximal and minimal values in the bin, respectively. Since the width of
the bins is ↵? · t�⌫ we have that ↵

min(q) � ↵
max(q) � ↵? · t�⌫ . Recall that a dense bin has at least

t1�2⌫ values. We can therefore apply a Chernoff bound on a dense bin BINq. We get that for any
� < 1 w.p. 1� exp(��2t1�2⌫!�1

):
X

i2BINq

⇠i↵i 
X

i2BINq

⇠i · ↵
max(q)

 (1 + �)µ · ↵
max(q) · |BINq|

 (1 + �)µ ·
�
↵
min(q) + ↵? · t�⌫

�
· |BINq|

< (1 + �)µ ·
�
|BINq| · ↵

min(q) + |BINq|↵? · t�⌫
�

Applying a union bound over all bins we get with probability 1� t⌫ · exp(��2t1�2⌫!�1

):

X

i2dense\L

⇠i↵i <
X

q

(1 + �)µ ·
�
|BINq|↵? · t�⌫

+ |BINq| · ↵
min(q)

�
< (1 + �)µ ·

↵?t1�⌫

+

tX

i=1

↵i

!

Conditioning on both events, together we have:

1

t

tX

j=1

fS(xij) =
1

t

tX

i=1

⇠i↵i =
1

t

0

@
X

i2L[sparse

⇠i↵i +

X

i2dense\L

⇠i↵i

1

A < (1 + �)µ ·
�
3t�⌫fS(x

?
) + FS(x)

�

By a union bound over all i 2 [c] we get that with probability 1� exp(�⌦(�2t1�3⌫!�1

)):

˜F (S[x) = 1

c

cX

i=1

0

@1

t

tX

j=1

⇠ijf(S) +
1

t

tX

j=1

⇠ijfS(xij)

1

A  (1+�)µ
�
f(S) + FS(x) + 3t�⌫fS(x

?
)

�

As in the previous lemma, since the distribution is a generalized exponential tail, we know that
! 

p
c · t w.p. at least 1 � exp

�
�⌦((c · t)1/2 log�1

(c · t))
�
. Taking a union bound, the bound

above holds with probability of at least 1� exp

�
�⌦(�2t1/2�3⌫

)

�
. Setting ⌘ = ⌫/3 concludes our

proof.

Proof of Lemma 2.1. Let x?
= argmax

x:|x|=c fS(x) and let b be a bundle of size c for which
FS(b) < (1� ✏)FS(x

?
). We will show that b cannot be selected as x? beats b with overwhelming

high probability:
˜F (S [x

?
) > ˜F (S [b).

By taking a union bound over all possible O(nc
) bundles we will then conclude that the bundle

whose noisy mean contribution is largest must have mean contribution at least factor of (1� ✏) from
that of x?, with overwhelming high probability.

From Lemma A.1 since c = 2/✏ we know that for � 2 [0, 1) with probability 1 �
exp

�
�⌦(�2t1/2�⌘

)

�
:

F (S [x

?
) � (1� �)µ

⇣
f(S) +

⇣
1� ✏

2

⌘
FS(x

?
)

⌘

Similarly, from Lemma A.2 we know that with probability 1� exp

�
�⌦(�2t1/2�⌘

)

�
:

F (S [b) � (1 + �)µ
⇣
f(S) + FS(b) + 3t�⌘/3fS(x

?
)

⌘

� (1 + �)µ
⇣
f(S) + (1� ✏+ 6t�⌘/3

)FS(x
?
)

⌘

where we used the assumption FS(x
?
) � (1 � ✏)FS(b) and the fact that 2FS(x

?
) � fS(x?

).
Recall that we’re assuming that fS(x?

) 2 ⌦

⇣
f(S)

k

⌘
. Thus, for some small fixed ↵ > 0

16

we have that FS(x
?
) � ↵f(S)/2k. Given the inequalities above, with probability at least

1� exp

�
�⌦(�2t1/2�⌘

)

�
:

˜F (S [x

?
)� ˜F (S [b) � µ

⇣⇣ ✏
2

� 2�� (1 + �)6t�⌘/3
⌘
FS(x

?
)� 2�f(S)

⌘

� µ

✓✓
✏

2

� 2�� 12t�⌘/3 � �
k

↵

◆
FS(x

?
)

◆

For any �  ✏2/4k the difference above is strictly positive. Without loss of generality we’re assuming
t � n1/2 · k2 and therefore the difference is positive with probability 1� exp

�
�⌦(t1/4)

�
. Since

t 2 ⌦(n) this concludes our proof.

The sampled mean is (almost) an upper bound of the function. We now show that when the
size of the bundle is sufficiently large, the marginal contributions of the sampled mean nearly upper
bound the true marginal contributions of a monotone submodular function.
Lemma. 2.2 For any ✏ > 0 and any set S ⇢ N , let x be a bundle of size 1/✏, then:

FS(x) � (1� ✏)fS(x)

Proof. Let c = 1/✏ and consider an arbitrary ordering on the elements in the bundle x
1

, . . . , xc 2 x.
Define x-i = x \ {xi}, and xij = x-i [{xj}. From submodulairty we get that for any i 2 [c]:

fS[x-i(xi) = f(S [x-i [xi)� f(S [x-i)  f(S [{x
1

. . . , xi})� f(S [{x
1

, . . . , xi�1

})
Thus:

cX

i=1

fS[x-i(xi) 
cX

i=1

(f(S [{x
1

. . . , xi})� f(S [{x
1

, . . . , xi�1

})) = fS(x) (3)

Let t = n� c� |S|. By summing over all x-i we get the desired bound:

FS(x) =
1

c · t

tX

j=1

cX

i=1

fS(xij)

� 1

c

cX

i=1

fS(x-i)

=

1

c

cX

i=1

(fS(x-i [xi)� fS[x-i(xi))

=

1

c

cX

i=1

fS(x)�
1

c

cX

i=1

fS[x-i(xi)

� fS(x)�
1

c
fS(x) by (3)

=

✓
1� 1

c

◆
fS(x)

= (1� ✏) fS(x).

17

B The Sampled-Mean Greedy

Claim. 3.1. Suppose F (x) �
�
1� ✏

3

�
fS(x?

). Then at least half of the bundles in BS(x) are good.

Proof. For convenience we will use � = ✏/3. Let B+

S (x) be the set of good bundles in BS(x). Due
to the maximality of x? we have that fS(z)  fS(x?

) for every z 2 BS(x). Therefore:
X

z2BS(x)

fS(z)  | B+

S

(x) | · fS(x?
) +

�
|BS(x)|� | B+

S

(x) |
�
· (1� 2�)fS(x

?
) (4)

By the definition of F (x) = E
z2BS(x)

[f(z)] and our assumption F (x) � (1� �)f(x):

1

|BS(x)|
X

z2BS(x)

fS(z) � (1� �)fS(x
?
) (5)

Putting (4) and (5) together we get:

|BS(x)|(1� �)fS(x
?
) 

�
| B+

S

(x) |+ (|BS(x)|� | B+

S

(x) |)(1� 2�)
�
fS(x

?
)

Rearranging we get that | B+

S

(x) | � |BS(x)|/2, as required.

Claim. 3.2 Let m =

|BS(x)|
2

, ⇠
1

, . . . , ⇠m be i.i.d samples from D and ⇠? = max{⇠
1

, . . . , ⇠m}. Then:

Pr

h
⇠
inf

 ⇠?  ⇠
sup

i
� 1� 3

log n

Proof. For a single sample ⇠ from D, we have that Pr[⇠  ⇠
sup

] = 1 � 2

m logn . If we take m
independent samples ⇠

1

, . . . ⇠m, the probability they are all bounded by ⇠
sup

is:
✓
1� 2

m log n

◆m

>

✓
1� 2

log n

◆

For ⇠
inf

, the probability a single sample ⇠ taken from D is at most ⇠
inf

is Pr [⇠  ⇠
inf

] = 1� 2 logn
m .

If we take independent samples ⇠
1

, . . . ⇠m, the probability they are all bounded by ⇠
inf

is:
✓
1� 2 log n

m

◆m

<
2

2

logn
=

2

n

Therefore, by a union bound the likelihood that the maximum of m samples is bounded between ⇠
inf

and ⇠
sup

is at least 1� 3

logn .

Bounding extreme values of the noise multipliers. Before proving Lemma 3.3, we illustrate the
main challenge. First, consider a distribution which returns 0 with probability 0.99 and 1 with
probability 0.01. If m = 50, clearly the lemma doesn’t hold, but for n > 1000 the lemma would
follow through. It is easy to generalize the problem to any distribution with an atom at its supremum.

One class of distributions for which the lemma may not hold, is one with an infinite number of atoms.
For example, consider the distribution for which Pr[2

d
] = 1/2d. In this case, the lemma is incorrect

regardless of the value of m. The problem is not with the atoms, as it is easy to construct a density
function which is non zero only around 2

d, and its integral around 2

d is exactly 2

�d. Note however
that such a density function would be far from monotone. We do not want to require monotone noise
distributions, as to not rule out bimodal distributions, and to allow for small fluctuations in the density
function. Instead, we require that except for a finite number of modalities, the function’s tail has
a lower bound and an upper bound, which are somehow related. This requirement is rather weak,
and encompasses in particular Exponential distributions, Gaussians (which are monotone), bounded
distributions and distributions with a finite support.
Lemma. 3.3 For any generalized exponential tail distribution, fixed � > 0 and sufficiently large n:

⇠
inf

�
✓
1� �p

log n

◆
⇠
sup

18

Proof. We will use ' =

�p
logn

and first we give a proof for distributions with bounded support. Let
M be an upper bound on D. If there is an atom at M with some probability p > 0, then we are done,
as ⇠

inf

= ⇠
sup

= M . Otherwise, since D has a generalized exponential tail we know that ⇢(M) = p
for some p > 0, and that ⇢ is continuous at M . But then there is some � > 0 such that for any
M � �  x M we have that ⇢(x) � p/2. Choosing n to be large enough that (1� ✏)p > p� �:

Z M

(1�✏)M
⇢(x) � p/2✏

Choosing n large enough s.t. 2 log n/m < �/2✏ gives that ⇠
inf

� (1� ✏)M . As ⇠
sup

M we are
done.

When the distribution does not have bounded support, recall that by definition of D for x � x
0

, we
have that ⇢(x) = e�g(x), where g(x) =

P
i aix

↵
i and that we do not assume that all the ↵i’s are

integers, but only that ↵
0

� ↵
1

� . . ., and that ↵
0

� 1. We do not assume anything on the other ↵i

values. In this case, the proof follows three stages:

1. We use properties of D to argue upper and lower bounds for ⇢(x);

2. We show an upper bound M on ⇠
sup

;

3. We show that integrating a lower bound of ⇢(x) from (1� ')M to1, yields a probability
mass at least logn

'm . Now suppose for contradiction that ⇠
inf

< (1� ') ⇠
sup

, we would get
that

R1
⇠inf

⇢(x) is strictly greater than logn
'm , which contradicts the definition of ⇠

inf

.

We now elaborate each on stage.

First stage. For the first stage we will show that for every g(x), there exists n
0

such that for any

n > n
0

and x �
⇣

logn
2a0

⌘
1/↵0

we have that for � = ' /100 < 1/100:

(1 + �)a
0

x↵0�1e�(1+�)a0x
↵0  ⇢(x)  (1� �)a

0

x↵0�1e�(1��)a0x
↵0

We explain both directions of the inequality. To see a
0

x↵0�1

(1 + �)e�(1+�)a0x
↵0  ⇢(x) we first

show:
e�(1+�/2)a0x

↵0  ⇢(x)

This holds since for sufficiently large n, we have that:

x � (log n)1/↵0

2a
0

�
✓
2

P
i=1

|ai|
�a

0

◆↵0�↵1

So the term �
2

x↵0 dominates the rest of the terms. We now show that:

e�(1+�/2)a0x
↵0 � a

0

x↵0�1

(1 + �)e�(1+�)a0x
↵0

This is equivalent to:
e�a0/2x

↵0 � a
0

x↵0�1

(1 + �)

Which hold for x = log log

3 n and large enough n.

The other side of the inequality is proved in a similar way. We want to show that:

⇢(x)  (1� �)a
0

x↵0�1e�(1��)a0x
↵0

Clearly for x > log log

3 n we have that (1� �)a
0

x↵0�1 > 1. Hence we just need to show that:

⇢(x)  e�(1��)a0x
↵0

But this holds for sufficiently large n s.t.:

x � (log n)1/↵0

2a
0

�
✓P

i=1

|ai|
�a

0

◆↵0�↵1

19

Second stage. We now proceed to the second stage, and compute an upper bound on ⇠
sup

. Note
that if for every x �M we have ⇢(x)  g(x) and

Z 1

⇠sup

⇢(x) =

Z 1

M
g(x)

then it must be that M � ⇠
sup

. Applying this to our setting, and using m = BS(x) = c · (n� |S|� c)
we bound ⇢(x)  (1� �)a

0

x↵0�1e�(1��)a0x
↵0 to get:

1

m log n
=

Z 1

M
(1� �)a

0

x↵0�1e�(1��)a0x
↵0

= �e�(1��)a0x
↵0 |1M = e�(1��)a0M

↵0

Taking the logarithm of both sides, we get:

�(1� �)a
0

M↵0
= log

1

m log n
= � log(m log n)

Multiplying by �1, dividing by (1� �)a
0

and taking the 1/↵
0

root we get:

M =

✓
logm log n)

(1� �)a
0

◆↵0

Note that (1� ')M >
⇣

logn
2a0

⌘
1/↵0

and hence our bounds on ⇢(x) hold for this regime.

Third stage. We move to the third stage, and bound
R1
(1�')M ⇢(x) from below. If we show that:

R1
(1�')M ⇢(x) is greater than logn

'm , this implies that ⇠
inf

� (1� ')M , as ⇠
inf

is defined as the value
such that when we integrate ⇢(x) from ⇠

inf

to1 we get exactly logn
'm . We show:

Z 1

(1�')M
⇢(x) � (1 + �)a

0

↵
0

x↵0�1e�(1+�)a0x
↵0

= �e�(1+�)a0x
↵0 |1

(1�')M

= e�(1+�)a0((1�')M)

↵0

= e�(1+�)a0M
↵0

(1�')

↵0

� e�(1+�)a0M
↵0

(1�')

However a
0

M↵0
=

⇣
logm logn)

(1��)

⌘
. Since � < 0.1 we have that 1+�

1�� < 1 + 3�. Substituting both
expressions we get:

e�(1+�)a0M
↵0

(1�') � e�(1+3�)(1�') logm logn)

=

✓
1

m log n

◆
(1�')(1+3�)

�
✓

1

m log n

◆
(1�' /2)

where we used that � = ' /100 and hence (1� ')(1 + 3�) < 1� ' /2. We now need to compare
this to

p
logn
'm . To do this, note that:

✓
1

m log n

◆
(1�' /2)

� 1

m1�' /2
log n

� 2

p
logn

m log n
� log n

'm

where n is large enough that '
2

logm >
p
log n. This completes the proof, since

⇠
inf

� (1� ')M � (1� ') ⇠
sup

as required.

Lemma. 3.4 Let ✏ > 0, and assume that k 2 !(1/✏) \ O(

p
log n) and that fS(x?

) 2 ⌦

⇣
f(S)

k

⌘
.

Then, in every iteration of SM-GREEDY we have that with probability at least 1� 4

logn :

fS(ˆx) � (1� ✏)fS(x
?
).

20

Proof. From Corollary 2.3 we know that when c = 9/✏, then in every iteration with overwhelming
high probability we have that for � = ✏/3:

FS(x) � (1� �)f(x?
) (6)

In every iteration the algorithm selects ˆ

x 2 argmax

z2BS(x)

˜f(S [z). Recall that a good bundle
is z 2 BS(x) for which f(z) � (1 � 2✏/3)f(x?

) and a bad bundle is z 2 BS(x) s.t. f(z) 
(1� ✏)f(x?

). Conditioning on the assumption (6), from Claim 3.2 we know that with probability at
least 1� 3

logn the noise multipliers of both good and bad bundles in BS(x) are in [⇠
inf

, ⇠
sup

]. Since
Lemma 3.3 applies for any fixed � > 0 we know that for sufficiently large n we have that:

⇠
inf

�
✓
1� �2

3

p
log n

◆
⇠
sup

Thus, a lower bound on the maximal noisy value of a good bundle is:

max

z2good
˜f(S [z) = max

z2good
⇠
z

⇥ [f(S) + fS(z)]

� ⇠
inf

⇥[f(S) + (1� 2�)fS(x
?
)]

�
✓
1� �2

3

p
log n

◆
⇠
sup

⇥[f(S) + (1� 2�)fS(x
?
)]

An upper bound on the maximal noisy value of a bad bundle is:

˜f(S [b) = max

z2bad
˜f(S [z) = max

z2bad
⇠
z

f(S [z)  ⇠
sup

[f(S) + (1� 3�)fS(x
?
)]

Since fS(x) 2 ⌦

⇣
f(S)

k

⌘
, and importantly k 

p
log n we know that for sufficiently large n:

p
log n

�
fS(x

?
) � f(S).

Putting it all together and conditioning on all events we have with probability at least 1� 4

logn :

˜f(S [ˆ

x)� ˜f(S [b)

�
⇣
(1� �2

3

p
log n

) ⇠
sup

[f(S) + (1� 2�)fS(x
?
)]

⌘
�
⇣
⇠
sup

[f(S) + (1� 3�)fS(x
?
)]

⌘

� ⇠
sup

⇣
�fS(x

?
)� �2

3

p
log n

⇥ [(1� 2�)fS(x
?
) + f(S)]

⌘

� ⇠
sup

⇣
�fS(x

?
)� �2

3

p
log n

⇥
⇥
(1� 2�)fS(x

?
) +

p
log n

�
fS(x

?
)

⇤⌘

> ⇠
sup

·�
3

fS(x
?
)

Since the difference is strictly positive this implies that with probability at least 1� 4

logn a bad bundle
will not be selected as ˆ

x, which concludes our proof.

B.1 Optimization for Constant k

Redefining the ball. For every bundle x of size c we define the ball B(x) = {x [z : z /2 x}, and
the mean value and noisy mean values are F (x) = E

z2B(x)

[f(z)] and ˜F (x) = E
z2B(x)

[

ef(z)],
respectively. Using the same reasoning as in Lemma 2.1 we get a concentration bound on
argmax

b:|b|=c
˜F (b).

Lemma B.1. Let x 2 argmax

b:|b|=c
˜F (b). Then, for any � > 0 w.p. 1� exp(�⌦(�2

p
n� c)):

F (x) � (1� �) max

b:|b|=c
F (b).

21

Algorithm 3 EXP-SM-GREEDY

Input: budget k
1: x argmax

b:|b|=k
˜F (b)

2: z select random element from N \ x
3: ˆ

x random set of size k from x [z
4: return ˆ

x

Approximation guarantee in expectation. We first present the algorithm whose approximation
guarantee is arbitrarily close to 1� 1

k+1

, in expectation. The algorithm will simply select the set ˆx to
be a random subset of k elements from a random set of B(x) where x 2 argmax

b:|b|=k
˜F (b).

Theorem B.2. For any submodular f : 2

N ! R, EXP-SM-GREEDY returns a (1� 1

k+1

� o(1))
approximation for maxS:|S|k f(S), in expectation, using a generalized exponential tail noisy oracle.

Proof. Similar to Lemma 2.2, by submodularity we know that in expectation f(ˆx) � k
k+1

F (x). Let
x

?
= argmax

b:|b|=k f(b). From monotonicity we know that f(x?
)  F (x

?
). Applying Lemma B.1

we get that for the set F (x) � (1� o(1))F (x

?
). Hence:

E[f(ˆx)] �
✓

k

k + 1

◆
F (x) �

✓
k

k + 1

� o(1)

◆
F (x

?
) �

✓
k

k + 1

� o(1)

◆
f(x?

) =

✓
k

k + 1

� o(1)

◆
OPT.

Approximation Guarantee with high probability. To obtain a result that holds w.h.p. we will con-
sider a modest variant of the algorithm above. The algorithm enumerates all possible subsets of size
k � 1, identifies the bundle x 2 argmax

b:|b|=k�1

˜F (b) and then returns ˆ

x 2 argmax

z2B(x)

˜f(z).

Algorithm 4 WHP-SM-GREEDY

Input: budget k
1: x argmax

b:|b|=k�1

˜F (b)

2: ˆ

x argmax

z2B(x)

˜f(z)
3: return ˆ

x

Theorem B.3. For any submodular function f : 2

N ! R and any fixed ✏ > 0 and constant k, there
is a (1� 1/k � ✏)-approximation algorithm for maxS:|S|k f(S) which only uses a generalized
exponential tail noisy oracle, and succeeds with probability at least 1� 6/ log n.

Proof. Let x 2 argmax

b:|b|=k�1

˜F (b), and let x? 2 argmax

b:|b|=k�1

f(b). Since x

? is the
optimal solution over k � 1 elements, from submodularity we know that f(x?

) � (1� 1/k)OPT.

What now remains to show is that ˆx 2 argmaxz2N\x
˜f(x [z) is a (1� ✏) approximation to F (x).

To do so, recall the definitions of good and bad bundles from the previous section: let � = ✏/3, and
say a bundle z is good if f(z) � (1 � 2�)f(x?

) and bad if f(z)  (1 � 3�)f(x?
). We show that

with high probability the bundle ˆ

x selected by the algorithm has value at least as high as that of a bad
bundle, i.e. f(ˆx) � (1� 3�)f(x?

) which will complete the proof.

We first show that with probability at least 1 � 6/ log n the maximal noise multiplier of a good
bundle is at least ⇠

inf

and of a bad bundle is at most ⇠
sup

, where we use the same definition of ⇠
inf

and ⇠
sup

as in Section 3. To do so we will first argue about the number of good bundles in the
ball. From Lemma B.1 and the maximality of x we know that with overwhelming high probability
F (x) � (1� o(1))F (x

?
). Therefore for m = n� k and fixed �:

F (x) =

1

m

X

z/2x

f(x [z) � (1� �)
1

m

X

z/2x

?

f(x? [z) � (1� �)f(x?
)

22

Let B+

(x) be the bundle of all good bundles in B(x). Due to the maximality of x? and submodularity
we know that f(x [z)  2f(x?

) for all z /2 x:
X

z/2x

f(x [z)  |B+

(x)|2f(x?
) + (m� |B+

(x)|)(1� 2�)f(x?
)

Putting the these bounds on F (x) together and rearranging we get that:

|B+

(x)| � � ·m
1 + 2✏

� �m

3

Since there are at least �m/3 good bundles we can bound the likelihood of at least one noise multiplier
of a good bundle achieving value ⇠

inf

:

Pr

h
max{⇠

1

, . . . , ⇠�·m/3} � ⇠
inf

i
� 1�

✓
1� 2 log n

m

◆ �m
3

� 1� 2

n�/3
� 1� 1

log n

Since there are m = n� k bundles in the ball, the likelihood that all noise multipliers of bad bunldes
are bounded from above by ⇠

sup

is:

Pr

h
max{⇠

1

, . . . ⇠m}  ⇠
sup

i
�
✓
1� 2

m log n

◆m

>

✓
1� 4

log n

◆

Thus, by a union bound and conditioning on the event in Lemma B.1 we get that ⇠
sup

is an upper
bound on the value of the noise multiplier of bad bundles and ⇠

inf

is with lower bound on the value of
the noise multiplier of a good stem all with probability at least 1� 6/ log n.

We therefore know that with probability at least 1� 6/ log n the maximal noise multiplier of a good
bundle is at least ⇠

inf

and the noise multiplier of a bad bundle is at most ⇠
sup

. From Lemma 3.3 we
know that ⇠

inf

� (1� o(1)) ⇠
sup

. Thus:

max

z2B+
(x)

˜f(z) = max

z22B+
(x)

⇠
z

f(z) � ⇠
inf

·(1� 2�)f(x?
) � ⇠

sup

·(1� 2� � o(1))f(x?
)

Let b 2 argmax

z2bad bundles
˜f(x [z):

˜f(b) � max

z2bad bundles
˜f(z) = max

z2bad bundles
⇠
z

f(z)  ⇠
sup

·(1� 3�)f(z)

Putting it all together we have with probability at least 1� 6/ log n:

˜f(ˆx)� ˜f(b) � ⇠
sup

f(x?
) ·
⇣
(1� 2� � o(1))� (1� 3�)

⌘
> ⇠

sup

f(x?
) (� � o(1))

The difference is strictly positive, and since � = ✏/3 is fixed and this completes our proof.

C Approximation Algorithm for Matroids

We begin with basic facts and definitions about Matroids and properties of submodular functions.
Claim C.1. Let f : 2

N ! R be a submodular function and Sk, O ✓ N . Then we have that:

f(O)  f(O [Sk)  f(Sk) +

X

x2O\Sk

fSk(x) (7)

Proof. This is a direct consequence of submodularity.

Definition C.2 (rank and span of a matroid). For a set S and a matroid Mj in the family F , we
define rankj(S), called the rank of S in Mj to be the cardinality of the largest subset of S which is
independent in Mj , and define spanj(S), called the span of S in Mj by:

spanj(S) = {a 2 N : rankj(S [a) = rankj(S)}
Claim C.3. Let Si, O 2Mj be independent sets where Si = {ˆx

1

, . . . , ˆxi} is a set of bundles of size
c each. Then:

|spanj(Si) \O|  c · i

23

Proof. Since Si is independent in Mj , we know that rankj(spanj(Si)) = rankj(Si) = |Si|. In
particular, we have that rankj(spanj(Si)) = c · i. Since O is an independent set in Mj we have:

rankj(spanj(Si) \O) = |spanj(Si) \O|  |spanj(Si)| = |Si|  c · i
where the above inequality is due to the fact that for any independent set T in Mj we have that
rankj(T) = |spanj(T)| = |T |. This implies that |spanj(Si) \O|  c · i.

Claim C.4 (Prop. 2.2 in [NWF78a]). If for 8t 2 [k]
Pt�1

i=0

�i  t and pi�1

� pi, with �i, pi � 0

then:
k�1X

i=0

pi�i 
k�1X

i=0

pi.

Lemma. 4.1 Let O be the optimal solution, k = |O|, and for every iteration i of SM-MATROID-
GREEDY let Si be the set of elements selected and x

?
i 2 argmax|z|=c fSi-1(z) be the optimal bundle

at stage i of the algorithm. Then:

f(O)  (P + 1)

k
cX

i=1

fSi(x
?
i)

Proof. Since Si is independent in Mj , we know that rankj(spanj(Si)) = rankj(Si) = |Si|.
In particular, we have that rankj(spanj(Si)) = c · i. Now in each 1  j  P , since O is an
independent set in Mj we have:

rankj(spanj(Si) \O) = |spanj(Si) \O|
which by Claim C.3 implies that |spanj(Si) \O|  c · i.

Define Ui = [Pj=1

spanj(Si), to be the set of elements which are not part of the maximization in
step i+ 1 of the procedure, and hence cannot give value at that stage. We have:

|Ui \O| = |([Pj=1

spanj(Si)) \O| 
PX

j=1

|spanj(Si) \O|  P · c · i

Let Vi = (Ui \ Ui�1

) \O be the elements of O which are not part of the maximization in step i, but
were part of the maximization in step i� 1. If x 2 Vi then it must be that

fk(x)  fSi(x) 
fSi(x

?
i)

c

where the first inequality is due to submodularity of f and the second is since x was not chosen in
step i. Hence, we can upper bound:

X

x2O\Sk

fSk(x) 
k
cX

i=1

X

x2Vi

fSi(x
?
i)

c
=

k
cX

i=1

|Vi|fSi(x
?
i)  P

k
cX

i=1

fSi(x
?
i)

where the last inequality uses
Pi

t=1

|Vt| = |Ui \ O|  Pi and the following arithmetic claim due
to C.4. Together with (7), we get:

f(O)  (P + 1)

k
cX

i=1

fSi(x
?
i)

as required.

D Information Theoretic Lower Bounds

Claim D.1. There exists a submodular function and noise distribution s.t. no randomized algorithm
can obtain an approximation better than 1/2 + O(1/

p
n) for maxa2N f(a) w.h.p. using a noisy

oracle.

24

Proof. We will construct two functions that are identical except that one function attributes a value
of 2 for a special element x? and 1 for all other elements, whereas the other is assigns a value of
1 for each element. In addition, these functions will be bounded from above by 2 so that the only
queries that give any information are those of singletons. More formally, consider the functions
f
1

(S) = min{|S|, 2} and f
2

(S) = min{g(S), 2} where g : 2

N ! R is defined for some x? 2 N
as:

g(S) =

⇢
2, if S = x?

|S|, otherwise
The noise distribution will return 2 with probability 1/

p
n and 1 otherwise.

We claim that no algorithm can distinguish between the two functions with success probability greater
than 1/2 + O(1/

p
n). For all sets with two or more elements, both functions return 2, and so no

information is gained when querying such sets. Hence, the only information the algorithm has to
work with is the number of 1, 2, and 4 values observed on singletons. If it sees the value 4 on such a
set, it concludes that the underlying function is f

2

. This happens with probability 1/
p
n.

Conditioned on the event that the value 4 is not realized, the only input that the algorithm has is the
number of 1s and 2s it sees. The optimal policy is to choose a threshold, such if a number of 2s
observed is or above this threshold, the algorithm returns f

2

and otherwise it reruns f
1

. In this case,
the optimal threshold is

p
n+ 1.

The probability that f
2

has at most
p
n twos is 1/2� 1/

p
n, and so is the probability that f

1

has at
least

p
n+ 1 twos, and hence the advantage over a random guess is O(1/

p
n) again.

An algorithm which approximates the maximal set on f
2

with ratio better than 1/2 + !(1/
p
n) can

be used to distinguish the two functions with advantage !(1/
p
n). Having ruled this out, the best

approximation one can get is 1/2 +O(1/
p
n) as required.

We now construct a lower bound for general k of (2k � 1)/2k, where our upper bound is (k � 1)/k.
Claim D.2. There exists a submodular function and noise distribution for which w.h.p. no randomized
algorithm with a noisy oracle can obtain an approximation better than (2k � 1)/2k +O(1/

p
n) for

the optimal set of size k.

Proof. Consider the function:

f
1

(S) =

8
<

:

2|S|, if |S| < k
2k � 1, if |S| = k
2k, if |S| > k

and the function f
2

, which is dependent on the identity of some random set of size k, denoted S?
:

f
2

(S;S?
) =

8
>><

>>:

2|S|, if |S| < k
2k � 1, if |S| = k, S 6= S?

2k, if S = S?

2k, if |S| > k

Note that both functions are submodular.

The noise distribution will return 2k/(2k � 1) with probability n�1/2 and 1 otherwise. Again we
claim that no algorithm can distinguish between the functions with probability greater than 1/2.
Indeed, since f

1

, f
2

are identical on sets of size different than k, and their value only depends on the
set size, querying these sets doesn’t help the algorithm (the oracle calls on these sets can be simulated).
As for sets of size k, the algorithm will see a mix of 2k� 1, 2k, and at most one value of 4k2/(k� 1).
If the algorithm sees the value 4k2/(k � 1) then it was given access to f

2

. However, the algorithm
will see this value only with probability 1/

p
n. Conditioning on not seeing this value, the best policy

the algorithm can adopt is to guess f
2

if the number of 2k values is at least 1 + (

n
k)p
n

, and guess f
1

otherwise. The probability of success with this test is 1/2 + O(1/
p
n) (regardless of whether the

underlying function is f
1

or f � 2). Any algorithm which would approximate the best set of size k
to an expected ratio better than (2k � 1)/2k + !(1/

p
n) could be used to distinguish between the

function with an advantage greater than 1/
p
n, and this puts a bound of (2k� 1)/2k+O(1/

p
n) on

the expected approximation ratio.

25

We note that if the algorithm is not allowed to query the oracle on sets of size greater than k, Claim D.1
can be extended to show a ⌦(1/n) inapproximability, so choosing a random element is almost the
best possible course of action.

E From maximizing f to maximizing f̃

Similar to the previous section, let f be a submodular function, let g be a function which is derived
from f by sampling for each x ⇢ [n] a function h 2D H and setting g(x) = h(f(x)). In this section
we assume that the family H consists of monotone concave functions. We are trying to maximize g
under an intersection of matroids F . Suppose that we are allowed unlimited oracle access to f , but
only nc oracle invocation of g for some c > 0. Let ALG(nc

) be the following algorithm:

1. Find sets S
1

, S
2

, . . . Snc such that Si = argmaxS2[n],S2P,S 6=S1,S2...Si�1
.

2. Output argmaxSi g(Si)

Lemma E.1. Algorithm ALG(nc
) is optimal if we are only allowed nc oracle invocations of g.

Note that we are not necessarily finding the optimal set, but this is the best one can do in this setting.

To set a more realistic model, let S⇤ = argmaxS⇢[n], S2F f(S), and suppose that we are given a set
˜S 2 F , | ˜S| � 1.01c log /(✏ log(1/✏)) such that f(˜S) � ↵f(S⇤) for some ↵ > 0.

We are still allowed nc oracle calls to g, but we are not allowed any oracle calls to f . Let ALG be the
following algorithm:

1. Find sets S
1

, S
2

, . . . Snc ⇢ ˜S with no repetitions, such that Si is chosen at random between
all sets with maximal intersection size with ˜S.

2. Output argmaxSi g(Si)

Lemma E.2. Algorithm ALG gives an ↵(1� ✏) approximation to ALG(nc
).

Proof. Let ˜S�j be all the subsets of ˜S of size k � j. We have |S�j | =

�k
j

�
. Let ↵ =

1.01clogn/log(1/✏). We claim that in step 1 of ALG the set Snc has at least k � ↵ elements.
To see this, we let

log(

↵X

j=1

✓
k

j

◆
) � log(

✓
k

↵

◆
)

� 0.999kH(↵/k) � 0.999k(↵/k) log(k/↵)

� 0.999↵ log(k/↵) � 0.999↵ log(1/✏) � c log n

So there are at least nc different sets created in the first step. As ↵  | ˜S|/✏, the expected value
of f(Si) is at least (1 � ✏)f(S). The expected value of running ALG is at least the maximum of
h
1

((1� c/k)f(S)), . . . hnc
((1� c/k)f(S)) where hi is sampled independently from H according

to D. Since each hi is convex, in expectation this is at least the maximum of nc samples of the form
h((1� ✏)f(S)) where h is sampled independently each time.

If H is bounded and independent of n, then we get
Lemma E.3. Algorithm ALG gives an (1� 2✏) approximation to the optimal value.

The proof relies on the fact that if one samples H enough times then one gets a value which is a 1� ✏
approximation to the optimal value. We note that in this case it is enough to sample H any super
constant number of times (when n is large enough), so we no longer need any requirement on the
size of ˜S.

26

F Extensions

F.1 Additive approximations

Throughout this paper we assumed the approximation is multiplicative, i.e. we defined the oracle
to return ˜f(S) = ⇠S · f(S). An alternative model is one where the approximation is additive, i.e.
˜f(S) = f(S) + ⇠S , where ⇠S ⇠ D. We note that the impossibility results for functions that are
✏-close to submodular also apply to additive approximations.

From a technical perspective, the problem remains non-trivial. Fortunately, all the algorithms
described above apply to the additive noise model, modulo the weak concentration bounds which
become straightforward:

˜F (S [x) =

1

|BS(x)|
X

z2BS(x)

˜f(S [z)

=

1

|BS(x)|
X

z2BS(x)

(f(S [z) + ⇠S[z

)

=

1

|BS(x)|

0

@
X

z2BS(x)

f(S [z) +

X

z2BS(x)

⇠S[z

1

A

Thus, by applying a concentration bound we can show that a bundle x whose noisy mean value is
maximal implies that its non-noisy mean marginal contribution FS(x) is approximately maximal.

F.2 Correlated Approximations

No algorithm can optimize a monotone submodular function under a cardinality constraint given
access to a approximate oracle whose multipliers are arbitrarily correlated across sets, even when the
support of the distribution is arbitrarily small (this is implied from [HS17]). In light of this, one may
wish to consider special cases of correlated distributions.

Guarantees for d-correlated distributions. Our algorithms can be extended to a model in which
querying similar sets may return results that are arbitrarily correlated, as long as querying sets which
are sufficiently far from each other gives independent answers.
Definition. We say that the samples are d-correlated if for any two sets S and T , such that |S \ T |+
|T \ S| > d we have that the approximation is applied independently to S and to T .

For this model we show that we can obtain an approximation arbitrarily close to 1� 1/e for O(1)-
correlated noise when k � 2.

Modification of algorithms for small k for O(1)-correlated noise. We add c� d/✏ elements at
each phase of the algorithm. We modify the definition of ˜F in the following way. First we take a
an arbitrary partition P

1

, . . . P
(n�|S|)/d on the elements not in S, in which each Pi is of size d, and

a partition Q
1

. . . Q
(|S|+|A|)/d of the elements in S [A. We estimate the value of a set A given S

using:

˜F (S [A) =

d2

(|S|+ |A|)(|N |� |S|� |A|)
X

Qi2A

X

Pj

˜f(((S [A) \Qi) [Pj)

and modify the rest of the algorithm accordingly.

Correctness relies on three steps:

1. First, when we are in iteration i of the algorithm (after we already added (i� 1)c elements
to S), all the sets we apply the oracle on are of size c · i, and hence they are independent of
any set of size c(i� 1) or less which were used in previous phases;

27

2. Second, when we evaluate ˜F (S [A) for a specific set A, we only use sets which are
independent in the comparison. Here we rely on changing d elements in A each time, and
replacing them by another set of d elements;

3. Finally, we treat each set A separately, and show that if its marginal contribution is negligible
then w.h.p its mean smooth value is not too large, and if its marginal contribution is not
negligible, then w.h.p. ˜F (S [A) approximates F (S [A) well. Taking a union bound over
all the bad events we get that the set A chosen has large (non-noisy) smooth mean value.

G More related work

The seminal works of [NWF78b, FNW78] show that the greedy algorithm gives a factor of 1�1/e for
maximizing a submodular function under a cardinality constraint and a factor 1/(P+1) approximation
for intersection of P matroids. Thirty years later Vondrak [Von08] proposed the continuous greedy
algorithm, which achieves a 1�1/e approximation for Matroid constraints. This guarantee is optimal
in the value oracle model, even for simple problems like max-cover [Fei98, MSV08, KLMM05,
NW78].

Other cases have different approximation constants. One can do better than 1� 1/f with demand
queries [FV06]. Non monotone functions have also been studied [FMV11, LMNS09, BFNS12,
BFNS14] but we leave approximate versions of such functions to future research. As for techniques
for submodular optimization which resemble ours, we note rounding frameworks, optimization of
multilinear relaxations and convex relaxations [AS04, CE11, CCPV07, Von08, CJV15, VCZ11].

On the applications front, Submodular utilities have been studied extensively in game theory
(e.g. [DNS05, DS06, DLN08, MSV08, BDF+10, DFK11, PP11, DRY11, DV12, PSS08, SS08,
BSS10, LSST13]. However, lately it is more and more common to assume that valuations are
not exactly submodular [FFI+15]. Similarly, many problems in ML are modeled via submod-
ular functions (e.g. identifying influencers in social networks [KKT03, RLK11] sensor place-
ment [LKG+07, GFK10], learning in data streams [SGK09, GK10, KMVV13, BMKK14], informa-
tion summarization [LB11a, LB11b], adaptive learning [GK11], vision [JB11b, JB11a, KOJ13], and
general inference methods [KG07, JB11a, DK14]). We note that these functions are often inferred
from data, and may not be exactly submodular.

We especially mention the notion of Probably Mostly Approximately Correct (PMAC) learnability
due to Balcan and Harvey [BH11]. Informally, PMAC-learnability guarantees that after observing
polynomially-many samples of sets and their function values, one can construct a surrogate function
that is with constant probability over the distributions generating the samples, likely to be an
approximation of the submodular function generating the data. If we assume that this function is
generated in an i.i.d manner we can optimize it.

G.1 Comparison to with previous work

The algorithms we develop here are very different from the one in [HS17]. At a high level, the
idea in [HS17] is to choose an arbitrarily set of elements H of size ⌦(

log logn
✏2) for a technique

called smoothing. Smoothing with the set H refers to the process of greedily selecting the element
a 2 N /2 H that maximizes

P
H0✓H

˜f(S [H 0 [a) in every iteration, when S is the solution used in

previous iterations. The size of H is determined to be ⌦(

log logn
✏

2

) for concentration bounds to hold.
For the approximation guarantees to go through, it is necessary to include the set H in the solution.
For this reason, this technique fundamentally requires a cardinality ⌦(

log logn
✏2) and does not hold for

matroids (consider a matroid in which committing to H prevents adding elements with high value).

The algorithm described here adds a constant number of elements at once, and does not commit to
selecting any particular set a priori. This lets us prove far stronger results. The new algorithm works
for any k, and not just for k � log log n. As our lower bounds show, somewhat counter-intuitively,
the the smaller cardinality constraint is, the more difficult the problem becomes as there is less room
for error. This technique is applicable for intersections of matroids. This relies on not committing to
any arbitrary set. We note that randomness would not salvage the algorithm presented in [HS17].

28

