
Supplemental Material

Ofir Lindenbaum∗
Applied Mathematics Program

Yale University
New Haven, CT 06511

ofir.lindenbaum@yale.edu

Jay S. Stanley III∗
Computational Biology & Bioinformatics Program

Yale University
New Haven, CT 06510

jay.stanley@yale.edu

Guy Wolf†
Applied Mathematics Program

Yale University
New Haven, CT 06511
guy.wolf@yale.edu

Smita Krishnaswamy† �
Departments of Genetics & Computer Science

Yale University
New Haven, CT 06510

smita.krishnawamy@yale.edu

1 Proof of proposition 4.1

Proof. Given xi ∈ RD, i = 1, ..., N , the degree d̂(i) at point xi is defined as discussed in Section 4.2.
SUGAR (Algorithm 1) generates ˆ̀(i) points around xi from a Gaussian distributionN (xi,Σ). After
generating ˆ̀(i) points, the degree at point xi can be defined as

d̄(i) =

N∑
j=1

e−
‖xi−xj‖2

2σ2 +

ˆ̀(i)∑
`=1

e−
‖xi−yi`‖2

2σ2 +
∑
˜̀

e−
‖xi−y ˜̀‖

2

2σ2 . (1)

In order to equalize the distribution, we require that the expectation of the degree be independent of
xi, thus, we set E

[
d̄(i)

]
= C, i = 1, ..., N , where C is a constant that will be addressed later in the

proof. Further, we notice that the first term on the right hand side of Eq. 1 can be substituted by d̂(i),
while the second term is a sum of ˆ̀(i) random variables. The third term accounts for the influence of
points generated around xj , j 6= i on the degree at point xi. While it is hard to find a closed form
solution for the number of points required at each i, we can derive bounds on the required value
based on two simple assumptions. First, to find an upper bound, we assume that the points generated
around xi have negligible effect on the d̂(j) at point j 6= i. This leads to an upper bound, because in
practice the degree is affected by other points as well. We note that this assumption should hold with
proper choices of σ and Σi, i = 1, ..., N . By substituting in the constant C, the term d̂(i), and using
the independence assumption, the expectation of Eq. 2 can be written as

C− d̂(i) = E

 ˆ̀(i)∑
`=1

e−
‖xi−yi`‖2

2σ2

 . (2)

Then, since the variables yi` are i.i.d., then the right hand side of Eq. 2 becomes

ˆ̀(i)E

[
e−
‖xi−yi‖2

2σ2

]
=

ˆ̀(i)

det (2πΣi)
1/2

∫
RD

e−
‖xi−yi‖2

2σ2 e−(xi−yi)
TΣ−1

i (xi−yi)dyi,

∗These authors contributed equally
†These authors contributed equally; � Corresponding author

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



and then using a change of variables ỹ = yi − xi, the integral simplifies to

ˆ̀(i)

det (2πΣi)
1/2

∫
RD

e
−(xi−yi)

T
(
Σ−1

i + I
2σ2

)
(xi−yi)

dyi =

ˆ̀(i)

det

(
I +

det(Σi)
2σ2

)0.5 ,

where the final step is based on the integral of a Gaussian and a change of variables. Finally, this

leads to an upper bound ˆ̀(i) ≤ det

(
I +

det(Σi)
2σ2

)0.5

[C − d̂(i)] on the number of points ˆ̀(i). By

choosing C = max(d̂(·)) we guarantee that ˆ̀(i) ≥ 0, which means we are not removing points.

Now, by considering the third term on the right side of Eq. 1, we derive a lower bound on ˆ̀(i). The

term
∑

˜̀e
−‖xi−y ˜̀‖2

2σ2 accounts for points generated around neighbor points around xi. The number
of points in the region of ‖xi − xj‖2 . σ2 is proportional to the degree d̂(i). For the lower bound,
we assume that the number of points generated by each neighbor of xi is no more than ˆ̀(i) + 1. This
assumption becomes realistic by imposing smoothness on the function ˆ̀(i). Plugging this assumption
and the degree value as a measure of connectivity into Eq. 1 we get that

d̄(i) ≤ d̂(i) +

ˆ̀(i)∑
`=1

e−
‖xi−yi`‖2

2σ2 + d̂(i)

ˆ̀(i)+1∑
˜̀=1

e−
‖xi−y ˜̀‖2

2σ2 ,

we now take the expectation of both sides

C ≤ d̂(i) +E

 ˆ̀(i)∑
`=1

e−
‖xi−yi`‖2

2σ2

+ d̂(i)E

ˆ̀(i)+1∑
˜̀=1

e−
‖xi−y ˜̀‖2

2σ2


≤ d̂(i) +

[
d̂(i) + 1

]
E

ˆ̀(i)+1∑
`=1

e−
‖xi−yi`‖2

2σ2

 ,
by replacing y ˜̀ by yi˜̀ we increase the expectation value. Finally, exploiting the i.i.d. assumption and
the Gaussian distribution we conclude that by replacing the mean with similar steps as used for the
upper bound we conclude that

det

(
I +

Σi

2σ2

)0.5 [
max(d̂(·))− d̂(i)

]
/
[
d̂(i) + 1

]
− 1 ≤ ˆ̀(i),

which completes the proof.

2 Implementation

SUGAR has been implemented in Matlab and in Python. The results presented in Section 5 are based
on the Matlab implementation. The code is accessible at: github.com/KrishnaswamyLab/SUGAR.
The implementation follows Algorithm 1, with modification to allow flexibility in choosing the
number of points ` and estimating density. We remark that the main hyper-parameter k should be set
based on the connectivity of existing data points.

2

https://github.com/KrishnaswamyLab/SUGAR

	Proof of proposition 4.1
	Implementation

