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Figure 3: The method for estimating information theoretic measures. (a) Step 1: Query for the
distance to the kth nearest neighbor of each point i in the space X . (b) Step 2: Inquire for the number
of points lying within the ρk,i-neighborhood of each point i in the subspaces of X including itself.

A Pictorial Representation of Estimators

The Figure 3a represents the step 1 (distance query or Query step in the algorithm) and the Figure 3b
represents the steps 2 and 3 (numbers inquiry, or the Inquire step in the algorithm). Note that in the
graphics we used `2-norm to give better intuition on the process, while in our proofs and simulations,
we use `∞-norm.

B Multivariate Mutual Information

In [10], Multivariable Mutual Information (MMI) is defined as follows: let Π(X ) be the collection
of all possible partitions of P which split X into at least two non-empty disjoint subsets. For any
partition P ∈ Π(X ), the product distribution ΠC∈PPXC

specifies an independence relation, i.e.,
XC ’s are treated as agglomerated random variables and are mutually independent. Given a particular
partition, define an information measure IP(X) as :

IP(X) =
1

P − 1
D(PX ‖ ΠC∈PPXC

) (6)

Then, MMI is defined as:

MMI(X) = min
P∈Π(X )

IP(X) (7)

This can cast as a functional of our Graph Divergence Measure by choosing for every partition,
P ∈ Π(X ), a DAG GP with all XC’s forming an aggregate node but disconnected from each other
and thus inducing a measure PPX . Thus,

IP(X) =
1

P − 1
GDM(PX ‖ PPX) (8)

which implies,

MMI(X) = min
P∈Π(X )

GDM(PX ‖ PPX) (9)

C Directed Information

In this section, we will derive the expression of the directed information from XT = (X1, . . . , XT )
to Y T = (Y1, . . . , YT ) in terms of two graph divergence measures. For the simplicity of notations
and logic we will only do it assuming X and Y are discrete. However, it’s easily extendable to the
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case of mixture distributions using the notion of Radon-Nikodym derivative. From the definition of
the directed information we have:

I
(
XT → Y T

)
(10)

=

T∑
t=1

I
(
Xt;Yt

∣∣Yt−1

)
(11)

=

T∑
t=1

∑
xt,yt

(
PXtY t(xt, yt) log

PYt|Xt,Y t−1(yt|xt, yt−1)

PYt|Y t−1(yt|yt−1)

)
(12)

=
∑
xT ,yT

PXTY T (xT , yT )

T∑
t=1

log
PYt|Xt,Y t−1(yt|xt, yt−1)

PYt|Y t−1(yt|yt−1)
(13)

=
∑
xT ,yT

PXTY T (xT , yT ) log

∏T
t=1 PYt|Xt,Y t−1(yt|xt, yt−1)∏T

t=1 PYt|Y t−1(yt|yt−1)
(14)

=
∑
xT ,yT

PXTY T (xT , yT ) log

∏T
t=1 PYt|Xt,Y t−1(yt|xt, yt−1)

PY T (yT )
(15)

=
∑
xT ,yT

PXTY T (xT , yT ) log

∏T
t=1 PYt|Xt,Y t−1(yt|xt, yt−1)PXt|Xt−1(xt|xt−1)

PXT (xT )PY T (yT )
(16)

=
∑
xT ,yT

PXTY T (xT , yT ) log
PXTY T (xT , yT )

PXT (xT )PY T (yT )

−
∑
xT ,yT

PXTY T (xT , yT ) log
PXTY T (xT , yT )∏T

t=1 PYt|Xt,Y t−1(yt|xt, yt−1)PXt|Xt−1(xt|xt−1)
(17)

= D
(
PXTY T ‖PIXTY T

)
−D

(
PXTY T ‖PCXTY T

)
(18)

= GDM
(

(XT , Y T ),GI
)
−GDM

(
(XT , Y T ),GC

)
(19)

The distributions PIXTY T = PXT PY T and PCXTY T =
∏T
t=1 PYt|Xt,Y t−1PXt|Xt−1 represent the in-

dependent distribution between XT and Y T , and the causal distribution from XT to Y T respectively.

D Variational Representation of Graph Divergence Measure

The first part follow from the following property of KL divergence:

D(PX‖QX) = D(PX‖PX) +

d∑
j

D(PXj |XPa(j)
‖QXj |XPa(j)

|PXj−1
1

) (20)

The second part follows from the standard Donsker-Varadhan characterizations of vanilla divergence
as in [55].

E Investigating assumptions in Theorem 1

In this section, we will investigate the validity of the assumptions for various types of distributions.
In particular, we will investigate the different types of distributions we had mentioned: (1) finitely
discrete; (2) continuous; (3) finitely discrete over some dimensions while continuous over others; (4)
a mixture of the previous cases; (5) has a joint density supported over a lower dimensional manifold.
As we had mentioned, these cases represent almost all the real world data. We note that the estimator
is well defined only when X = RdX ; i.e. all the alphabets be in real space.

14



We will examine the Assumptions 1.2 and 1.3 for each case separately. The Assumption 1.1 is a
parametric assumption related to the convergence of the algorithm and is not directly related to the
distribution of the data. Jointly considered with the Assumption 1.2, it controls the boundary effects
between the continuous and the discrete regions.

E.1 Finitely discrete distribution

For a finitely discrete distribution the Assumption 1.2 holds by definition. The Assumption 1.3
trivially holds since the size of sample space |X | is finite.

E.2 Continuous distribution

For a continuous distribution, the Assumption 1.2 holds since there is no discrete component.

The distribution is absolutely continuous with respect to the Lebesgue measure λ meaning that
PX(A) = 0 for any subset A ⊂ X implies λ(A) = 0. Thus we can conclude that there exists a
density g : X → R+ such that PX(A) =

∫
A
g dλ. Naturally PX(X ) =

∫
X g dλ = 1.

Furthermore if the density function g is bounded everywhere and the variable has a bounded support,
the Assumption 1.3 is fulfilled.

E.3 Finitely discrete over some dimensions while continuous over others

In this case, the variable set X can be decomposed to two sets XD and XC representing the
finitely discrete and continuous dimensions respectively. So for any realization of the discrete
dimensions XD = xD the probability mass function hXD (xD) exists, and a conditional den-
sity gXC |XD (xC |xD) is well defined. We can define an auxiliary function PXC |XD (xC , r|xD) ≡
PXC |XD

{
a ∈ XC : ‖a− xC‖∞ ≤ r

∣∣XD = xD
}

. Thus we can write

PX(xC , xD, r) = PX
{

(a, b) ∈ X : b = xD, ‖a− xC‖∞ ≤ r
}

= PXC |XD (xC , r|xD)hXD (xD)
(21)

We will show that if for any xD the continuous distribution over XC satisfies the Assumptions 1 as
discussed in the Section E.2, then we can see that PX will also satisfy the assumptions.

Let’s define fxD (xC) for any fixed xD as:

fxD (xC) = lim
r→0

PXC |XD (xC , r|xD)

d∏
l=1

Ppa(Xl)C |pa(Xl)D
(
xpa(l)

C , r
∣∣xpa(l)

D
)

Ppa+(Xl)C |pa+(Xl)D
(
xpa+(l)

C , r
∣∣xpa+(l)

D
) (22)

Assuming the limit exists everywhere. Thus the Radon-Nikodym Derivative f can be written as:

f(x) = lim
r→0

PX(xC , xD, r)

d∏
l=1

Ppa(Xl)

(
xpa(l)

C , xpa(l)
D, r

)
Ppa+(Xl)

(
xpa+(l)

C , xpa+(l)
D, r

) (23)

= lim
r→0

PXC |XD (xC , r|xD)

d∏
l=1

Ppa(Xl)C |pa(Xl)D
(
xpa(l)

C , r
∣∣xpa(l)

D
)

Ppa+(Xl)C |pa+(Xl)D
(
xpa+(l)

C , r
∣∣xpa+(l)

D
)

×hXD (xD)

d∏
l=1

hpa(Xl)

(
xpa(l)

D
)

hpa+(Xl)

(
xpa+(l)

D
) (24)

= fxD (xC)× hXD (xD)

d∏
l=1

hpa(Xl)

(
xpa(l)

D
)

hpa+(Xl)

(
xpa+(l)

D
) (25)

Therefore for Assumption 1.3 we have:∫
X
|log f(x)| dPX ≤

∑
xD

hXD (xD)

∫
XC

∣∣log fxD (xC)
∣∣ gXC |XD (xC |xD)dxC

+
∑
xD

hXD (xD)

∣∣∣∣∣log hXD (xD)

d∏
l=1

hpa(Xl)

(
xpa(l)

D
)

hpa+(Xl)

(
xpa+(l)

D
) ∣∣∣∣∣ (26)
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In which we used the fact that E [log f(x)] = EXD

[
E
[
log f(xC , xD)

∣∣XD = xD
]]

. The first
term above is upper-bounded since we assumed that continuous distribution over XC satisfies the
Assumption 1.3 for any xD. The second term is upper-bounded since it’s a finitely discrete distribution
as discussed in Section E.1. Thus

∫
X |log f(x)| dPX <∞ and the Assumption 1.3 holds.

E.4 A mixture of the previous cases

In this case, we assume that the probability can be described as a linear combination of a continuous
and a discrete distribution, i.e. without loss of generality we can assume that for any subset A ⊂ X
the distribution can be described as P(A) = αCPCX(A) + αDPDX(A) in which αC + αD = 1. We
note that the PDX does not represent a mass function here since the mass function is only defined over
a discrete alphabet XD = {x1, ..., xm} ⊂ X while PDX needs to admit the continuous domain X .
Thus we relate PDX to the mass function hDX(.) as PD(A) =

∑
x∈XD 1{x∈A}h

D
X(x). Furthermore we

can see that for any x ∈ XD and for r small enough:

PDX (x, r) ≡ PDX
(
Br(x)

)
= hDX(x) (27)

If x /∈ XD then for small enouth r we have PDX (x, r) = 0.

The Assumption 1.2 holds since the discrete distribution PDX is finite, and hence the number of total
discrete points will be finite.

For the Assumption 1.3 we have:∫
X
|log f(x)| dPX = αC

∫
X
|log f(x)| dPCX + αD

∑
x∈XD

hDX(x) |log f(x)| (28)

and if the continuous distribution complies with the assumptions mentioned in Section E.2 then the
term above is upper-bounded and the Assumption 1.3 holds.

E.5 A distribution with a joint density supported over a lower dimensional manifold

This case simply means that the probability distribution PX in X can be mapped to a probability
distribution PY in a lower-dimensional space Y where dY < dX , via a one-to-one continuous
function h : X → Y . If the lower-dimnesional distribution PY is continuous complying with the
properties discussed in the Section E.2, then it will preserve all the properties through the inverse
mapping h−1 : Y → X and PX hence PX will satisfy the Assumptions 1. If the distribution has finite
discrete components either as a discrete or as a mixture distribution, the finiteness of the components
will be preserved as well and hence PX will satisfy the Assumptions 1.

Therefore this category of distributions will satisfy the Assumptions 1 if the distribution PY satisfies
them.

F Consistency Proofs

F.1 Proof of Theorem 1

First let’s generalize the definition of PX(x, r) in Equation 5 to any subset S ⊆ X , i.e. for any point
s ∈ S we define:

PS(s, r) = PS
{
a ∈ S : ‖a− s‖∞ ≤ r

}
= PS

{
Br(s)

}
(29)

Thus PS(s, r) is the probability of an `∞ ball of radius r centered at s, or equivalently, a hypercube
with the edge length of 2r centered at the point s.

To prove the asymptotic unbiasedness of the estimator, we will first write the Radon-Nikodym
derivative in an explicit form via the following lemma.
Lemma 3. For almost every x ∈ X :

dPX
dPX

(x) = f(x) = lim
r→0

PX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) (30)
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Proof. Please see the section F.2.

Now notice that ĜDM
(N)

(X,G) = 1
N

∑N
i=1 ζi in which all the ζi’s are identically distributed. Thus

we have E[ĜDM
(N)

(X,G)] = E[ζ1]. Therefore, the bias can be written as:∣∣∣∣E [ĜDM
(N)

(X,G)

]
−GDM(X,G)

∣∣∣∣ =

∣∣∣∣EX [E[ζ1|X]]−
∫
X

log f(X)dPX
∣∣∣∣ (31)

≤
∫
X
|E[ζ1|X]− log f(X)| dPX (32)

Now we will give upper bounds for |E[ζ1|X]− log f(X)| for every x ∈ X . Similar to the technique
used by [51], we divide the domain of X into three parts as X = Ω1

⋃
Ω2

⋃
Ω3 where:

• Ω1 = {x : f(x) = 0}
• Ω2 = {x : f(x) > 0, PX(x, 0) > 0}
• Ω3 = {x : f(x) > 0, PX(x, 0) = 0}

For each of the domains, we show that limN→∞
∫

Ωi
|E[ζ1|X = x]− log f(x)| dPX = 0.

For x ∈ Ω1:

The probability of Ω1 is zero with respect to PX , since:

PX(Ω1) =

∫
Ω1

dPX =

∫
Ω1

f(x)dPX =

∫
Ω1

0dPX = 0 (33)

In which the second equality is due to Lemma 3. Thus
∫

Ω1
|E[ζ1|X = x]− log f(x)| dPX = 0.

For x ∈ Ω2:

In this case f(x) is obviously the same as PX(x, 0)
∏d
l=1

Ppa(Xl)(xpa(l),0)
Ppa+(Xl)(xpa+(l),0)

. We will first show that

the probability of the k-nearest neighbor distance ρk,1 being non-zero is small, which means we will
use the number of samples being equal to x as k̃i, and we will show that the mean of the estimate ζ1
is close to log f(x).

We notice that for x, the probability of ρk,1 > 0 is equal to the probability that x is observed at most
k − 1 times. So it can be upper bounded as:

P
(
ρk,1 > 0

∣∣∣X = x
)

(34)

=

k−1∑
m=0

(
N − 1
m

)
PX(x, 0)m

(
1− PX(x, 0)

)N−1−m
(35)

≤
k−1∑
m=0

Nm
(

1− PX(x, 0)
)N−k

(36)

≤ kNk
(

1− PX(x, 0)
)N−k

(37)

≤ kNke−(N−k)PX(x,0) (38)

Now let’s consider the case when ρk,1 = 0. We can write the term ζ1 in the form:

ζ1 = ψ(k̃1) +

d∑
l=1

(
1{pa(Xl)6=∅} log(n

(1)
pa(Xl)

+ 1)− log(n
(1)
pa+(Xl)

+ 1)
)

+KN
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The term KN depends only on N and the structure of the Bayesian model PX and is independent of
the observed samples, and in general is equal to:

KN = − logCdX +

d∑
l=1

(
logCdpa+(Xl)

− logCdpa(Xl)

)
+

(
d∑
l=1

1{pa(Xl)=∅} − 1

)
logN. (39)

In which the terms CdS indicate the volume of a unit ball in an dS-dimensional space S. Since
we are using `∞-norm in our algorithm and proofs, all CdS terms will be equal to 1 and hence
KN =

(∑d
l=1 1{pa(Xl)=∅} − 1

)
logN as it appeared in Algorithm 1.

Then for the case of ρk,1 = 0 we can write:

∣∣∣E[ζ1|X = x, ρk,1 = 0]− log f(x)
∣∣∣ (40)

=

∣∣∣∣E[ψ(k̃i) +

d∑
l=1

(
1{pa(Xl)6=∅} log(n

(1)
pa(Xl)

+ 1)− log(n
(1)
pa+(Xl)

+ 1)
)

+

(
d∑
l=1

1{pa(Xl)=∅} − 1

)
logN

∣∣∣∣X = x, ρk,1 = 0

]

− logPX(x, 0)

d∏
l=1

Ppa(Xl)

(
xpa(l), 0

)
Ppa+(Xl)

(
xpa+(l), 0

) ∣∣∣∣ (41)

≤
∣∣∣E[ψ(k̃1)|X = x, ρk,1 = 0]− logNPX(x, 0)

∣∣∣ (42)

+

d∑
l=1

∣∣∣E[log(n
(1)
pa+(Xl)

+ 1)|X = x, ρk,1 = 0]− logNPpa+(Xl)

(
xpa+(l), 0

)∣∣∣ (43)

+

d∑
l=1

1{pa(Xl) 6=∅}

∣∣∣E[log(n
(1)
pa(Xl)

+ 1)|X = x, ρk,1 = 0]− logNPpa(Xl)

(
xpa(l), 0

)∣∣∣ (44)

We notice that k̃1 is the number of samples among {x(i)}Ni=1 such that Xi = x, where each
sample is independently equal to x with probability PX(x, 0). Therefore the distribution of k̃1 is
Bino (N,PX(x, 0)). Similarly, for any S ⊂ X , nS,1 + 1 is the number of samples among {x(i)}Ni=1

such that s(i) = s; i.e. projection of x(i) over S is equal to the projection of x over S. Thus
nS,1 + 1 ∼ Bino (N,PS(s, 0)). In addition to that, the event ρk,1=0 is equivalent to k̃1 ≥ k. Thus to
upperbound term 42 and any of the individual terms inside the summations of terms 43 and 44 we
propose the lemma below:

Lemma 4. If X is distributed as Bino(N, p) and m ≥ 0 , then:

|E [log(X +m)|X ≥ k]− log(Np)| ≤ U(k,N,m, p) (45)

Where U(k,N,m, p) is given by:

U(k,N,m, p) = max


∣∣∣∣∣∣log

 1 + m
Np

1− exp
(
−2 (Np−k)2

N

)
∣∣∣∣∣∣ , 1

1− exp
(
−2 (Np−k)2

N

) 3

2Np

 (46)

Proof. Please see Section F.3.

Remark. Since the Assumption 1.1 states that k/N → 0 as N → ∞, then (Np − k)2/N =
N(p− k/N)2 →∞, and the upperbound U(k,N,m, p) will converge to 0 as N →∞ for any p.

From Lemma 4 we have:
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∣∣∣E[log(n
(1)
S + 1)|X = x, ρk,1 = 0]− logNPS(s, 0)

∣∣∣ (47)

=
∣∣∣E[log(n

(1)
S + 1)|X = x, n

(1)
S + 1 ≥ k]− logNPS(s, 0)

∣∣∣ ≤ U(k,N, 0, PS(s, 0)
)

(48)

For any of the individual terms inside the summations of terms 43 and 44. For the term 42 we
notice that |ψ(k̃1) − log(k̃1)| ≤ 1/k̃1 ≤ 1/k [56]. Thus this term can be bounded similarly by
U (k,N, 0, PX(x, 0)) + 1/k. By combining all these bounds, we obtain:∣∣∣E[ζ1|X = x, ρk,1 = 0]− log f(x)

∣∣∣ (49)

≤
d∑
l=1

(
U
(
k,N, 0, Ppa(Xl)(xpa(l), 0)

)
+ U

(
k,N, 0, Ppa+(Xl)(xpa+(l), 0)

))
+U
(
k,N, 0, PX(x, 0)

)
+

1

k
(50)

Assumption 1.2 implies that discrete probabilities and hence U
(
k,N, 0, p

)
terms are bounded; i.e.

there exists a p̂ such that for any x ∈ Ω2:
U
(
k,N, 0, PX(x, 0)

)
≤ U

(
k,N, 0, p̂

)
U
(
k,N, 0, Ppa(Xl)(xpa(l), 0)

)
≤ U

(
k,N, 0, p̂

)
for l = 1, . . . , d

U
(
k,N, 0, Ppa+(Xl)(xpa+(l), 0), 0)

)
≤ U

(
k,N, 0, p̂

)
for l = 1, . . . , d

(51)

Therefore: ∣∣∣E[ζ1|X = x, ρk,1 = 0]− log f(x)
∣∣∣ ≤ (2d+ 1)U

(
k,N, 0, p̂

)
+

1

k
(52)

If we combine it with the case of ρk,i > 0, we obtain that:∣∣∣E[ζ1|X = x]− log f(x)
∣∣∣ (53)

≤
∣∣∣E[ζ1|X = x, ρk,1 > 0]− log f(x)

∣∣∣× P(ρk,1 > 0)

+
∣∣∣E[ζ1|X = x, ρk,1 = 0]− log f(x)

∣∣∣× P(ρk,1 = 0) (54)

≤
(

(2d+ 1) logN + |log f(x)|
)
kNke−(N−k)PX(x,0) + (2d+ 1)U

(
k,N, 0, p̂

)
+

1

k
(55)

Where we used the fact that |ζ1| ≤ (2d+ 1) logN . Integrating over Ω2, we can write:∫
Ω2

∣∣∣E[ζ1|X = x]− log f(x)
∣∣∣dPX (56)

≤
(

(2d+ 1) logN +

∫
Ω2

|log f(x)| dPX
)
kNke−(N−k) infx∈Ω2

PX(x,0) (57)

+ (2d+ 1)U
(
k,N, 0, p̂

)
+

1

k
(58)

By Assumption 1.1, k goes to infinity as N goes to infinity, so 1/k vanishes as N grows bound-
lessly. The term U

(
k,N, 0, p̂

)
will also converge to zero as we saw. From assumption 1.3,∫

Ω2
|log f(x)| dPX < +∞. Thus the first term also converges to 0 as N →∞. Thus:

lim
N→∞

∫
Ω2

∣∣∣E[ζ1|X = x]− log f(x)
∣∣∣dPX = 0 (59)
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For x ∈ Ω3:

In this case, PX(x, r) is a monotonic function of r such thatPX(x, 0) = 0 and limr→∞ PX(x, r) = 1.

Hence we can view logPX(x, r)
∏d
l=1

Ppa(Xl)(xpa(l),r)
Ppa+(Xl)(xpa+(l),r)

as a function of PX(x, r) and it converges

to log f(x) as PX(x, r) → 0, for almost every x. Since PX(Ω3) ≤ 1 < ∞ and we know∫
Ω3
|log f(x)| dPX < ∞, By Egorov’s theorem, for any ε > 0, there exists a subset E ⊆ Ω3

with PX(E) < ε and
∫
E
|log f(x)| dPX < ε, such that the term logPX(x, r)

∏d
l=1

Ppa(Xl)(xpa(l),r)
Ppa+(Xl)(xpa+(l),r)

converges uniformly on Ω3 \ E as PX(x, r)→ 0. Now let’s assume εN is a sequence converging to
0. Consequently, The corresponding sets EN will also create a sequence. For any fixed N and for
x ∈ EN , we notice that |ζ1| ≤ (2d+ 1) logN , so we have:∫

EN

∣∣∣E[ζ1|X = x]− log f(x)
∣∣∣dPX (60)

≤
∫
EN

(
(2d+ 1) logN + |log f(x)|

)
dPX < εN

(
(2d+ 1) logN + 1

)
(61)

By choosing εN such that εN logN → 0 as N → ∞ (For example εN = 1/N ), we will have
limN→∞

∫
E
|E[ζ1|X = x]− log f(x)| dPX = 0.

For any x ∈ Ω3 \EN , since PX(x, 0) = 0, we know that P (ρk,1 = 0|X = x) = 0, so k̃1 = k with
probability 1. Conditioning on ρk,1 = r > 0, the term |E[ζ1|X = x]− log f(x)| can be decomposed
as: ∣∣∣E[ζ1|X = x]− log f(x)

∣∣∣ (62)

=

∣∣∣∣∫ ∞
r=0

(
E[ζ1|X = x, ρk,1 = r]− log f(x)

)
dFρk,1

(r)

∣∣∣∣ (63)

≤

∣∣∣∣∣
∫ ∞
r=0

(
logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

)
dFρk,1

(r)

∣∣∣∣∣ (64)

+

∣∣∣∣∫ ∞
r=0

(ψ(k)− logN − logPX(x, r)) dFρk,1
(r)

∣∣∣∣ (65)

+

d∑
l=1

∣∣∣∣ ∫ ∞
r=0

(
E
[
log(n

(1)
pa+(Xl)

+ 1)|(X, ρk,1) = (x, r)
]

− logNPpa+(Xl)(xpa+(l), r)
)
dFρk,1

(r)

∣∣∣∣ (66)

+

d∑
l=1

1{pa(Xl) 6=∅}

∣∣∣∣ ∫ ∞
r=0

(
E
[
log(n

(1)
pa(Xl)

+ 1)|(X, ρk,1) = (x, r)
]

− logNPpa(Xl)(xpa(l), r)
)
dFρk,1

(r)

∣∣∣∣ (67)

In which Fρk,1
(r) is the CDF of the k-nearest neighbor distance ρk,1 given X = x. The derivative of

this CDF with respect to PX(x, r) is given by:
dFρk,1

(r)

dPX(x, r)
=

(N − 1)!

(k − 1)!(N − k − 1)!
PX(x, r)k−1

(
1− PX(x, r)

)N−k−1

(68)

Upper bound for the term (64) :

Since PX(x, r)
∏d
l=1

Ppa(Xl)(xpa(l),r)
Ppa+(Xl)(xpa+(l),r)

converges to f(x) uniformly over Ω3 \ E as PX(x, r) → 0,

So for any δN and any x ∈ Ω3 \ E, there exists r1 such that for any r < r1:∣∣∣∣∣logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

∣∣∣∣∣ < δN (69)
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Let r2 be the value of r such that PX(x, r2) = 4k logN/N , and take rN = min{r1, r2}. Thus rN
depends on x, but δN does not depend on x and limN→∞ δN = 0. Therefore, (64) can be upper
bounded as:

∣∣∣∣∣
∫ ∞
r=0

(
logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

)
dFρk,1

(r)

∣∣∣∣∣ (70)

≤
∫ rN

r=0

∣∣∣∣∣logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

∣∣∣∣∣ dFρk,1
(r)

+

∫ ∞
r=rN

∣∣∣∣∣logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

∣∣∣∣∣ dFρk,1
(r) (71)

≤ δNP (ρk,1 ≤ rN |X = x)

+

(
sup
r≥rN

∣∣∣∣∣logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

∣∣∣∣∣
)
P (ρk,1 ≥ rN |X = x) (72)

First, P (ρk,1 ≤ rN |X = x) is smaller than 1. Secondly, since PX(x, r) ≥ 4k logN/N > 1/N
for r ≥ rN , so we have |logPX(x, r)| ≤ logN . The same bounds apply for any |PS(s, r)| as
well, as PS(s, r) ≥ PX(x, r). Thus by triangle inequality, the supremum is upper-bounded by
(2d+ 1) logN + |log f(x)|. Finally, the probability P (ρk,1 ≥ rN |X = x) is upper bounded by:

P (ρk,1 ≥ rN |X = x) (73)

=

k−1∑
m=0

(
N − 1
m

)
PX(x, rN )m (1− PX(x, rN ))

N−1−m (74)

≤
k−1∑
m=0

Nm (1− PX(x, rN ))
N−k (75)

= kNk

(
1− 4k logN

N

)N/2
(76)

≤ kNke−2k logN =
k

Nk
(77)

for N large enough such that N − k > N/2. Therefore 64 is upperbounded by:

∣∣∣∣∣
∫ ∞
r=0

(
logPX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) − log f(x)

)
dFρk,1

(r)

∣∣∣∣∣ (78)

≤ δN + k
(2d+ 1) logN + |log f(x)|

Nk
(79)

Upper bound for the term (65) :
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We have: ∫ ∞
r=0

(ψ(k)− logN − logPX(x, r)) dFρk,1
(r) (80)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

×
∫ ∞
r=0

(
PX(x, r)k−1(1− PX(x, r))N−k−1 logPX(x, r)

)
dPX(x, r) (81)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(
tk−1(1− t)N−k−1 log t

)
dt (82)

= ψ(k)− logN − (ψ(k)− ψ(N)) (83)
= ψ(N)− log(N) (84)

We notice that for any N we have ψ(N) < logN and limN→∞ (ψ(N)− logN) = 0.

Upper bound for the individual terms of (66) and (67) :
The upper bound for each of these terms follows the same logic, so we do the proof for an arbitrary
subset S ∈ {pa(Xl)}dl=1 ∪ {pa+(Xl)}dl=1.

The distributions of n(1)
S for all S ∈ {pa(Xl)}dl=1 ∪ {pa+(Xl)}dl=1 are given by the lemma below:

Lemma 5. Given X = x and ρk,1 = r > 0 and s being the projection of x over S , the term n
(1)
S − k

is distributed as Bino
(
N − k − 1, PS(s,r)−PX(x,r)

1−PX(x,r)

)
.

Proof. Please see the proof of Lemma B.2 in [51].

The bound on E[log(n
(1)
S + 1)|X = x, ρk,1 = r] is given by the Lemma B.3 in [51] which we restate

here:
Lemma 6. If X is distributed as Bino(N, p), then |E[log(X + k)]− log(Np+ k)| ≤ C/(Np+ k)
for some constant C.

Proof. Please see the proof of Lemma B.3 in [51].

Thus we can write:

∣∣∣∣∫ ∞
r=0

(
E
[
log(n

(1)
S + 1)|(X, ρk,1) = (x, r)

]
− logNPS(s, r)

)
dFρk,1

(r)

∣∣∣∣ (85)

≤

∣∣∣∣∣
∫ ∞
r=0

(
E[log(n

(1)
S + 1)|(X, ρk,1) = (x, r)]

− log

(
(N − k − 1)

PS(s, r)− PX(x, r)

1− PX(x, r)
+ k + 1

))
dFρk,1

(r)

∣∣∣∣∣ (86)

+

∣∣∣∣∣∣
∫ ∞
r=0

log
(N − k − 1)PS(s,r)−PX(x,r)

1−PX(x,r) + k + 1

NPS(s, r)

 dFρk,1
(r)

∣∣∣∣∣∣ (87)

≤
∫ ∞
r=0

∣∣∣∣∣
(
E
[
log(n

(1)
S + 1)|(X, ρk,1) = (x, r)

]
− log

(
(N − k − 1)

PS(s, r)− PX(x, r)

1− PX(x, r)
+ k + 1

))∣∣∣∣∣ dFρk,1
(r) (88)

+

∣∣∣∣Er [log
N(PS(s, r)− PX(x, r)) + (k + 1)(1− PS(s, r))

NPS(s, r)(1− PX(x, r))

]∣∣∣∣ (89)
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Where Er denotes the expectation over the distribution Fρk,1
. By the Lemma B.3 in [51], the term in

88 is upper bounded by:∫ ∞
r=0

∣∣∣∣∣
(
E
[
log(n

(1)
S + 1)|(X, ρk,1) = (x, r)

]
− log

(
(N − k − 1)

PS(s, r)− PX(x, r)

1− PX(x, r)
+ k + 1

))∣∣∣∣∣dFρk,1
(r) (90)

≤
∫ ∞
r=0

C

(N − k − 1)PS(s,r)−PX(x,r)
1−PX(x,r) + k + 1

dFρk,1
(r) (91)

≤
∫ ∞
r=0

C

k + 1
dFρk,1

(r) =
C

k + 1
(92)

The last inequality follows from the fact that PS(s, r) > PX(x, r) . For (89), using the fact that
log(x/y) ≤ (x− y)/y and Cauchy-Schwarz inequality, we have the following:

Er
[
log

N(PS(s, r)− PX(x, r)) + (k + 1)(1− PS(s, r))

NPS(s, r)(1− PX(x, r))

]
(93)

≤ Er
[
N(PS(s, r)− PX(x, r)) + (k + 1)(1− PS(s, r))

NPS(s, r)(1− PX(x, r))
− 1

]
(94)

= Er
[

(k + 1−NPX(x, r))(1− PS(s, r))

NPS(s, r)(1− PX(x, r))

]
(95)

≤

√√√√Er

[(
k + 1−NPX(x, r)

NPX(x, r)

)2
]
Er

[(
PX(x, r)(1− PS(s, r))

PS(s, r)(1− PX(x, r))

)2
]

(96)

Note that PS(s, r) ≥ PX(x, r) for all r, so the second expectation term is always smaller than or
equal to 1. For the first expectation, let t = PX(x, r) then we have:

Er

[(
k + 1−NPX(x, r)

NPX(x, r)

)2
]

(97)

=

∫ ∞
r=0

(
k + 1−NPX(x, r)

NPX(x, r)

)2

dFρk,1
(r) (98)

=
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(k + 1−Nt)2

N2t2
tk−1(1− t)N−k−1dt (99)

=
(N − 1)(N − 2)(k + 1)2

N2(k − 1)(k − 2)
− 2(N − 1)(k + 1)

N(k − 1)
+ 1 (100)

This term is upper bounded by C1(1/N + 1/k) for some constant C1 for N and k large enough.
Thus:

Er
[
log

N(PS(s, r)− PX(x, r)) + (k + 1)(1− PS(s, r))

NPS(s, r)(1− PX(x, r))

]
≤
√
C1(

1

N
+

1

k
) (101)

Similarly, by using the fact that log(x/y) > (x− y)/x and Cauchy-Schwarz inequality again, we
conclude that there are some constant C2 > 0 such that:

Er
[
log

N(PS(s, r)− PX(x, r)) + (k + 1)(1− PS(s, r))

NPS(s, r)(1− PX(x, r))

]
≥ −

√
C2(

1

N
+

1

k
) (102)

Therefore by combining all these bounds we obtain∣∣∣∣∫ ∞
r=0

(
E
[
log(n

(1)
S + 1)|(X, ρk,1) = (x, r)

]
− logNPS(s, r)

)
dFρk,1

(r)

∣∣∣∣ (103)

≤ C

k + 1
+

√
C ′(

1

k
+

1

N
) (104)
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where C ′ = max{C1, C2}.

Now putting all the bounds for Ω3 \ EN , we have:

∫
Ω3\EN

∣∣∣∣E [ζ1|X = x]− log f(x)

∣∣∣∣dPX (105)

≤ δN + k
(2d+ 1) logN +

∫
X |log f(x)| dPX

Nk

+ψ(N)− log(N) + 2d

(
C

k + 1
+

√
C ′(

1

k
+

1

N
)

)
(106)

From the assumptions 1, k increases as N →∞, and
∫
X |log f(x)| dPX <∞. Therefore the whole

upperbound vanishes as N goes to infinity. Thus for the entire set Ω3 we have:

lim
N→∞

∫
Ω3

∣∣∣∣E[ζ1|X = x)]− log f(x)

∣∣∣∣dPX = 0 (107)

F.2 Proof of Lemma 3

This proof is based on the Lebesgue-Besicovitch differentiation theorem (For example look at
Theorem 1.32 from [57]), stated as:

Theorem 7. Let µ be a Radon measure on Rd. For f ∈ L1
loc(µ),

lim
r→0

1

µ (Br(x))

∫
Br(x)

fdµ = f(x) (108)

for µ-a.e. x.

Let f = dPX

dPX
and µ = PX . Since µ is a probability measure, it is a Radon measure on Euclidean

space. Also, since
∫
X |f |dµ = 1, so it’s globally and therefore locally integrable with respect to µ.

Thus the conditions of the Theorem 7 are satisfied, and we can write:

lim
r→0

PX(x, r)

d∏
l=1

Ppa(Xl)

(
xpa(l), r

)
Ppa+(Xl)

(
xpa+(l), r

) (109)

= lim
r→0

P
{
Br(x)

}
∏d
l=1 PXl|pa(Xl)

{
Br (xl)

∣∣∣Br (xpa(l)
)} (110)

= lim
r→0

P
{
Br(x)

}
PX
{
Br(x)

} (111)

= lim
r→0

1

PX
{
Br(x)

} ∫
Br(x)

dPX
dPX

dPX (112)

=
dPX
dPX

(x) (113)
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F.3 Proof of Lemma 4

First, we upperbound E [log(X +m)|X ≥ k]− log(Np). We can see that:

E [X +m|X ≥ k] (114)

=
1

P (X ≥ k)

N∑
i=k

(i+m)

(
N
i

)
pi(1− p)N−i (115)

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i+m)

(
N
i

)
pi(1− p)N−i (116)

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=1

(i+m)

(
N
i

)
pi(1− p)N−i (117)

=
1

1− exp
(
−2 (Np−k)2

N

) (E [X] +m) =
Np+m

1− exp
(
−2 (Np−k)2

N

) (118)

In which we used the Hoeffding’s inequality. We know that E [log(X +m)|X ≥ k] ≤
log (E [X +m|X ≥ k]), therefore:

E [log(X)|X ≥ k]− log(Np) ≤ log

 1 + m
Np

1− exp
(
−2 (Np−k)2

N

)
 (119)

Second, to give an upper bound over log(Np)− E [log(X +m)|X ≥ k], we first notice that:

log(Np)− E [log(X +m)|X ≥ k] ≤ log(Np)− E [log(X)|X ≥ k] (120)

Then we upperbound log(Np)− E [log(X)|X ≥ k] by applying Taylor’s theorem around x0 = Np,
where there exists ζ between x and x0 such that:

log(x) = log(Np) +
x−Np
Np

− (x−Np)2

2ζ2
(121)

since ζ ≥ min {x, x0} = min {x,Np}, we have:

− log(x) + log(Np) +
x−Np
Np

=
(x−Np)2

2ζ2

≤ max

{
(x−Np)2

2x2
,

(x−NP )2

2(Np)2

}
≤ (x−Np)2

2x2
+

(x−Np)2

2(Np)2
(122)

Now taking the conditional expectations from both sides, we have:

−E [log(X)|X ≥ k] + log(Np) +
E [X|X ≥ k]−Np

Np

≤ E
[

(X −Np)2

2X2

∣∣∣∣X ≥ k]+
E
[
(X −Np)2

∣∣X ≥ k]
2(Np)2

(123)

First, we notice that E [X|X ≥ k] ≥ E [X] = Np.

Second, E
[
(X −Np)2

∣∣X ≥ k] ≤ 1

1−exp
(
−2

(Np−k)2

N

)Var [X] = Np(1−p)
1−exp

(
−2

(Np−k)2

N

) .

Thus we can write:

−E [log(X)|X ≥ k] + log(Np) ≤ Np(1− p)

1− exp
(
−2 (Np−k)2

N

) 1

2(Np)2
+ E

[
(X −Np)2

2X2

∣∣∣∣X ≥ k](124)
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To deal with the term E
[

(X−Np)2

2X2

∣∣∣X ≥ k], we have:

E
[

(X −Np)2

2X2

∣∣∣∣X ≥ k] (125)

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

2i2

(
N
i

)
pi(1− p)N−i (126)

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

(i+ 1)(i+ 2)

(
N
i

)
pi(1− p)N−i (127)

=
1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

(N + 1)(N + 2)p2

(
N + 2
i+ 2

)
p2+i(1− p)N−i (128)

≤ 1

1− exp
(
−2 (Np−k)2

N

) 1

(N + 1)(N + 2)p2
EY∼Bino(N+2,p)

[
(Y −Np)2

]
(129)

=
1

1− exp
(
−2 (Np−k)2

N

) (N + 2)p(1− p) + 4p2

(N + 1)(N + 2)p2
(130)

≤ 1

1− exp
(
−2 (Np−k)2

N

) (N + 2)p

(N + 1)(N + 2)p2
≤ 1

1− exp
(
−2 (Np−k)2

N

) 1

Np
(131)

In which we used the fact that 2i2 ≥ (i + 1)(i + 2) for i ≥ 4, and (N + 2)p ≥ 4p for N ≥ 2.
Plugging it into Equation 124, we have:

−E [log(X)|X ≥ k] + log(Np) ≤ 1

1− exp
(
−2 (Np−k)2

N

) 3

2Np
(132)

And the desired result is yielded.

F.4 Proof of Theorem 2

For this part, we also follow the same procedure as followed for the Theorem 2 in [51] using

Efron-Stein inequality. Suppose ĜDM
(N)

(X,G) is the estimate based on the original samples
x(1), x(2), . . . , x(N). For the usage of Efron-Stein inequality, we suppose that there is another

set of n i.i.d samples drawn from PX denoted by x′(1), x′(2), . . . , x′(n). Let ĜDM
(N)

(X(j),G)
be the estimate based on the original samples’ set in which the jth sample is replaced by an-

other i.i.d sample x′(j) taken from the second set, i.e. ĜDM
(N)

(X(j),G) is the estimate based on
x(1), . . . , x(j−1), x′(j), x(j+1), . . . , x(N). Then the Efron-Stein inequality states that:

Var
[
ĜDM

(N)
(X,G)

]
≤ 1

2

N∑
j=1

E

[(
ĜDM

(N)
(X,G)− ĜDM

(N)
(X(j),G)

)2
]

(133)

Now we will find an upper bound for the difference
∣∣∣∣ĜDM

(N)
(X,G)− ĜDM

(N)
(X(j),G)

∣∣∣∣ for a

given index j by considering the worst case scenario. Let ĜDM
(N)

(X\j ,G) be the estimate based on
the original samples’ set in which the jth sample is removed, i.e. x(1), . . . , x(j−1), xj+1, . . . , x(N).
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Then by triangle inequality, we have:

sup
x(1),...,x(N),x′(j)

∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X(j),G)

∣∣∣∣
≤ sup

x(1),...,x(N),x′(j)

(∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X\j ,G)

∣∣∣∣ (134)

+

∣∣∣∣ĜDM
(N)

(X\j ,G)− ĜDM
(N)

(X(j),G)

∣∣∣∣
)

≤ sup
x(1),...,x(N)

∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X\j ,G)

∣∣∣∣ (135)

+ sup
x(1),...,x(j−1),x′(j),x(j+1),...,x(N)

∣∣∣∣ĜDM
(N)

(X\j ,G)− ĜDM
(N)

(X(j),G)

∣∣∣∣
= 2 sup

x(1),...,x(N)

∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X\j ,G)

∣∣∣∣ (136)

Remember that:

ĜDM
(N)

(X,G)

=
1

N

N∑
i=1

ζi(X) (137)

=
1

N

N∑
i=1

(
ψ(k̃i) +

d∑
l=1

(
1{pa(Xl)6=∅} log(n

(i)
pa(Xl)

+ 1)− log(n
(i)
pa+(Xl)

+ 1)
)

+

( d∑
l=1

1{pa(Xl)=∅} − 1

)
logN

)
(138)

Thus we can write:

sup
x(1),...,x(N)

∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X(j),G)

∣∣∣∣ ≤ 2

N
sup

x(1),...,x(N)

N∑
i=1

∣∣ζi(X)− ζi(X\j)
∣∣

(139)

Now we need to upper-bound
∣∣ζi(X)− ζi(X\j)

∣∣ for all the different i’s. The cases are as follows:

Case I: i = j . Since the upper bounds |ζi(X)| ≤ (2d+1) logN and
∣∣ζi(X\j)∣∣ ≤ (2d+1) log(N−

1) always holds, thus we have
∣∣ζi(X)− ζi(X\j)

∣∣ ≤ 2(2d+ 1) logN . Since there’s only one i equal
to j, we have

∑
Case I

∣∣ζi(X)− ζi(X\j)
∣∣ ≤ 2(2d+ 1) logN .

Case II: i 6= j and ρk,i = 0 . Suppose S ∈
{

pa(Xl)
}d
l=1
∪
{

pa+(Xl)
}d
l=1
∪ {X} is a subset of

X . Since ρk,i = 0, then n(i)
S =

∣∣∣{i′ 6= i : s(i) = s(i′)}
∣∣∣. We recall that for S = X we actually have

n
(i)
S = k̃i. Thus by removing the point x(j) is this case, for any subset S, if s(i) = s(j), then n(i)

S is
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decreased by 1, and if s(i) 6= s(j) then n(i)
S will not change. Thus we can write:∣∣ζi(X)− ζi(X\j)

∣∣ (140)

≤
∣∣∣ψ (k̃i)− ψ (k̃i − 1

)∣∣∣ (141)

+

d∑
l=1

1{pa(Xl)6=∅}1{xpa(l)
(i)=xpa(l)

(j)}

∣∣∣∣ log(n
(i)
pa(Xl)

+ 1)− log n
(i)
pa(Xl)

∣∣∣∣ (142)

+

d∑
l=1

1{xpa+(l)
(i)=xpa+(l)

(j)}

∣∣∣∣ log(n
(i)
pa+(Xl)

+ 1)− log n
(i)
pa+(Xl)

∣∣∣∣ (143)

+

( d∑
l=1

1{pa(Xl)=∅} + 1

)(
logN − log(N − 1)

)
(144)

≤ 1

k̃i − 1
+

d∑
l=1

1{pa(Xl)6=∅}1{xpa(l)
(i)=xpa(l)

(j)}
1

n
(i)
pa(Xl)

(145)

+

d∑
l=1

1{xpa+(l)
(i)=xpa+(l)

(j)}
1

n
(i)
pa+(Xl)

(146)

+

( d∑
l=1

1{pa(Xl)=∅} + 1

)
1

N − 1
(147)

Where we used the fact that log(1 + 1/x) ≤ 1/x. For any S, the number of nodes i satisfying
s(i) = s(j) is no more than n(j)

S , and the total number of points in the case II is no more than N − 1.
Thus we can write:∑

i∈Case II

∣∣ζi(X)− ζi(X\j)
∣∣ ≤ (k̃i − 1)

1

k̃i − 1
(148)

+

d∑
l=1

1{pa(Xl) 6=∅}n
(i)
pa(Xl)

1

n
(i)
pa(Xl)

(149)

+

d∑
l=1

n
(i)
pa+(Xl)

1

n
(i)
pa+(Xl)

(150)

+

( d∑
l=1

1{pa(Xl)=∅} + 1

)
(N − 1)

1

N − 1
(151)

= 2(d+ 1) (152)

Case III: i 6= j and ρk,i > 0 . In this case, k̃i is always equal to k, and for any subset
S ∈

{
pa(Xl)

}d
l=1
∪
{

pa+(Xl)
}d
l=1
∪ {X} we have n(i)

S =
∣∣{i′ 6= i : ‖s(i) − s(j)‖ ≤ ρk,i}

∣∣.
Case III.1: ‖x(i) − x(j)‖ ≤ ρk,i. This means that the point xj is in the k nearest neighbors of
xi and by eliminating it, ρk,i will change. So we don’t know how n

(i)
S ’s will change, thus we will

use the upper-bound
∣∣ζi(X)− ζi(X\j)

∣∣ ≤ 2(2d+ 1) logN . From the first part of the Lemma C.1
from [51], we can upper bound the number of such i’s by γdk, in which γd is the minimum number
of d-dimensional cones with the angle smaller than π/6 needed to cover the total space Rd. Thus we
have: ∑

Case III.1

∣∣ζi(X)− ζi(X\j)
∣∣ ≤ 2k(2d+ 1)γdX logN (153)

where dX is the dimension of the space X .
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Case III.2: ‖x(i) − x(j)‖ > ρk,i. This case is somewhat similar to the Case II. Here the ρk,i will not
change. But the n(i)

S ’s for all subsets S 6= X can decrease by 1. We can write:

∑
Case III.2

∣∣ζi(X)− ζi(X\j)
∣∣ (154)

≤
N∑
i=1

d∑
l=1

1{pa(Xl)6=∅}1{xpa(l)
(i)=xpa(l)

(j)}

∣∣∣∣ log(n
(i)
pa(Xl)

+ 1)− log n
(i)
pa(Xl)

∣∣∣∣ (155)

+

N∑
i=1

d∑
l=1

1{xpa+(l)
(i)=xpa+(l)

(j)}

∣∣∣∣ log(n
(i)
pa+(Xl)

+ 1)− log n
(i)
pa+(Xl)

∣∣∣∣ (156)

+

N−1∑
i=1

( d∑
l=1

1{pa(Xl)=∅} + 1

)(
logN − log(N − 1)

)
(157)

≤
N∑
i=1

d∑
l=1

1{pa(Xl)6=∅}1{xpa(l)
(i)=xpa(l)

(j)}
1

n
(i)
pa(Xl)

(158)

+

N∑
i=1

d∑
l=1

1{xpa+(l)
(i)=xpa+(l)

(j)}
1

n
(i)
pa+(Xl)

(159)

+

N−1∑
i=1

( d∑
l=1

1{pa(Xl)=∅} + 1

)
1

N − 1
(160)

≤
d∑
l=1

1{pa(Xl)6=∅}γdpa(Xl)
log(N + 1) (161)

+

d∑
l=1

γdpa+(Xl)
log(N + 1) +

d∑
l=1

1{pa(Xl)=∅} + 1 (162)

≤ 2dγdX log(N + 1) + 1 (163)

The inequality 162 follows from the second part of the Lemma C.1 from [51].

Now combining all three cases together, we have:

N∑
i=1

∣∣ζi(X)− ζi(X\j)
∣∣

≤ 2(2d+ 1) logN + 2(d+ 1) + 2k(2d+ 1)γdX logN + 2dγdX log(N + 1) + 1

≤ 6k(2d+ 1)γdX log(N + 1) (164)

Thus:

sup
x(1),...,x(N),x′(j)

∣∣∣∣ĜDM
(N)

(X,G)− ĜDM
(N)

(X(j),G)

∣∣∣∣ ≤ 12k(2d+ 1)γdX log(N + 1)

N
(165)

And:
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Var
[
ĜDM

(N)
(X,G)

]
(166)

≤ 1

2

N∑
j=1

E

[(
ĜDM

(N)
(X,G)− ĜDM

(N)
(X(j),G)

)2
]

(167)

≤ 1

2

N∑
j=1

sup
x(1),...,x(N),x′(j)

(
ĜDM

(N)
(X,G)− ĜDM

(N)
(X(j),G)

)2

(168)

≤ 1

2

N∑
j=1

(
12k(2d+ 1)γdX log(N + 1)

N

)2

(169)

=

72γ2
dX

(
k(2d+ 1) logN

)2

N
(170)

Therefore if (kN logN)2/N → 0 as N goes to infinity, we have limN→∞ Var
[
ĜDM

(N)
(X,G)

]
=

0.

G Details of Numerical Experiments

In this section, we will discuss the carried out numerical experiments done in more details. This
includes but not limited to the choice of parameters, the data generated, and the derivation of the
theory values. The parameter of the nearest neighbor k for all the GDM, KSG and ΣH methods
is set to

√
N/5 to conform with the Assumptions 1 and keep the computational complexity at an

acceptable level. The number of bins in binning method at each dimension is kept at d
√
N/m for

all the algorithms so we roughly have m samples per each bin, and we choose m ∈ {10, 20, 100}
whichever giving the best precision.

G.1 Experiment 1: Markov chain model with continuous-discrete mixture

For the first experiment, we simulated an X-Z-Y Markov chain model in which the random variable
X is chosen as X = min

(
α1, X̃

)
where X̃ ∼ U(0, 1) represents an auxiliary random variable

uniformly distributed between 0 and 1. This means that we first generate a sample from X̃ denoted
by x̃ and then let x = min{α1, x̃}. Subsequently:

Z = min (X,α2) (171)
Y = min (Z,α3) (172)

We assume that α3 < α2 < α1. The three variables X , Y and Z represent a mixture of continuous
and discrete random variables.

We simulated this system for various numbers of samples while setting α1 = 0.9, α2 = 0.8 and
α3 = 0.7. For each set of samples I(X;Y |Z) is estimated via different methods and its theory value
is obviously equal to 0. The results are shown in Figure 2a.

G.2 Experiment 2: Mixture of AWGN and BSC channels with variable error probability

As the second scheme of our experiments, we considered an Additive White Gaussian Noise (AWGN)
Channel in parallel with a Binary Symmetric Channel (BSC) where only one of them can be activated
at a time. The random variable 0 < Z < 1 controls which channel is activated; i.e. if Z is lower than
the threshold β, then the AWGN channel is activated, otherwise the BSC channel will be activated.

The AWGN channel is modeled as Y = X +N where X ∼ N (0, σ2
X) and N ∼ N (0, σ2

N ). BSC
channel is modeled as Y = X ⊕E, where X and E are two binary random variables X ∼ Bern(p)
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and E ∼ Bern(Z) denoting the input and the error respectively. This means that the probability
of error in the BSC channel is controlled by the variable Z at each time-point. Equivalently, if we
suppose that the sample zi is observed from Z at the moment i, the output of the BSC at time i is
characterized by:

yi =

{
xi with probability 1− zi
¬xi with probability zi

(173)

Let’s assume Z = min
(
α, Z̃

)
where Z̃ ∼ U(0, 1) is an auxiliary uniform random variable, similar

to the previous experiments. The theory value for I(X : Y |Z) is obtained as follows:

I(X;Y |Z) =

∫ 1

z=0

I(X;Y |Z = z)fZ(z)dz (174)

=

∫ β

z=0

IAWGN(X;Y |Z = z)fZ(z)dz +

∫ 1

z=β

IBSC(X;Y |Z = z)fZ(z)dz (175)

= βIAWGN(X;Y ) +

∫ α

z=β

IBSC(X;Y |Z = z)dz

+ (1− α) IBSC(X;Y |Z = α) (176)

=
β

2
log

(
1 +

σ2
X

σ2
N

)
+

∫ α

z=β

(
h(zp̄+ pz̄)− h(z)

)
dz

+ (1− α)
(
h(αp̄+ pᾱ)− h(α)

)
(177)

in which h(x) is the binary entropy function defined as h(x) = −x log x− (1− x) log(1− x) for
x ∈ [0, 1].

In our experiment discussed in Section 5 we set p = 0.5, α = 0.3, β = 0.2, σX = 1 and
σN = 0.1. The theory value for the conditional mutual information can be readily calculated as
I(X;Y |Z) = 0.53241. We simulated the system for various number of samples, and obtained
the estimated CMI values ÎN (X;Y |Z) for different methods. The results are shown in Figure 4a.
Furthermore, we calculated the estimates of I(X;Y |Z,Z2, Z3). Its theory value is obviously equal
to I(X;Y |Z), yet it’s conditioned over a low-dimensional manifold in a high-dimensional space, and
we are interested in examining the effect of it over the estimators’ accuracy. The results are shown in
Figure 4b.

G.3 Experiment 3: Total Correlation for independent mixtures

In the third set of experiments, we estimated the total correlation of three independent random
variables X , Y and Z each of which is created independently from a mixture distribution as follows:
First we generate an auxiliary random variable X̃ ∼ Bern(0.5) then the random variable X is
generated as follows:

X =

{
αX if X̃ = 0
∼ U(0, 1) if X̃ = 1

(178)

which means we toss a fair coin, if heads appears we will fix X at αX , otherwise we will draw X
from a uniform distribution between 0 and 1. samples from Y and Z are also generated independently
in the same fashion. For this setup, the theory value of the total correlation of the three variables X ,
Y and Z is obviously equal to 0.

In our experiment we set αX = 1, αY = 1/2 and αZ = 1/4, and generated various datasets with
different number of samples. Then we estimated the total correlation via different approaches. The
results are shown in the Figure 2c.

G.4 Experiment 4: Total Correlation for independent uniforms with correlated
zero-inflation

In this experiment we examine a system of random variables, which can be clustered into independent
subsets, while inside each of the subsets, the variables are dependent. As a simple case we consider 4
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random variables X1, X2, X3 and X4 which can be clustered as {X1, X2} and {X3, X4}. Suppose
X̃1, X̃2, X̃3 and X̃4 are four independent auxiliary random variables identically distributed as
U(0.5, 1.5). Then we erase samples (X̃1, X̃2) and (X̃3, X̃4) independently, to generate the random
variables X1, X2, X3 and X4; i.e. X1 = α1X̃1, X2 = α1X̃2 and X3 = α2X̃3, X4 = α2X̃4

in which α1 ∼ Bern(p1) and α2 ∼ Bern(p2). As we see, after this erasure process resulting in
zero-inflation, X1 and X2 become correlated, so do X3 and X4 while still (X1, X2) |= (X3, X4).
Thus the total correlation can be written as:

TC (X1, X2, X3, X4) = h(X1) + h(X2) + h(X3) + h(X4)− h (X1, X2, X3, X4) (179)
= h(X1) + h(X2) + h(X3) + h(X4)− h (X1, X2)− h (X3, X4) (180)
= I (X1;X2) + I (X3;X4) (181)

To calculate I (X1;X2), after applying the chain rule to I (X1;X2, α1) twice, we have:

I (X1;X2) = I (X1;α1) + I (X1;X2|α1)− I (X1;α1|X2) (182)
= h(α1)− h (α1|X1)︸ ︷︷ ︸

0

(183)

+p(α1 = 0) I (X1;X2|α1 = 0)︸ ︷︷ ︸
0

+p(α1 = 1) I (X1;X2|α1 = 1)︸ ︷︷ ︸
0

−h (X1|X2) + h (X1|X2, α1)︸ ︷︷ ︸
=h(X1|X2)

= h(α1) (184)

Similarly, I (X3;X4) = h(α2). Thus:

TC (X1, X2, X3, X4) = h(α1) + h(α2) (185)

In the experiment, we set p1 = p2 = 0.6. The theory value for the total correlation is equal to
1.34602. The results of running different algorithms over the data can be seen in Figure 2d.

G.5 Experiment 5: Gene Regulatory Networks

In this experiment we use different estimators to do Gene Regulatory Network inference based on the
Restricted Directed Information (RDI) measure.

In a simplified model of a dynamical system X = (X1, . . . , Xd), each Xl is a time-series of length T
written in the form {Xl(t)}Tt=0, and the system’s evolution through time is characterized as Xl(t) =
gl
(
X(t−1)

)
+Nl(t) in which gl(.) : X → Xl is a deterministic function andNl(t) is an independent

random noise. In the causal inference, the goal is to infer the set of pa(Xl) for each Xl. To reach
this end, many researchers have studied the information theoretic measures. One of such measures
for time series is the directed information, and a variation of it is the restricted directed information
defined as RDI(Xi → Xj) := I

(
Xi(t − 1), Xj(t)|Xj(t − 1)

)
and the conditional version of it

(cRDI) is defined asRDI(Xi → Xj |Z) := I
(
Xi(t−1), Xj(t)|Xj(t−1), Z(t−1)

)
. It’s shown that

for the first-order markov systems and under some mild conditions, RDI(Xi → Xj |{Xi, Xj}c) 6= 0
if and only if Xi ∈ pa(Xj) [20]. Since RDI (cRDI) is in fact a conditional mutual information,
its performance is directly related to that of the CMI estimator, which is used to obtain cRDI from
the samples. Hence we are interested in evaluating the performance of various estimators in causal
inference.

We do our test on the simulated neuron cells’ development process, based on a model from [52]. In
this model, the time series vector X consists of 13 random variables each of which corresponding to
a single gene in the development process. We simulated the development process for various values
of T in which the additive noise is independent and identically distributed as N (0, .03) for all the
genes, and every single sample is then subject to erasure (i.e. be replaced by 0s) with a probability of
0.5. Then we applied the cRDI method to the data to discover the pairwise causal relationships. In
our method, we first applied the RDI method (with no conditioning) and obtained the pairwise values.
Then we repeated the process to obtain cRDI values, and for every pair Xi and Xj , we conditioned
the RDI over the Xk∗ in which k∗ = argmaxk 6=iRDI(Xk → Xj).
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Figure 4: The results for the experiments: 4a: The estimated CMI for the AWGN+BSC channels. 4b:
CMI for the AWGN+BSC channels with low-dimensional Z manifold. 4c: The AUROC values vs
the number of samples for gene regulatory network inference with different estimators. The error
bars show the standard deviations scaled down by 0.2. 4d: The AUROC values vs the number of
samples for feature selection accuracy with different estimators. The error bars show the standard
deviations scaled down by 0.2.

To calculate RDI and cRDI, various CMI estimators are utilized and then the Area-Under-ROC curve
(AUROC) is calculated for each estimator. The more detailed results are shown in Figure 4c. We
notice that the zero-inflation is highly detrimental to the causal signals, so we won’t expect high
performance of the causal inference over the data. As we see, RDI/cRDI methods implemented with
the GDM estimator outperform the other estimators by at least %10 in terms of AUROC. We did not
include the ΣH estimator results due to its very low performance.

G.6 Experiment 6: Feature Selection by Conditional Mutual Information Maximization

Selecting the best features for a learning task using information theoretic measures is well studied in
the literature [7]. Among the well-known methods is the conditional mutual information maximization
(CMIM) first introduced by Flueret [4], a variation of which was later introduced called CMIM-2 [53].
Suppose we have observed samples from the data (X,Y ), and would like to select the set S ⊂ X
which describes Y the best. Suppose we start at S = ∅ and we add features to S in a recursive greedy
fashion as:

If S = ∅ : S ← S ∪ {argmaxXi
I(Xi;Y )} (186)

Otherwise : S ← S ∪ {argmaxXi
f(Xi, S)}
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The algorithm 186 is equivalent to CMIM when f(Xi, S) := minXj∈S I(Xi, Y |Xj), and if we let
f(Xi, S) :=

∑
Xj
I(Xi, Y |Xj) we will get CMIM-2 instead.

In our experiment, we generated a vector X = (X1, . . . , X15) of 15 random variables in which all
the random variables are taken fromN (0, 1) and then each random variable Xi is clipped from above
at αi which is initially taken randomly from U(0.25, 0.3) and then kept constant during the sample
generation. Then Y is generated as Y = cos

(∑5
i=1Xi

)
. So only the first 5 features are relevant

and the other features are independent of Y . Thus an ideal feature selection method should be able
to recover the first 5 features first. We implemented and ran both CMIM and CMIM-2 algorithms
with various CMI estimators to evaluate the performance of the estimators and see how well they can
extract the true features X1, . . . , X5. A more detailed version of AUROC plot including both CMIM
and CMIM-2 is shown in Figure 4d . We can see that the feature selection methods implemented
with the GDM estimator outperform the other estimators. We notice that the performances of CMIM
and CMIM-2 with the GDM estimator are almost identical.
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