
A Appendix.

A.1 Row and Column Norm Estimation

Lemma 2.1. (Row Norm Estimation.) Let A be a m× n matrix such that A satisfies approximate
triangle inequality. For i ∈ [m] let Ai,∗ be the ith row of A. Algorithm 1 uniformly samples
Θ(b) elements from Ai,∗ and with probability at least 9/10 outputs an estimator which obtains an
O (n/b)-approximation to ‖Ai,∗‖22. Further, Algorithm 1 runs in O(bm+ n) time.

Proof. It is easy to analyze the running time of Algorithm 1. Step 1 and 2 run in O(n+m) as they
correspond to reading a column and a row. Uniformly sampling Θ(b) indices for each row takes
O(bm) time. Overall, we get a running time of O (bm+ n).

By reading the first column of A, we obtain a entry Ax,1 such that it is the minimum entry of the
first column, i.e. x = argmini∈[m]Ai,1. Then, reading row Ax,∗, we obtain a entry Ax,y such that
index y = argmaxj∈[n]Ax,j i.e., Ax,y is the largest entry in row x. Let d denote the entry Ax,y of
the input matrix. Further, let dmax = maxj,j′∈[n] maxi∈[m] |Ai,j −Ai,j′ |. Note, we cannot compute
dmax without reading all the entries of the matrix and this is no longer sublinear time. We should
think of dmax as representing the diameter of Q when A is a distance matrix. To see why this is true,
observe, for qj , qj′ ∈ Q, maxi∈[m] |Ai,j −Ai,j′ | represents the best lower bound on d(qj , qj′), via
reverse triangle inequality. Finding the largest such lower bound over all pairs of points in Q is the
best lower bound on the diameter of Q.

Intuitively, we show that d is a good proxy for dmax. Recall, for row Ai,∗, Algorithm 1 outputs the
estimator X̃i = d2 + n

b

∑
`∈Ti A2

i,`, where Ti is a uniform sample of indices in the range [1, n], such
that |Ti| = Θ(b). Let us first consider the case of estimating the norm of Ax,∗. Note, Algorithm 1
reads the entire row and can compute the norm exactly. However, the analysis of our estimator is
more intuitive in this case. Observe, by approximate triangle inequality and the definition of dmax,

Ax,j ≤ (1 + ε)

(
Ax,y + max

i∈[m]
|Ai,y −Ai,j |

)
≤ (1 + ε)(d+ dmax) (A.1)

where first inequality follows from the upper bound in 2.1, the second follows from recalling that
Ax,y = d and observing that maxi∈[m] |Ai,y −Ai,j | is upper bounded by dmax. Similarly, using the
lower bound in 2.1,

Ax,j ≥
|Ax,y −maxi∈[m] |Ai,y −Ai,j ||

1 + ε
≥ |d− dmax|

(1 + ε)
(A.2)

Intuitively, if dmax is sufficiently larger than d, Ax,j is within a constant factor of dmax. Formally,
if dmax ≥ 2d, for all j ∈ [n], dmax

2(1+ε) ≤ Ax,j ≤ 3(1+ε)dmax

2 . Therefore, each entry in Ax,∗ is at

least dmax/2(1 + ε). Observe, by linearity of expectation, E[X̃x] = d2 + ‖Ax,∗‖22. Therefore, by
Markov’s bound we have that with probability at least 1− 1/c,

X̃x ≤ c(d2 + ‖Ax,∗‖22) ≤ 5c ‖Ax,∗‖22 (A.3)

where the last inequality follows from ‖Ax,∗‖22 ≥
nd2

4(1+ε)2 (since each entry of Ax,∗ is at least
d/2(1 + ε)). Further,

X̃x ≥ d2 +
(n
b

)(bd2

4(1 + ε)2

)
≥
‖Ax,∗‖22

160
(A.4)

where the first inequality follows from each sampled entry being at least d
2(1+ε) and the second

inequality follows from ‖Ax,∗‖22 ≤
(

3(1+ε)d
2

)2

n ≤ 10nd2. For an appropriate value of c, X̃x =

Θ
(
‖Ax,∗‖22

)
with probability at least 99/100.

Note, d could be really small compared to dmax and we cannot hope for a constant approximation to
the row norm. Formally, d ≤ dmax and we consider two cases, one where ‖Ax,∗‖22 ≤

nd2

b and the

12

second being its complement. In the first case, we observe,

X̃x ≥ d2 ≥ b

n
‖Ax,∗‖22 (A.5)

where the first inequality follows from ‖Ax,∗‖22 ≥ 0 and the second follows from ‖Ax,∗‖22 ≤
nd2

b .
On the other hand, observe, by linearity of expectation, E[X̃x] = d2 + ‖Ax,∗‖22. By Markov’s bound,
with probability at least 1− 1

c ,

X̃x ≤ c(d2 + ‖Ax,∗‖22) ≤ 2c ‖Ax,∗‖22 (A.6)

where the last inequality follows from d being an element of Ax,∗. Therefore, combining the upper
and lower bound, with probability at least 99/100, X̃x achieves a Θ

(
n
b

)
-approximation to ‖Ax,∗‖22.

Next, consider the second case where ‖Ax,∗‖22 ≥
nd2

b . We begin by bounding Var[X̃x]. Let
Yx,j = A2

x,j with probability b/n, and Yx,j = 0 otherwise. Then,

Var[X̃x] = Var

d2 +
n

b

∑
j∈Tx

Yx,j

 =
(n
b

)2

Var

∑
j∈Tx

Yx,j

≤
(n
b

)2

E

(
∑
j∈Tx

Yx,j)
2

≤
(n
b

)2 b

n

(
‖Ax,∗‖22
d2

)
d4

≤
‖Ax,∗‖42

100c

(A.7)

where c is another fixed constant, the first inequality follows from the definition of variance, the
second follows from Yx,j being upper bounded by d2 and an averaging argument, and the last follows
from the assumption that nd

2

b ≤ ‖Ax,∗‖22. Observe that the variance is maximized when there are
‖Ax,∗‖22

d2 entries with value d and the last inequality follows from our assumption in this case. By
Chebyshev’s inequality,

Pr

[∣∣∣X̃x − E
[
X̃x

]∣∣∣ > ‖Ax,∗‖22
100

]
≤

Var
[
X̃x

]
c2 ‖Ax,∗‖42

≤ 1

c2
(A.8)

Therefore, with probability at least 1− 1/c2,

X̃x = E[X̃x]±
‖Ax,∗‖22

100
= d2 +

(
1± 1

100

)
‖Ax,∗‖22 (A.9)

Therefore, X̃x achieves a Θ(1)-approximation to ‖Ax,∗‖22. It follows that in every case, X̃x achieves
an O

(
n
b

)
-approximation to ‖Ax,∗‖22 with probability at least 9/10.

Now we analyze our estimator in its full generality by considering row ‖Ai,∗‖22 for any i 6= x. We
define d′ = maxj∈[n] Ai,j to be the largest entry in row i. Note, we do not explicitly know d′ as this
would require reading the entire row. Instead, we show that biasing our estimator with d2 suffices for
all rows. Recall, Ax,y = maxj∈[n] Ax,j . We follow an analysis similar to the simplified one above.
Since our estimator is still biased by d2, we analyze the cases where d is small or large compared to
dmax separately. Consider the first case, where d ≥ 8dmax. We begin by bounding d′ in terms of d
and dmax. By the approximate triangle inequality,

Ax,1 ≥
|Ax,y −maxi∈[m] |Ai,1 −Ai,y||

1 + ε
≥ |d− dmax|

1 + ε
≥ 7

1 + ε
dmax ≥ 3dmax (A.10)

13

where the second inequality follows from recalling the definition of d and observing that dmax ≥
maxi∈[m] |Ai,1 −Ai,y|, and the third inequality follows from the assumption in this case. Alterna-
tively, we can repeat the above bound to get

Ax,1 ≥
|Ax,y −maxi∈[m] |Ai,1 −Ai,y||

1 + ε
≥ |d− dmax|

1 + ε
≥ 7d

(1 + ε)8
≥ 7d

16
(A.11)

Further,
Ax,1 ≤ Ai,1 ≤ d′ (A.12)

where the first inequality follows from the definition of Ax,1 and the second inequality follows from
the definition of d′. Therefore, combining the two equations above, we get that d′ ≥ 3dmax and
d′ ≥ 7d

16 . Next, we show a bound of any entry of the i-th row. By the upper bound in approximate
triangle inequality,

Ai,j ≤ (1 + ε)
(
Ai,j′ + max

i′
|Ai′,j −Ai′,j′ |

)
≤ (1 + ε) (d′ + dmax) ≤ 8d′

3
(A.13)

where the second inequality follows from d′ being the largest element in row i, and the definition of
dmax, and the last follows from d′ ≥ 3dmax. Similarly, by the lower bound in approximate triangle
inequality,

Ai,j ≥
|Ai,j′ −maxi′ |Ai′,j −Ai′,j′ ||

1 + ε
≥ |d

′ − dmax|
1 + ε

≥ d′

3
(A.14)

Combining the two equations above, for all j ∈ [n], Ai,j = Θ(d′), all entries of Ai,∗ are within a
constant factor of each other. Therefore, ‖Ai,∗‖22 ≤ 64nd′2

9 . Recall, our estimator is

X̃i = d2 +
∑
j∈Ti

n

b
A2
i,j ≥

n

b

bd′2

9
≥
‖Ai,∗‖22

64
(A.15)

We observe that by linearity of expectation, E[X̃i] = d2 + ‖Ai,∗‖22. By Markov’s we know that with
probability at least 1− 1/c,

X̃i ≤ c
(
d2 + ‖Ai,∗‖22

)
≤ c

(
216

49
d′2 + ‖Ai,∗‖22

)
≤ c′ ‖Ai,∗‖22 (A.16)

where the second inequality follows from recalling that d′ ≥ 7d
16 and the last inequality follows from

d′ being an entry in Ai,∗. Therefore, X̃i = Θ
(
‖Ai,∗‖22

)
, with probability at least 99/100.

Now we analyze the case where d ≤ 8dmax. We then consider two cases: ‖Ai,∗‖22 ≥
nd′2

b or
‖Ai,∗‖22 ≤

nd′2

b . In the first case, computing the variance exactly as in equation A.7 and applying
Chebyshev’s inequality, we get that with probability at least 1− 1/c2,

X̃i = d2 +

(
1± 1

100

)
‖Ai,∗‖22 (A.17)

Since d ≤ 8dmax and 1
16d

2
max ≤ ‖Ai,∗‖22, X̃i = Θ

(
‖Ai,∗‖22

)
with probability 99/100.

In the second case, we show that all entries of Ai,∗ are within a constant factor of each other. Recall,
X̃i ≥ d2 since ‖Ai,∗‖22 ≥ 0. If 8d ≥ d′,

X̃i ≥
d′2

64
≥
b ‖Ai,∗‖22

64n
(A.18)

Recall, E[X̃i] = d2 + ‖Ai,∗‖22, d ≤ 16
7 d
′ and d′2 ≤ ‖Ai,∗‖22. Therefore, the upper bound on X̃i

follows from Markov’s bound and holds with probability at least 99/100. If instead 8d ≤ d′, we
show all entries of Ai,∗ are within a constant factor of each other. To see this, let d′ = Ai,j∗ and
observe by approximate triangle inequality,

Ai,j ≤ (1 + ε)
(
Ai,j∗ + max

i′
|Ai′,j −Ai′,j∗ |

)
≤ 2d′ + 2(1 + ε)(Ax,j∗ + Ax,j)

≤ 2d′ + 8d ≤ 3d′
(A.19)

14

where the first and second inequalities follow from initially applying the upper bound in equation
2.1 to Ai,j , and then applying the equation 2.2 to maxi′ |Ai′,j −Ai′,j∗ |, the third inequality follows
from upper bounding both Ax,i∗ and Ax,j by d, and the last inequality follows from the assumption
8d ≤ d′ combined with the definition of d′. Further,

Ai,j ≥
Ai,i∗ −Ai∗j

1 + ε
≥ 1

2
(d′ − 2(Ax,j∗ + Ax,j))

≥ 1

2
d′ − 2d ≥ d′

4

(A.20)

where the third inequality follows from upper bounding both Ax,i∗ and Ax,j by d, and the last
inequality follows from the assumption 8d ≤ d′ combined with the definition of d′. Therefore,
d(pi, qj) = Θ(d′). Finally, E[X̃i] = d2 + ‖Ai,∗‖22 and by Markov’s bound, our estimator X̃i =

Θ
(
d2 + ‖Ai,∗‖22

)
with probability 99/100. Since d2 ≤ ‖Ai,∗‖22, we obtain a constant factor

approximation with probability at least 99/100. By a union bound over all the probabilistic events,
all of them simultaneously hold with probability at least 9/10, which finishes the proof.

To obtain an O
(
n
b

)
approximation for all the m rows simultaneously with constant probability, we

can computeO (log(m)) estimators for each row and take their median. We also observe that Column
and Row Norm Estimation are symmetric operations and a slight modification to Algorithm 1 yields
a Column Norm Estimation algorithm with the following guarantee:

Corollary A.1. (Column Norm Estimation.) Let A be a m× n matrix such that A satisfies approxi-
mate triangle inequality. For j ∈ [n] let A∗,j be the jth column of A. There exists an algorithm that
uniformly samples Θ(b) elements from A∗,j and with probability 9/10 outputs an estimator which is
an O

(
m
b

)
-approximation to ‖A∗,j‖22. Further, this algorithm runs in O(bn+m) time.

A.2 Projection-Cost Preserving Sketches

Next, we describe how to use the above estimators to sample rows and columns. We would like to
reduce the dimensionality of the matrix in a way that approximately preserves low-rank structure.
At a high level, we sketch the input matrix on the left and the right and use an input-sparsity time
algorithm on the resulting smaller matrix. The main insight to show such a result is that if we can
approximately preserve all rank-k subspaces in the column and row space of the matrix, then we can
recursively sample rows and columns to obtain a much smaller matrix. To this end, we introduce a
relaxation of projection-cost preserving sketches [6] that satisfy an additive error guarantee.

We prove that projection-cost preserving sketches can be computed using our coarse estimates to the
column and row norms. We begin by showing an intermediate result bounding the spectrum of the
sample in terms of the original matrix.

Theorem A.1. (Spectral Bounds.) Let A be a m × n matrix such that A satisfies approximate
triangle inequality. For j ∈ [n], let X̃j be an O

(
m
b

)
-approximate estimate for the jth column of A

such that it satisfies the guarantee of Corollary A.1. Then, let q = {q1, q2 . . . qn} be a probability

distribution over the columns of A such that qj =
X̃j∑
j′ X̃j′

. Let t = O
(
m
bε2 log(mδ)

)
for some

constant c. Then, construct C using t columns of A and set each one to A∗,j√
tqj

with probability qj .

With probability at least 1− δ,

CCT − ε‖A‖2F I � AAT � CCT + ε‖A‖2F I

Proof. Let Y = CCT −AAT . For notational convenience let Aj = A∗,j . We can then write Y =∑
i∈[t] Xi, where Xi = 1

t (
1
qj

AjA
T
j −AAT) with probability qj . We observe that E[1

qj
AjA

T
j −

AAT] = 0, and therefore, E[Y] = 0. Next, we bound the operator norm of Y. To this end, we
use the Matrix Bernstein inequality, which in turn requires a bound on the operator norm of Xi and

15

variance of Y. Recall,

‖Xi‖2 =

∥∥∥∥ 1

tqj
AjA

T
j −

1

t
AAT

∥∥∥∥
2

≤ m

tb

‖A‖2F
‖Aj‖22

‖AjA
T
j ‖2 +

1

t
‖AAT ‖2

≤ 2m

tb
‖A‖2F

(A.21)

Next, we bound Var[Y] ≤ E
[
Y2
]
.

E
[
Y2
]

= tE
[
X2
i

]
=

1

t
E

[(
1

qj
AjA

T
j −AAT

)2
]

=
1

t

(
(AjA

T
j)2

qj
+ qj(AAT)2 − 2AjA

T
j AAT

)

� 1

t

(
m

b

‖A‖2F
‖Aj‖22

(AjA
T
j)2 +

b

m

‖Aj‖22
‖A‖2F

(AAT)2

)
� cm‖A‖4F

tb
Im×m

(A.22)

Therefore, σ2 = ‖E
[
Y2
]
‖2 ≤ cm‖A‖4F

tb Applying the Matrix Bernstein inequality (see Lemma ??
in the Appendix),

Pr
[
‖Y‖2 ≥ ε‖A‖2F

]
≤ me

(
− ε2‖A‖4F
σ2+ εm

3tb
‖A‖4

F

)
≤ δ

by substituting the value of σ2 and setting t = c′m
bε2 log(mδ). The bound follows.

Using the above theorem, we show that sampling columns of A according to approximate column
norms yields a matrix that preserves projection cost for all rank-k projections up to additive error.
Theorem A.2. (Column Projection-Cost Preservation.) Let A be am×nmatrix such that A satisfies
approximate triangle inequality. For j ∈ [n], let X̃j be an O

(
m
b

)
-approximate estimate for the jth

column of A such that it satisfies the guarantee of Corollary A.1. Then, let q = {q1, q2 . . . qn} be a

probability distribution over the columns of A such that qj =
X̃j∑
j′ X̃j′

. Let t = O
(
mk2

bε2 log(mδ)
)

for

some constant c. Then, construct C using t columns of A and set each one to A∗,j√
tqj

with probability

qj . With probability at least 1− δ, for any rank-k orthogonal projection X

‖C−XC‖2F = ‖A−XA‖2F ± ε‖A‖2F

Proof. We give a similar proof to the relative error guarantees in [6], but need to replace certain parts
with our different distribution which is only based on row and column norms rather than leverage
scores, and consequently we obtain additive error in places instead. As our lower bound shows, this
is necessary in our setting.

Let Y = I−X, so that ‖A−XA‖2F = Tr
(
YAATY

)
and ‖C−XC‖2F = Tr

(
YCCTY

)
. We

split the singular values of A into a head and a tail as follows. Let σ2
` be the smallest singular value

of A for which σ2
` ≥

‖A‖2F
k . Let U`U

T
` be the projection onto the top ` singular vectors of A and

U\`U
T
\` be the projection on the bottom singular vectors. Let P` = U`U

T
` and P\` = U\`U

T
\`.

Then,
Tr
(
YAATY

)
= Tr

(
YP`AATP`Y

)
+ Tr

(
YP\`AATP\`Y

)
+ 2Tr

(
YP`AATP\`Y

)
= Tr

(
YP`AATP`Y

)
+ Tr

(
YP\`AATP\`Y

)
(A.23)

The cross terms vanish since P`A and P\`A are orthogonal. Similarly, we split the CCT terms.

Tr
(
YCCTY

)
= Tr

(
YP`CCTP`Y

)
+ Tr

(
YP\`CCTP\`Y

)
+ 2Tr

(
YP`CCTP\`Y

)
(A.24)

16

We note that the cross terms here do not vanish since P`C and P\`C might not be orthogonal. We
now show how to handle each of these terms separately.

A.3 Head Terms.

Our analysis for the Head Terms closely follows that of [6], where they strive for relative error using
leverage scores instead. For any vector x, let y = P`x. Then, yTAAT y = xTPT

` AATP`x =
xTA`A

T
` x. Then, setting ε = ε

k in Theorem A.1, we obtain

yTCCT y − ε‖A‖2F
k

yT y ≤ xTA`A
T
` x ≤ yTCCT y +

ε‖A‖2F
k

yT y (A.25)

Note, this only increases the number of columns we sample by a poly(k) factor. Recall, by
definition, y is orthogonal to all but the top ` singular vectors of A. Therefore, xTA`A

T
` x =

yTAAT y ≥ ‖A‖2F
k yT y. Combined with (A.25), yTCCT y = (1 ± ε)xTA`A

T
` x. Since

yTCCT y = xTP`CCTP`x and the above is true for any x, we get

(1− ε)P`CCTP` � A`A
T
` � (1 + ε)P`CCTP` (A.26)

We observe that (A.26) bounds the diagonal entries of YA`A
T
` Y in terms of the diagonal entries of

YP`CCTP`Y, we get that,

(1− ε)Tr
(
YP`CCTP`Y

)
≤ Tr

(
YP`AATP`Y

)
≤ (1 + ε)Tr

(
YP`CCTP`Y

)
Rearranging the terms and assuming ε < 1/2,

(1− 4ε)Tr
(
YP`AATP`Y

)
≤ Tr

(
YP`CCTP`Y

)
≤ (1 + 4ε)Tr

(
YP`AATP`Y

)
(A.27)

A.4 Tail Terms.

Recall from the definition of Y,

Tr
(
YA\`A

T
\`Y

)
= Tr

(
A\`A

T
\`

)
− Tr

(
XA\`A

T
\`X

)
(A.28)

Similarly,

Tr
(
YP\`CCTP\`Y

)
= Tr

(
P\`CCTP\`

)
− Tr

(
XP\`CCTP\`X

)
(A.29)

In order to relate Tr
(
P\`CCTP\`

)
and Tr

(
A\`A

T
\`

)
, we observe that the first term is equal to the

second in expectation. Therefore, using a scalar Chernoff bound, we show that Tr
(
P\`CCTP\`

)
concentrates around its expectation. We defer this proof to the Supplementary Material and obtain
the following bound:

Tr
(
A\`A

T
\`

)
− Tr

(
P\`CCTP\`

)
= ±ε‖A‖2F (A.30)

Next, we relate the remaining two terms following a strategy similar to the one used for the head
terms. Let the vectors x, y be defined as above. Then, xTA\`A

T
\`x = yTAAT y. Using Theorem

A.1 with ε = ε
k , we get

xTA\`A
T
\`x = yTCCT y ± ε‖A‖2F

k
yT y (A.31)

Since P\` is a projection matrix, yT y ≤ xTx and assuming ε < 1/2,

yTCCT y − ε‖A‖
2
F

k
xTx ≤ xTA\`A

T
\`x

xTA\`A
T
\`x ≤ y

TCCT y + ε
‖A‖2F
k

xTx

(A.32)

Recall, by the definition of m, xTA\`A
T
\`x ≤

‖A‖2F
k . Substituting this back into (A.32) and (A.33),

we get

P\`CCTP\` − ε
‖A‖2F
k

I � A\`A
T
\` � P\`CCTP\` + ε

‖A‖2F
k

I (A.33)

17

Let X = ZZT such that Z ∈ Rm×k is an orthonomal matrix. By the cyclic property of the trace,

Tr
(
XA\`A

T
\`X

)
= Tr

(
ZTA\`A

T
\`Z
)

=
∑
j∈[k]

ZT∗,jA\`A
T
\`Z∗,j

Similarly,

Tr
(
XC\`C

T
\`X

)
≤
∑
j∈[k]

ZT∗,jC\`C
T
\`Z∗,j

Combining this with (A.33) and (A.31), and assuming ε < 1/2 we get,

Tr
(
YP\`CCTP\`Y

)
= Tr

(
YA\`A

T
\`Y

)
± 4ε‖A‖2F (A.34)

A.5 Cross Terms.

Finally, we consider the cross term 2Tr
(
YP`CCTP\`Y

)
. Let L = AAT (AAT)+ and M =

AAT . We observe that the columns of PCCTP\` lie in the column span of A. Therefore,

Tr
(
YP`CCTP\`Y

)
= Tr

(
YLP`CCTP\`Y

)
(A.35)

Then, by Cauchy-Schwarz,

Tr
(
YLP`CCTP\`Y

)
≤
√

Tr (YLMY) Tr
(
P\`CCTP`M+P`CCTP\`

)
=
√

Tr (YMY) Tr
(
P\`CCTU`Σ−2UT

` CCTP\`
)

=
√

Tr (YMY) ·
√
‖P\`CCTU`Σ

−1
` ‖2F

(A.36)

Note, the first term is ‖A−XA‖F . Therefore, we focus on the second term :

‖P\`CCTU`Σ
−1
` ‖

2
F =

∑
i∈[`]

‖P\`CCTUi,∗‖22σ−2
i (A.37)

In order to bound the sum above, we bound each summand individually. Let pi be a unit vector in the
direction of CCTUi,∗’s projection on P\`. Then,

‖P\`CCTUi,∗‖22 = (pTi CCTUi,∗)
2 (A.38)

Let ` = σ−1
i ui +

√
k

‖A‖2F
pi. By Theorem A.1 we know that

`TCCT `− ε‖A‖2F
k

`T ` ≤ `TAAT ` (A.39)

Substituting ` in the equation above,

Ui,∗CCTUi,∗

σ2
i

+
kpTi CCT pi
‖A‖2F

+
2
√
k

‖A‖F
pTi CCTUi,∗ ≤

Ui,∗MUi,∗

σ2
i

+
k

‖A‖2F
+
ε‖A‖2F
k

`T `

= 1 +
k

‖A‖2F
pTi AAT pi +

ε‖A‖2F
k

`T `

(A.40)

Combining the above equation with (A.26) UT
i,∗CCTUi,∗ ≥ (1 − ε)UT

i,∗MUi,∗ ≥ (1 − ε)σ2
i .

Further, pTi CCT pi ≥ pTi Mpi − ε‖A‖2F
k . Plugging this back into (A.40),

(1− ε)
(

Ui,∗MUi,∗

σ2
i

+
kpTi Mpi
‖A‖2F

)
+

2
√
kpiCCTui
σi‖A‖F

≤ 1 +
k

‖A‖2F
pTi Mpi +

ε‖A‖2F
k

`T `+ 4ε

(A.41)

18

Recall pi lies in the column space of U\`, and thus piMpi ≤ ‖A‖
2
F

k and thus we get

2
√
k

σi‖A‖2F
pTi CCTui ≤ 8ε+

ε‖A‖2F
k

`T ` ≤ 12ε (A.42)

Assuming again that ε < 1/2 and observing that ‖`‖22 ≤ 4k
ε‖A‖2F

we get

2
√
kpiCCTui
σi‖A‖F

≤ 12ε

(piCCTuTi)2 ≤ 144ε2
σ2
i ‖A‖2F
k

(A.43)

Plugging this back into (A.40), we get that

‖P\`CCTU`Σ
−1
` ‖

2
F ≤ 288ε2‖A‖2F (A.44)

Since we have now bounded the second term, we plug it back into (A.36),

Tr
(
YLP`CCTP\`Y

)
≤
√

Tr (YMY)
√

288‖A‖2F ≤ 17εTr
(
YAATY

)
(A.45)

Combining (A.24) (A.27), (A.34) and (A.45), we get

Tr
(
YCCTY

)
= Tr

(
YA`A

T
` Y
)

+ Tr
(
YA\`A

T
\`Y

)
± 40εTr

(
YAATY

)
± 10ε‖A‖2F

(A.46)

Since Tr
(
YAATY

)
≤ ‖A‖2F , rescaling ε by a constant finishes the proof.

We note that the critical ingredient in the proofs was estimating the column norms in sublinear time.
We observe that we can also estimate the row norms in sublinear time and immediately obtain a Row
Projection-Cost Preservation Theorem.
Corollary A.2. (Row Projection-Cost Preservation.) Let A be a m× n matrix such that A satisfies
approximate triangle inequality. For i ∈ [n], let X̃i be anO

(
n
b

)
-approximate estimate for the ith row

of A such that it satisfies the guarantee of Lemma 2.1. Then, let p = {p1, p2 . . . pn} be a probability

distribution over the rows of A such that pi = X̃i∑
i′ X̃i′

. Let t = O
(
nk2

bε2 log(nδ)
)

. Then, construct C

using t rows of A and set each one to Ai,∗√
tpi

with probability pi. With probability at least 1− δ, for
any rank-k orthogonal projection X

‖C−CX‖2F = ‖A−AX‖2F ± ε‖A‖2F

Next, we describe how to apply projection-cost preserving sketching for low-rank approximation.
Let C be a column pcp for A. Then, an approximate solution for the best rank-k approximation to C
is an approximate solution for the best rank-k approximation to A. Formally,
Lemma A.1. Let C be a column pcp for A satisfying the guarantee of Theorem A.2. Let P∗C be
the projection matrix that minimizes ‖C−XC‖2F and P∗A be the projection matrix that minimizes
‖A−XA‖2F . Then, for any projection matrix P such that ‖C−PC‖2F ≤ ‖C−P∗CC‖2F + ε‖C‖2F ,
with probability at least 98/100,

‖A−PA‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F
A similar guarantee holds if C is a row pcp of A.

Proof. By the optimality of P∗C , we know that ‖C − PC‖2F ≤ ‖C − P∗CC‖2F + ε‖C‖2F ≤
‖C−P∗AC‖2F + ε‖C‖2F . Since C is a column pcp of A, ‖C−P∗AC‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F ,
therefore, with probability at least 99/100,

‖C−PC‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F + ε‖C‖2F ≤ ‖A−P∗AA‖2F +O(ε)‖A‖2F (A.47)

where the last inequality follows from E[C] = A and Markov’s bound. Similarly, ‖C−PC‖2F ≥
‖A−PA‖2F − ε‖A‖2F , therefore, with probability at least 99/100,

‖C−PC‖2F ≥ ‖A−PA‖2F −O(ε)‖A‖2F (A.48)

19

Union bounding over the two events and combining the two equations, with probability at least
98/100 we get

‖A−PA‖2F ≤ ‖A−P∗AA‖2F + 4ε‖A‖2F (A.49)
Rescaling ε completes the proof. We note that a similar lemma holds if C is a row pcp of A.

Lemma A.1. Let C be a column pcp for A satisfying the guarantee of Theorem A.2. Let P∗C be
the projection matrix that minimizes ‖C−XC‖2F and P∗A be the projection matrix that minimizes
‖A−XA‖2F . Then, for any projection matrix P such that ‖C−PC‖2F ≤ ‖C−P∗CC‖2F + ε‖C‖2F ,
with probability at least 98/100,

‖A−PA‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F
A similar guarantee holds if C is a row pcp of A.

Proof. By the optimality of P∗C , we know that ‖C − PC‖2F ≤ ‖C − P∗CC‖2F + ε‖C‖2F ≤
‖C−P∗AC‖2F + ε‖C‖2F . Since C is a column pcp of A, ‖C−P∗AC‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F ,
therefore, with probability at least 99/100,

‖C−PC‖2F ≤ ‖A−P∗AA‖2F + ε‖A‖2F + ε‖C‖2F ≤ ‖A−P∗AA‖2F +O(ε)‖A‖2F
where the last inequality follows from E[C] = A and Markov’s bound. Similarly, ‖C−PC‖2F ≥
‖A−PA‖2F − ε‖A‖2F , therefore, with probability at least 99/100,

‖C−PC‖2F ≥ ‖A−PA‖2F −O(ε)‖A‖2F
Union bounding over the two events and combining the two equations, with probability at least
98/100 we get

‖A−PA‖2F ≤ ‖A−P∗AA‖2F + 4ε‖A‖2F
Rescaling ε completes the proof. We note that a similar lemma holds if C is a row pcp of A.

Lemma A.2. (Scalar Chernoff Bound.) Let A ∈ Rm×n satisfy approximate triangle inequality.
For j ∈ [n], let X̃j be a O

(
m
b

)
-approximate estimate for the jth column of A such that it satisfies

the guarantee of Corollary A.1. Then, let q = {q1, q2 . . . qn} be a probability distribution over the

columns of A such that qj =
X̃j∑
j′ X̃j′

. Let t = O
(
mk2

bε2 log(mδ)
)

for some constant c. Construct C

using t columns of A and set each one to A∗,j√
tqj

with probability qj . Let ` be the index of the smallest

singular value of A such that σ2
` ≥

‖A‖2F
k . With probability at least 1− δ,

Tr
(
A\`A

T
\`

)
− Tr

(
P\`CCTP\`

)
= ±ε‖A‖2F (A.50)

Proof. We can rewrite the above equation as ‖P\`C‖2F − ‖A\`‖2F = ±ε‖‖2F . By summing over the
column norms of C, we get ‖P\`C‖2F =

∑
j=[t] ‖P\`C∗,j‖22. Next, we upper bound each term in

the sum as follows :

‖P\`C∗,j‖22 =
1

tqj
‖P\`A∗,j‖22

=

(
bε2

mk2 log(m/δ)

)(
m‖A‖2F
b‖A∗,j‖22

)
‖P\`A∗,j‖22

≤
(

ε2

k2 log(m/δ)

)
‖A‖2F

(A.51)

Note, k
2 log(m/δ)
ε2‖A‖2F

‖P\`C∗,j‖22 ∈ [0, 1] and E
[∑

j=[t] ‖P\`C∗,j‖22
]

= ‖A\`‖2F . By Chernoff,

Pr
[
‖P\`C‖2F ≥ ‖P\`A‖2F + ε‖A‖F

]
= Pr

(k2 log(m/δ)

ε2‖A‖2F

)∑
j∈[t]

‖P\`C∗,j‖2F ≥
(
k2 log(m/δ)

ε2‖A‖2F

)
‖A\`‖2F + ε‖A‖F

= Pr

(k2 log(m/δ)

ε2‖A‖2F

)∑
j∈[t]

‖P\`C∗,j‖2F ≥ 1 +
ε‖A‖F
‖A\`‖2F

(
k2 log(m/δ)‖A\`‖2F

ε2‖A‖2F

)
≤ e−

c log(m/δ)
4 ≤ δ/2

(A.52)

20

Therefore, with probability at least 1− δ/2, ‖P\`C‖2F −‖A\`‖2F ≤ ε‖A‖F . Similarly, we can show
that with probability at least 1− δ/2, ‖P\`C‖2F − ‖A\`‖2F ≥ −ε‖A‖F . Union bounding over the
two events finishes the proof.

A.6 Full Sublinear Time Algorithm

Algorithm 3 : Full Sublinear Time Algorithm.

Input: A Distance Matrix Am×n, integer k, ε > 0 and a small constant γ > 0.

1. Let 2r = O (1/γ) and let A(0) = A, s0 = n and t0 = m. Set b1 = mγ , b2 = nγ .

2. For i ∈ [2r], recursively construct matrix A(i) as follows:

(a) If i is odd, run ColumnNormEstimation(A(i−1), b2). By Lemma A.3, we

obtain O
(
ti−1

b2

)
-approximate estimates of the column norms of A(i−1). Let

q = {q1, q2 . . . qsi−1
} denote a distribution over columns of A(i−1) proportional

to the relative estimate for each column.
Construct a column pcp for A(i−1) by sampling si = Θ̃

(
si−1

b2
poly(kε)

)
columns

such that each column is set to (A(i−1))∗,j√
siqj

with probability qj . Let A(i) =

A(i−1)Si be the resulting ti−1 × si matrix that follows guarantees of Theorem
A.2.

(b) If i is even, run RowNormEstimation(A(i−1), b1). By Lemma A.3, we ob-

tain O
(
s−1

b1

)
-approximate estimates of the row norms of A(i−1). Let p =

{p1, p2 . . . pti−1
} denote a distribution over rows of A(i−1) proportional to the

relative estimate for each row.
Construct a row pcp for A(i−1) by sampling ti = Θ̃

(
ti−1

b1
poly(kε)

)
columns such

that each column is set to (A(i−1))`,∗√
tip`

with probability p`. Let A(i) = TiA(i−1)

be the resulting ti × si−1 matrix that follows guarantees of Corollary A.2.
3. Let A(2r) be the final matrix at the end of the recursion. Compute the truncated

SVD (A(2r), k) = U2rΣ2rV
T
2r. Let VT

2r represent the top k singular vectors in the
row space. Construct a leverage-score sketching matrix E2r with poly(kε) columns
using the leverage scores of VT

2r, following the guarantees of Theorem 4.3. Compute
XA(2r−1)

= argminX‖A(2r−1)E2r−1 −XVT
2rE2r−1‖.

4. Compute a decomposition U2r−1V2r−1 of XA(2r−1)
VT

2r such that U2r−1 has or-
thonormal columns. Consider the regression problem minX ‖A(2r−2) −U2r−1X‖2F .
Compute XA(2r−2)

= argminX‖E2r−2A(2r−2) − E2r−2U2r−1X‖2F , where E2r−2

is a leverage score sketching matrix with poly
(
k
ε

)
rows constructed according to

Theorem 4.3.
5. Let U2r−1XA(2r−2)

be the starting point for A2r−3 as U2rΣ2rV
T
2r was for A2r−1

and recurse to the top. Let U1, XA be the solution obtain from solving minX ‖EA−
EU1X‖2F , where E is a leverage score sketching matrix with poly

(
k
ε

)
rows, con-

structed according to Theorem 4.3.

Output: M = U1, NT = XA

In this section we improve the running time of our previous sublinear time algorithm. Intuitively, our
algorithm recursively constructs projection-cost preserving sketches for the rows and columns of
the original matrix by sampling according to coarse estimates of the row and column norms. Note,
we are able to obtain these estimates by dividing the subsampled matrices at each step into weight
classes such that each weight class approximately satisfies triangle inequality. At the bottom of the
recursion we reduce the input matrix A to a poly(kε)× poly(kε) matrix, for which we can compute
the SVD in O(poly(kε)) time.

21

Starting with an orthonormal basis of the SVD, we alternate between approximately computing the
best rank-k projection in the column and the row space all the way up the recursion chain and
output the final rank-k matrix. However, computing the SVD or even running an input-sparsity
time algorithm near the top becomes prohibitively expensive and is no longer sublinear. Therefore,
we find approximate solutions to the best rank-k column and row subspaces by formulating a
regression problem, sketching it to a smaller dimension using leverage score sampling and solving it
approximately.

We show that recursive sampling indeed approximately preserves rank-k subspaces of the row and
column space. For the sake of brevity throughout the rest of the analysis, let A(i) be a ti × si
matrix created by recursively sampling rows or columns of A(i−1) such that at each step the row
or column pcp properties are satisfied. Formally, let A(0) = A be a t0 × s0 matrix, where t0 = m
and s0 = n. Then, if i is odd, A(i) = A(i−1)Si is a ti−1 × si matrix and a column pcp for A(i−1)

and if i is even, A(i) = TiA(i−1) is a ti × si−1 matrix and a row pcp for A(i−1). We note that

si = Θ̃
(
si−1

b2
poly(kε)

)
and ti = Θ̃

(
ti−1

b1
poly(kε)

)
.

To address the issue of rescaling every time we subsample rows or columns, we split the rows or
columns of A(i) into O(ε−1 log(mn)) weight classes such that triangle inequality approximately
holds in each weight class. Therefore, the column or row norm estimation algorithm goes through for
each weight class independently and we obtain an overall O(mb2)-approximation to the column norms
at the cost of reading O(ε−1 log(m)b2) entries per column. A similar guarantee holds for the row
norms. This idea simply extends to the recursive algorithm as we can create weight classes at each
recursive step run the simple row and column norm estimation algorithms.

Intuitively, to handle the first column rescaling , we partition the columns of the matrix into
O(ε−1 log(mn)) blocks such that each block satisfies approximate triangle inequality. By Lemma
2.1, we can estimate the row norms for each block efficiently, and summing the estimates suffices to
obtain an approximation to the row norms. Next, we subsample the rows and scale them. However, we
observe that we can yet again partition each sub-matrix that satisfies approximate triangle inequality
into O(ε−1 log(mn)) weight classes and yet again satisfy approximate triangle inequality. We note
that we only recurse a constant (1/γ) number of times, therefore the total number of sub-matrices
formed is O

(
(ε−1 log(mn))

1
γ

)
= poly(ε−1 log(mn)) and the run-time blows up by at most that

factor.
Lemma A.3. (Estimating row and column norms under rescaling.) Let A be a m× n matrix such
that A satisfies approximate triangle inequality. For a small fixed constant γ, and for all i ∈ [1/γ],
let A(i) be a ti × si scaled sub-matrix of A as defined as above. There exists an algorithm that, with

probability at least 9/10, obtains aO
(
si−1

b1

)
-approximation to the row norms of A(i) in Õ(b2m+n)

time. A similar guarantee holds for estimating column norms.

Proof. We begin with a m × n matrix A that satisfies approximate triangle inequality. It follows
from Corollary A.1 that we can approximately estimate column norms of A in O(b2m + n) time.
Therefore, we can construct the column pcp, A(1) = AS1, such that the jth column of A, if sampled,
is rescaled by 1√

s1qj
. Therefore, the resulting matrix, A(1) may no longer be a distance matrix. As

discussed in the previous section, to address this issue, we partition the columns of A(1) into weight
classes such that the gth weight class contains column index j if the corresponding scaling factor 1√

qj

lies in the interval
[
(1 + ε)g, (1 + ε)g+1

)
. Note, we can ignore the (1√

s1
)-factor since every entry is

rescaled by the same constant. Formally,

W(1)
g =

{
i ∈ [s1]

∣∣∣ 1
√
qj
∈
[
(1 + ε)g, (1 + ε)g+1

)}
(A.53)

Next, with high probability, for all j ∈ [n], if column j is sampled, 1
qj
≤ nc for a large constant

c. If instead, qj ≤ 1
nc′

, the probability that the jth is sampled would be at most 1/nc
′
, for some

c′ > c. Union bounding over such events for n columns, the number of weight classes is at most
log1+ε(n

c) = O
(
ε−1 log(n)

)
. Let A

(1)|W(1)
g

denote the columns of A(1) restricted to the set of
indices inWg. Observe that all entries in A

(1)|W(1)
g

are scaled to within a (1 + ε)-factor of each

22

other and therefore, satisfy approximate triangle inequality (equation 2.1). Therefore, row norms
of A

(1)|W(1)
g

can be computed using Algorithm 1 and the estimator is an O
(
n
b2

)
-approximation

(for some parameter b2), since Lemma 2.1 blows up by a factor of at most 1 + ε. Summing over
the estimates from each partition above, with probability at least 99/100, we obtain an O

(
n
b2

)
-

approximate estimate to row norms of A(1). However, we note that each iteration of Algorithm 1
reads b2m+ n entries of A and there are at most O(ε−1 log(n)) iterations. Therefore, the time taken
to compute the estimates to the row norms is O

(
(b2m+ n)ε−1 log(n)

)
.

Now, we can construct a row pcp of A(1), which we denote by A(2), such that each row in A(2) is a
scaled subset of the rows of A(1). Our next task is to estimate the column norms of A(2). It suffices
to show that A(2) can be partitioned into a small number of sub-matrices such that each one satisfies
(1 + ε)-approximate triangle inequality.

Observe, we previously split the matrix A(1) according toW(1)
g , into O

(
ε−1 log(n)

)
sub-matrices

such that each matrix satisfies (1 + ε)-approximate triangle inequality. Consider one such sub-matrix,
A

(1)|W(1)
g

. In the construction of the row pcp A(2), we rescale a subset of rows of each of A
(1)|W(1)

g
.

Therefore, we can again create O
(
ε−1 log(m)

)
geometrically increasing weight classes for the

rows of A
(1)|W(1)

g
. Note, restricting rows of A

(1)|W(1)
g

to one weight class results in a sub-matrix

that satisfies (1 + ε)2-approximate triangle inequality. We repeat the above analysis for each such
sub-matrix, since we again start with a matrix that satisfies (1 + ε)-approximate triangle inequality,
after rescaling ε by a constant.

Critically, we note that we only repeat the recursion a constant number of times, therefore the
approximation factor for triangle inequality blows up by (1 + ε)1/γ . Since γ is a constant, we can
rescale ε by a constant, and therefore, all sub-matrices satisfy (1 + ε)-approximate triangle inequality.
the total number of sub-matrices formed is O

(
(ε−1 log(n) log(m))

1
γ

)
= poly(ε−1 log(n) log(m))

and the run-time blows up by at most that factor.

Note, we can now black-box the algorithm for estimating row and column norms of scaled sub-
matrices of A. For the sake of brevity, we do not include them in Algorithm 3. Next, we present a
critical structural result that enables us to recursively apply the pcp guarantees.
Lemma A.4. (Recursive PCP Lemma.) Let A(i) be defined as above. Then, for any ε > 0, integer

k and a small constant γ > 0, 2r = O
(

1
γ

)
, simultaneously for all odd i ∈ [2r], for all rank-k

projection matrices Xi, with probability at least 98/100,

‖A(i)(I−Xi)‖2F = ‖A(i−1)(I−Xi)‖2F ± ε‖A(i−1)‖2F
Further, let X∗A(i)

be the projection that minimizes ‖A(i)(I−Xi)‖2F and let X∗A(i−1)
be the projection

that minimizes ‖A(i−1)(I −Xi)‖2F . Then, simultaneously for all odd i, for any rank-k projection
matrix Xi such that ‖A(i)(I−Xi)‖2F ≤ ‖A(i)(I−X∗A(i)

)‖2F + ε‖A(i)‖2F , with probability at least
98/100,

‖A(i−1)(I−Xi)‖2F ≤ ‖A(i−1)(I−X∗A(i−1)
)‖2F + ε‖A(i−1)‖2F

A similar guarantee holds if i is even.

Proof. For a given matrix A(i), such that i is odd, we employ Theorem A.2 with δ = 1/nc for a
fixed constant c. Note, the number of columns we sample only blows up by a constant and

‖A(i)(I−Xi)‖2F ≤ ‖A(i−1)(I−Xi)‖2F + ε‖A(i−1)‖2F
holds with probability at least 1− 1

nc . Union bounding over all such events for i ∈ [2r], such that
i is odd, the above guarantee holds simultaneously with probability at least 1 − 1/nc−1. Setting
δ = 1/nc in Corollary A.2, it follows that simultaneously for all i ∈ [2r], such that i is even,

‖(I−Xi)A(i)‖2F ≤ ‖(I−Xi)A(i−1)‖2F + ε‖A(i−1)‖2F
with probability at least 1− 1/nc−1. Note, for a fixed odd i, following the analysis of Lemma A.1,

‖A(i−1)(I−Xi)‖2F ≤ ‖A(i−1)(I−X∗A(i−1)
)‖2F +O(ε)‖A(i−1)‖2F

23

holds with probability at least 1− 1
200r . Union bounding over all such events i ∈ [2r], such that i is

odd, the above guarantee holds simultaneously, with probability at least 99/100.

Similarly, for even i, let X∗A(i)
be the projection that minimizes ‖(I−Xi)A(i)‖2F and let X∗A(i−1)

be the projection that minimizes ‖(I−Xi)A(i−1)‖2F . Then, simultaneously for all even i, for any
rank-k projection matrix Xi such that

‖(I−Xi)A(i)‖2F ≤ ‖(I−X∗A(i)
)A(i)‖2F +O(ε)‖A(i)‖2F

with probability at least 99/100, it holds that

‖(I−Xi)A(i−1)‖2F ≤ ‖(I−X∗A(i−1)
)A(i−1)‖2F +O(ε)‖A(i−1)‖2F

Union bounding over the odd and even events completes the proof.

Using the above structural guarantees, we show that Algorithm 3 indeed achieves an additive error
guarantee for low-rank approximation. Intuitively, at each recursive step we either approximately
preserve all rank-k row or column projections. We finally obtain a matrix that is independent of m
and n and therefore we can compute its SVD. We then begin with the rank-k matrix output by the
SVD and critically rely on Lemma A.1 to switch between finding approximately optimal projections
in the row and column space while climb back up the recursive stack.

Lemma A.5. (Additive Error Guarantee.) Let A ∈ Rm×n be a matrix such that it satisfies approxi-
mate triangle inequality. Then, for any ε > 0, integer k, and a small constant γ > 0, with probability
at least 9/10, Algorithm 3 outputs a rank-k matrix MNT such that M ∈ Rm×k, N ∈ Rn×k and

‖A−MNT ‖2F ≤ ‖A−Ak‖2F +O(ε)‖A‖2F

Proof. By Lemma A.4, we know that approximately optimal rank-k projection matrix for A(i) is
an approximately optimal rank-k matrix for A(i−1) up to an additive error term of ε‖A(i−1)‖2F . Let

2r = O
(

1
γ

)
be the number of recursive calls. Concretely, since A(2r) is a row pcp of A(2r−1), we

know that for all rank-k projections X2r, with probability at least 98/100,

‖A(2r)(I−X2r)‖2F ≤ ‖A(2r−1)(I−P2r)‖2F + ε‖A(2r−1)‖2F (A.54)

Since A(2r) is a small matrix of dimension, we can afford to compute SVD(A(2r)) (we analyze this
runtime below). Let U2rD2rV

T
2r be the truncated SVD, containing the top k singular values and

setting the rest to 0. Thus, we know that V2rV
T
2r is the optimal projection matrix for A(2r), and by

Lemma A.4,

‖A(2r−1)(I−V2rV
T
2r)‖2F ≤ ‖A(2r−1) − (A(2r−1))k‖2F + ε‖A(2r−1)‖2F (A.55)

As discussed in the analysis of Algorithm 2, observe that computing the SVD or even running an
input-sparsity time algorithm as we recurse back up to the top becomes prohibitively expensive and
no longer sublinear. Therefore, we follow the previous strategy of setting up a regression problem,
sketching it and solving it approximately using leverage scores. We observe that an approximately
optimal solution for A(2r−1) lies in the row space of VT

2r and set up the following regression problem:

min
X
‖A(2r−1) −XVT

2r‖2F (A.56)

Though this problem is small and independent of m and n, as we recurse up, the regression problems
grow larger and larger. Therefore, we sketch it using the leverage scores of VT

2r. Note, since VT
2r is

orthonormal, the leverage scores are precomputed. With probability at least 98/100, we compute
XA(2r−1)

= argminX‖A(2r−1)E2r−1 −XVT
2rE2r−1‖, where E2r−1 is a leverage score sketching

matrix with poly
(
k
ε

)
columns. Given the sketching guarantee of Theorem 4.3,

‖A(2r−1) −XA(2r−1)
VT

2r‖2F ≤ (1 + ε) min
X
‖A(2r−1) −XVT

2r‖2F

≤ (1 + ε)‖A(2r−1) −A(2r−1)V2rV
T
2r‖2F

≤ ‖A(2r−1) − (A(2r−1))k‖2F +O(ε)‖A(2r−1)‖2F

(A.57)

24

where the last inequality follows from equation A.55.Therefore, XA(2r−1)
VT

2r has rank at most k
and is an approximate optimal solution for A(2r−1). Applying Lemma A.4 again, we know that
projecting onto the column space of XA(2r−1)

VT
2r is an approximately optimal solution for A(2r−2).

Formally, let XA(2r−1)
VT

2r = U2r−1V2r−1 such that U2r−1 has orthonormal columns. It follows
from equation A.57 that ‖A(2r−1)−U2r−1V2r−1‖2F = ‖A(2r−1)− (A(2r−1))k‖2F ± ε‖A(2r−1)‖2F .
Therefore,

‖(I−U2r−1U
T
2r−1)A(2r−2)‖2F ≤ ‖A(2r−2) − (A(2r−2))k‖2F + ε‖A(2r−2)‖2F (A.58)

We observe that a good solution for A(2r−2) exists in the column space of U2r−1, and set up the
following regression problem:

min
X
‖A(2r−2) −U2r−1X‖2F (A.59)

Again, we sketch this regression problem using the leverage scores of U2r−1. Recall, U2r−1 has
orthonormal rows and thus the leverage scores are precomputed. We can then compute XA(2r−2)

=

argminX‖E2r−2A(2r−2) − E2r−2U2r−1X‖2F , where E2r−2 is a leverage score sketching matrix
with poly

(
k
ε

)
rows. Given the sketching guarantee of leverage score sampling in Theorem 4.3,

‖A(2r−2) −U2r−1XA(2r−2)
‖2F ≤ (1 + ε) min

X
‖A(2r−2) −U2r−1X‖2F

≤ (1 + ε)‖A(2r−2) −U2r−1U
T
2r−1A(2r−2)‖2F

≤ ‖A(2r−2) − (A(2r−2))k‖2F +O(ε)‖A(2r−2)‖2F

(A.60)

We observe that U2r−1XA(2r−2)
is a rank-k matrix, written in factored from, that is an approximate

solution for A(2r−2). Using U2r−1, XA(2r−2)
, we can repeat the above analysis r times all the way

up the recursion stack. Note, the last level of the analysis is simply the one presented in the proof of
Theorem 4.1. Let U1, XA be the solution obtain from solving the final regression problem. Note,
union bounding over all the random events above, we obtain U1, XA with probability at least 9/10.
Setting M = U1 and NT = XA finishes the proof and satisfied the additive error guarantee for
A.

Next, we show the running time of Algorithm 3 is sublinear in m and n for an appropriate setting of
b1, b2 and γ.
Lemma A.6. Let A ∈ Rm×n be a matrix such that it satisfies approximate triangle inequal-
ity. Then, for any ε > 0, integer k, and a small constant γ > 0, Algorithm 3 runs in
Õ
((
m1+γ + n1+γ

)
poly(kε)

)
time.

Proof. Recall, from the running time analysis of Algorithm 2, for a ti×si matrix A(i), we a construct

column and row pcp in O
(
ti log(ti)

b1
poly(kε) + b1si + ti

)
and O

(
si log(si)

b2
poly(kε) + (b2ti + si)

)
respectively. Since i ∈ [2r] and 2r = O(1/γ), we can compute A(2r) in

O
(

(b1n+ b2m) poly(k log(mn)
ε)

)
, since the running time is dominated by sampling b1 entries in

each column and b2 entries in each row of the input matrix A, at the top level. Note, A(2r) is a
t2r× s2r matrix, where t2r = m

b
1/γ
2

poly(k log(m)
ε) and s2r = n

b
1/γ
1

poly(k log(n)
ε). We can compute the

SVD of A(2r) in O
((

nm
(b1b2)1/γ

)2

poly(k log(m) log(m)
ε)

)
. Next, we solve 2r regression problems by

sketching them as we recurse back up. We again upper bound each recursive step by the running
time of the top level. Recall, from the analysis of Algorithm 2, the regression problem can be solved
in O

(
(m+ n)poly(k log(m) log(n)

ε)
)

. Setting b1 = nγ and b2 = mγ , the overall running time is

Õ
((
m1+γ + n1+γ

)
poly(kε)

)
.

Lemma A.5 together with Lemma A.6 imply our main theorem:
Theorem A.3. (Sublinear Low-Rank Approximation for Distance Matrices.) Let A ∈ Rm×n be a
matrix such that it satisfies approximate triangle inequality. Then, for any ε > 0, integer k and a
small constant γ > 0, there exists an algorithm that accesses O

(
m1+γ + n1+γ

)
entries of A and

25

runs in time Õ
((
m1+γ + n1+γ

)
poly(kε)

)
to output matrices M ∈ Rm×k and N ∈ Rn×k such that

with probability at least 9/10,

‖A−MNT ‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F

A.7 Relative Error Guarantees

Theorem 5.1. (Lower bound.) Let A be an n× n distance matrix. Let B be a rank-poly(k) matrix
such that ‖A−B‖2F ≤ c‖A−Ak‖ for any constant c > 1. Then, any algorithm that outputs such a
B requires Ω(nnz(A)) time.

Proof. Let P = {e1, e2 . . . en} be a set of n standard unit vectors andQ be a set of n−1 zero vectors
along with one point q such that q = ±ei, where i and the sign are chosen uniformly at random. Let
the underlying metric space be `∞-norm. Note, all but one pairwise distances in A are 1. Further,
one entry in the ith row of A is either 2 or 0. Note, A is a rank-2 matrix and thus ‖A−Ak‖2F = 0,
for all k > 1. Let B be a rank-poly(k) matrix that obtains any relative-error guarantee. Then, B must
exactly recover A and therefore any algorithm needs to read all entries of A in order to find the entry
that is 0 or 2.

Algorithm 1 Bi-criteria Algorithm for Euclidean Matrices.

Require: Euclidean Matrix An×n, integer k.
1: Let A = A1 + A2 − 2B s.t. A1 and A2 are rank-1 matrices and B is a PSD Matrix.
2: Then, A1 = a1a

T
1 and A2 = a2a

T
2 .

3: Compute MNT by running the sublinear low-rank approximation algorithm from [14] on B
with parameter k + 2.

4: Compute V an orthonormal basis for M.
5: Let W be V concatenated with a1 and a2. We denote W as [V; a1,a2].

Ensure: WWT

Theorem 5.2. (Bi-criteria Algorithm.) Let A be a Euclidean Distance matrix. Then, for any ε > 0
and integer k, with probability at least 9/10, Algorithm 1 outputs a rank (k+ 4) matrix WWT such
that

‖A−AWWT ‖F ≤ (1 + ε)‖A−Ak‖F
where Ak is the best rank-k approximation to A. Further, Algorithm 1 runs in O(npoly(kε)).

Proof. First, we show that we can simulate the sublinear PSD algorithm from [14] on B, given
random access to A and reading n−1 additional entries. Observe that computing Bi,j requires ‖xi‖22
and ‖xj‖22. Since pairwise distances are invariant to a uniform shift in position. Therefore, w.l.o.g.
we can assume that the first point, x1, is at the origin. Then, the jth entry of the first row A is ‖xj‖22.
Now, Bi,j = (‖xi‖22 + ‖xj‖22 −Ai,j)/2 and we have access to each of these values. Therefore, we
can simulate the algorithm for sublinear low-rank approximation on B in O(npoly(kε)). Note, in
Algorithm 1 we find a rank k + 1 approximation to B and by Theorem ??, the algorithm outputs
matrices M,N ∈ Rn×k such that

‖B(I−MNT)‖F ≤ (1 + ε)‖B−Bk+2‖F
where Bk+2 is the best rank-(k + 2) approximation to B. Let V be an orthonormal basis for M,
which can be computed in O(nk2) time. Let W = [V; a1,a2]. We observe that the projection matrix
WWT applied to A1 and A2 yields A1 and A2 respectively since they lie in the column space of
W. Therefore,

‖A(I−WWT)‖F = ‖(A1 + A2 − 2B)(I−WWT)‖F
= ‖(A1 −A1WWT) + (A2 −A2WWT)− 2(B−BWWT)‖F
= 2‖B(I−WWT)‖F
≤ 2‖B(I−MNT)‖F
≤ 2(1 + ε)‖B−Bk+2‖F

(A.61)

26

Metric SVD IS Sub Iter

L2 473.83 38.04 2.09 21.53
L1 526.11 37.62 1.92 20.26
L∞ 417.42 38.40 1.93 27.66
Lc 476.89 40.95 1.93 22.53

Table 3: Running Time (in seconds) of full
SVD, Input-sparsity, Sublinear and Iterative
SVD algorithms on the Gisette Dataset for
Rank = 40

Metric SVD IS Sub Iter

L2 480.19 39.69 2.86 16.37
L1 417.35 37.15 3.04 16.09
L∞ 447.39 41.89 3.37 17.68
Lc 425.95 45.99 2.41 20.12

Table 4: Running Time (in seconds) of full
SVD, Input-sparsity, Sublinear and Iterative
SVD algorithms on the Poker Dataset for
Rank = 40.

Next, we bound ‖A−Ak‖F in terms of ‖B−Bk+2‖F as follows:

‖A−Ak‖F = ‖A1 + A2 − 2B−Ak‖F

= 2
∥∥∥B− (A1 + A2 −Ak)

2

∥∥∥
F

(A.62)

Observe, A1 + A2 − Ak is a rank-2 perturbation to a rank-k matrix, therefore,
∥∥∥B −

(A1+A2−Ak)
2

∥∥∥
F
≥ ‖B − Bk+2‖F . Combining the two equations, we get ‖A(I −WWT)‖F ≤

(1 + ε)‖A−Ak‖F . Recall, W = [V; a1,a2], where V has rank k+ 2 and thus W has rank at most
k + 4.

B Experiments

In this section, we present the results of our sublinear time algorithm, the conventional SVD Algorithm
(optimal error), iterative SVD methods and the input-sparsity time algorithm from [4] on the Gisette
and Poker Dataset. Note, we don’t include the error of the Iterative SVD algorithm in our plots
since it is orders of magnitude larger than the SVD error and makes the plots less interpretable. For
instance, on the Gisette dataset the minimum Frobenius norm error attain by SVD is 1086.40, whereas
that of the Iterative SVD is 26156230.14.

27

Gisette Dataset

Poker Dataset

Figure B.1: Here we consider the Gisette dataset [11] and the Poker Dataset [2]. The distance matrix
is created using Euclidean, Manhattan, Chebyshev and Canberra distance metrics. We compare the
error achieved by SVD (optimal), our Sublinear Algorithm and an Input Sparsity Algorithm.

28

