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1 Kernels

The covariance functions we consider in this paper are the squared exponential (SE) kernel

kSE(x, y) = s2 exp

(
−‖x− y‖2

2`2

)
and the spline kernels

kspline(x, y) =

{
s2
(
‖x− y‖3 + a‖x− y‖2 + b

)
d odd

s2
(
‖x− y‖2 log ‖x− y‖+ a‖x− y‖2 + b

)
d even

where a, b are chosen to make the spline kernel symmetric and positive definite on the given domain.

2 Kernel Derivatives

The first and second order derivatives of the SE kernel are
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This shows that each n-by-n block of ∂K and ∂2 admit Kronecker and Toeplitz structure if the points
are on a grid.
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3 Preconditioning

We discover that preconditioning is crucial for the convergence of iterative solvers using approxima-
tion schemes such as D-SKI and D-SKIP. To illustrate the performance of conjugate gradient (CG)
method with and without the above-mentioned truncated pivoted Cholesky preconditioner, we test
D-SKI on the 2D Franke function with 2000 data points, and D-SKIP on the 5D Friedman function
with 1000 data points. In both cases, we compute a pivoted Cholesky decomposition truncated at rank
100 for preconditioning, and the number of steps it takes for CG/PCG to converge are demonstrated
in Figure 1 below. It is clear that preconditioning universally and significantly reduces the number of
steps required for convergence.
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Figure 1: The color shows log10 of the number of iterations to reach a tolerance of 1e-4. The first
row compares D-SKI with and without a preconditioner. The second row compares D-SKIP with and
without a preconditioner. The red dots represent no convergence. The y-axis shows log10(`) and the
x-axis log10(σ) and we used a fixed value of s = 1.

4 Korea

(a) Ground Truth (b) SKI (c) D-SKI

Figure 2: D-SKI is clearly able to capture more detail in the map than SKI. Note that inclusion of
derivative information in this case leads to a negligible increase in calculation time.

The Korean Peninsula elevation and bathymetry dataset[1] is sampled at a resolution of 12 cells per
degree and has 180× 240 entries on a rectangular grid. We take a smaller subgrid of 17× 23 points
as training data. To reduce data noise, we apply a Gaussian filter with σfilter = 2 as a pre-processing
step. We observe that the recovered surfaces with SKI and D-SKI highly resemble their respective
counterparts with exact computation and that incorporating gradient information enables us to recover
more terrain detail.
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` s σ SMAE Time[s]
SKI 16.786 855.406 184.253 0.1521 10.094

D-SKI 9.181 719.376 29.486 0.0746 11.643
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