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Abstract

We introduce a new approach to decomposable submodular function minimiza-
tion (DSFM) that exploits incidence relations. Incidence relations describe which
variables effectively influence the component functions, and when properly uti-
lized, they allow for improving the convergence rates of DSFM solvers. Our
main results include the precise parametrization of the DSFM problem based on
incidence relations, the development of new scalable alternative projections and
parallel coordinate descent methods and an accompanying rigorous analysis of
their convergence rates.

1 Introduction
A set function F : 2[N ] → R over a ground set [N ] is termed submodular if for all pairs of sets
S1, S2 ⊆ [N ], one has F (S1) +F (S2) ≥ F (S1 ∩ S2) +F (S1 ∪ S2). Submodular functions capture
the ubiquitous phenomenon of diminishing marginal costs [1] and they frequently arise as part of the
objective function of various machine learning optimization problems [2, 3, 4, 5, 6, 7].

Among the various submodular function optimization problems, submodular function minimization
(SFM), which may be stated as minS⊆[N ] F (S), is one of the most important and commonly studied
questions. The current fastest known SFM algorithm has complexity O(N4 logO(1)N + τN3),
where τ denotes the time needed to evaluate the submodular function [8]. Although SFM solvers
operate in time polynomial in N , the high-degree of the underlying polynomial prohibits their use
in practical large-scale settings. For this reason, a recent line of work has focused on developing
scalable and parallelizable algorithms for solving the SFM problem by leveraging the property of
decomposability [9]. Decomposability asserts that the submodular function may be written as a sum
of “simpler” submodular functions that may be optimized sequentially or in parallel. Formally, the
underlying problem, referred to as decomposable SFM (DSFM), may be stated as:

DSFM: min
S

∑
r∈[R]

Fr(S), (1)

where Fr : 2[N ] → R is a submodular function for all r ∈ [R]. Algorithmic solutions for the DSFM
problem fall into two categories, combinatorial optimization approaches [10, 11] and continuous func-
tion optimization methods [12]. In the latter setting, a crucial concept is the Lovász extension of the
submodular function which is convex [13] and lends itself to a norm-regularized convex optimization
framework. Prior work in continuous DSFM has focused on devising efficient algorithms for solving
the convex problem and deriving matching convergence results. The best known approaches include
the alternating projection (AP) methods [14, 15] and the coordinate descent (CD) methods [16].

Despite some simplifications offered through decomposibility, DSFM algorithms still suffer from
scalability issues and have convergence guarantees that are suboptimal. To address the first issue, one
needs to identify additional problem constraints that allow for parallel implementations. To resolve the
second issue and more precisely characterize and improve the convergence rates, one needs to better
understand how the individual submodular components jointly govern the global optimal solution.
In both cases, it is crucial to utilize incidence relations that describe which subsets of variables
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directly affect the value of any given component function. Often, incidences involve relatively small
subsets of elements, which leads to desirable sparsity constraints. This is especially the case for
min-cut problems on graphs and hypergraphs (where each submodular component involves two or
several vertices) [17, 18] and MAP inference with higher-order potentials (where each submodular
component involves variables corresponding to adjacent pixels) [9]. Although incidence relations
have been used to parametrize the algorithmic complexity of combinatorial optimization methods
for solving DSFM problems [10], they have been largely overlooked in continuous optimization
methods. Some prior work considered merging decomposable parts with nonoverlapping support
into one submodular function, thereby creating a coarser decomposition that may be processed more
efficiently [14, 15, 16], but the accompanying algorithms were neither designed in a form that can
optimally use this information nor analyzed precisely with respect to their convergence rates and
merging strategies. In an independent work, Djolonga and Krause found that the variational inference
problem in L-FIELD could be reduced to a DSFM problem with sparse incidence relations [19],
while their analysis only worked for regular cases.

Here, we revisit two benchmark algorithms for continuous DSFM – AP and CD – and describe how
to modify them to exploit incidence relations that allow for significantly improved computational
complexity. Furthermore, we provide a complete theoretical analysis of the algorithms parametrized
by incidence relations with respect to their convergence rates. AP-based methods that leverage
incidence relations achieve better convergence rates than classical AP algorithms both in the sequential
and parallel optimization scenario. The random CD method (RCDM) and accelerated CD method
(ACDM) that incorporate incidence information can be parallelized. The complexity of sequential
CD methods cannot be improved using incidence relations, but the convergence rate of parallel CD
methods strongly depends on how the incidence relations are used for coordinate sampling: while
a new specialized combinatorial sampling based on equitable coloring [20] is optimal, uniformly
at random sampling produces a 2-approximation. It also leads to a greedy method that empirically
outperforms random sampling. A summary of these and other findings is presented in Table 1.

Prior work This work
Sequential Parallel Sequential Parallel

AP O(N2R2) O(N2R2/K) O(N‖µ‖1R) O(N‖µ‖1R/K)

RCDM O(N2R) - O(N2R) O
((

R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)
R/K

)
ACDM O(NR) - O(NR) O

((
R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)1/2

R/K

)
Table 1: Overview of known and new results: each entry contains the required number of iterations to
achieve an ε-optimal solution (the dependence on ε is the same for all algorithms and hence omitted).
Here, ‖µ‖1 =

∑
i∈[N ] µi, where for all i ∈ [N ], µi equals the number of submodular functions

that involve element i; K is a parallelization parameter that equals the number of min-norm points
problems that have to be solved within each iteration.

2 Background, Notation and Problem Formulation

We start our exposition by reviewing several recent lines of work for solving the DSFM problem, and
focus on approaches that transform the DSFM problem into a continuous optimization problem. Such
approaches exploit the fact that the Lovász extension of a submodular function is convex. Without
loss of generality, we tacitly assume that all submodular functions Fr are normalized, i.e., that
Fr(∅) = 0 for all r ∈ [R]. Also, we define given a vector z ∈ RN and S ⊆ [N ], z(S) =

∑
i∈S zi.

Then, the base polytope of the r-th submodular function Fr is defined as

Br , {yr ∈ RN |yr(S) ≤ Fr(S), for any S ⊂ [N ], and yr([N ]) = Fr([N ])}.

The Lovász extention [13] fr(·) : RN → R of a submodular function Fr is defined as fr(x) =
maxyr∈Br 〈yr, x〉, where 〈·, ·〉 denotes the inner product of two vectors. The DSFM problem can be
solved through continuous optimization, minx∈[0,1]N

∑
r fr(x). To counter the nonsmoothness of

the objective function, a proximal formulation of a generalization of the above optimization problem
is considered instead [14],

min
x∈RN

∑
r∈[R]

fr(x) +
1

2
‖x‖22. (2)
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As the problem (2) is strongly convex, it has a unique optimal solution, denoted by x∗. The exact
discrete solution to the DSFM problem equals S∗ = {i ∈ [N ]|x∗i > 0}.

For convenience, we denote the product of base polytopes as B = ⊗Rr=1Br, and write y =
(y1, y2, ..., yR) ∈ B. Also, we let A be a simple linear mapping ⊗Rr=1RN → RN , which given
a point a = (a1, a2, ..., aR) ∈ ⊗Rr=1RN outputs Aa =

∑
r∈[R] ar. The AP and CD algorithms for

solving (2) use the dual form of the problem, described in the next lemma.
Lemma 2.1 ([14]). The dual problem of (2) reads as

min
a,y
‖a− y‖22 s.t. Aa = 0, y ∈ B. (3)

Moreover, problem (3) may be written in the more compact form

min
y
‖Ay‖22 s.t. y ∈ B. (4)

For both problems, the primal and dual variables are related according to x = −Ay. In what follows,
for notational simplicity, we write g(y) = 1

2‖Ay‖
2
2.

The AP [15] and RCD algorithms [16] described below provide solutions to the problems (3) and (4),
respectively. They both rely on repeated projections ΠBr (·) onto the base polytopes Br, r ∈ [R].
These projections are typically less computationally intense than projections onto the complete base
polytope of F as they involve fewer data dimensions. The projection operation ΠBr (·) requires one
to solve a min-norm problem by either exploiting the special forms of Fr or by using the general
purpose algorithm of Wolfe [21]. The complexity of the method is typically characterized by the
number of required projections ΠBr (·).

The AP algorithm. Starting with y = y(0), iteratively compute a sequence (a(k), y(k))k=1,2,... such
that for all r ∈ [R], a(k)

r = y
(k−1)
r −Ay(k−1)/R, y(k)

r = ΠBr (a
(k)
r ), until a stopping criteria is met.

The RCDM algorithm. In each iteration k, chose uniformly at random a subset of elements in y
associated with one atomic function in the decomposition (1), say the one with index rk. Then,
compute the sequence (y(k))k=1,2,... according to y(k)

rk = ΠBrk

(
−
∑
r 6=rk y

(k−1)
r

)
, y(k)
r = y

(k−1)
r ,

for r 6= rk.

Finding an ε-optimal solution for both the AP and RCD methods requires O(N2R log( 1
ε )) iterations.

In each iteration, the AP algorithm computes the projections onto all R base polytopes, while the
RCDM only computes one projection. Therefore, as may be seen from Table 1, the sequential
AP solver, which computes one projection in each iteration, requires O(N2R2 log( 1

ε )) iterations.
However, the projections within one iteration of the AP method can be generated in parallel, while
the projections performed in the RCDM have to be generated sequentially.

2.1 Incidence Relations and Related Notations

We next formally introduce one of the key concepts used in this work: incidence relations between
elements of the ground set and the component submodular functions.

We say that an element i ∈ [N ] is incident to a submodular function F iff there exists a S ⊆ [N ]/{i}
such that F (S ∪ {i}) 6= F (S); similarly, we say that the submodular function F is incident to an
element i iff i is incident to F . To verify whether an element i is incident to a submodular function
F , one needs to verify that F ({i}) = 0 and that F ([N ]) = F ([N ]/{i}) since for any S ⊆ [N ]/{i}

F ({i}) ≥ F (S ∪ {i})− F (S) ≥ F ([N ])− F ([N ]/{i}).

Furthermore, note that if i ∈ [N ] is not incident to Fr, then for any yr ∈ Br, one has yr,i = 0. Let
Sr be the set of all elements incident to Fr. For each element i, denote the number of submodular
functions that are incident to i by µi = |{r ∈ [R] : i ∈ Sr}|. We also refer to µi as the degree of
element i. We find it useful to partition the set of submodular functions into different groups. Given
a group C ⊆ [R] of submodular functions, we define the degree of the element i within C, µCi , as
µCi = |{r ∈ C : i ∈ Sr}|.

We also define a skewed norm involving two vectors w ∈ RN>0 and z ∈ RN according to ‖z‖2,w ,√∑
i∈[N ] wiz

2
i . With a slight abuse of notation, for two vectors θ = (θ1, θ2, ..., θR) ∈ ⊗Rr=1RN>0
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and y ∈ ⊗Rr=1RN , we also define the norm ‖y‖2,θ ,
√∑

r∈[R] ‖yr‖22,θr . Which of the norms we

refer to should be clear from the context. In addition, we let ‖θ‖1,∞ =
∑
i∈[N ] maxr∈[R]:i∈Sr θr,i.

For a closed set K ⊆ ⊗Rr=1RN and a positive vector θ ∈ ⊗Rr=1RN>0, the distance between y and K is
defined as dθ(y,K) = min{‖y − z‖2,θ|z ∈ K}. Also, given a set Ω ⊆ RN , we let ΠΩ,w(·) denote
the projection operation onto Ω with respect to the norm ‖ · ‖2,w.

Given a vector w ∈ RN>0, we also make use of an induced vector I(w) ∈ ⊗Rr=1RN whose r-th entry
satisfies (I(w))r = w. It is easy to check that ‖I(w)‖1,∞ = ‖w‖1. Of special interest are induced
vectors based on pairs of N -dimensional vectors, µ = (µ1, µ2, ..., µN ), µC = (µC1 , µ

C
2 , ..., µ

C
N ).

Finally, for w,w′ ∈ RN , we denote the element-wise power of w by wα = (wα1 , w
α
2 , ..., w

α
N ), for

some α ∈ R, and the element-wise product of w and w′ by w � w′ = (w1w
′
1, w2w

′
2, ..., wNw

′
N ).

Next, recall that x∗ is the unique optimal solution of the problem (2) and let Z = {ξ ∈
⊗Rr=1RN |Aξ = −x∗, ξr,i = 0,∀i ∈ Sr,∀r ∈ [R]}. Then, due to the duality relationship of
Lemma 2.1, Ξ = Z ∩ B is the set of optimal solutions {y}.

3 Continuous DSFM Algorithms with Incidence Relations

In what follows, we revisit the AP and CD algorithms and describe how to improve their performance
and analytically establish their convergence rates. Our first result introduces a modification of the
AP algorithm (3) that exploits incidence relations so as to decrease the required number of iterations
from O(N2R) to O(N‖µ‖1). Our second result is an example that shows that the convergence rates
of CD algorithms [11] cannot be directly improved by exploiting the functions’ incidence relations
even when the incidence matrix is extremely sparse. Our third result is a new algorithm that relies of
coordinate descent steps but can be parallelized. In this setting, incidence relations are essential to
the parallelization process.

To analyze solvers for the continuous optimization problem (2) that exploit the incidence structure of
the functions, we make use of the skewed norm ‖ · ‖2,w with respect to some positve vector w that
accounts for the fact that incidences are, in general, nonuniformly distributed. In this context, the
projection ΠBr,w(·) reduces to solving a classical min-norm problem after a simple transformation
of the underlying space which does not incur significant complexity overheads. To see this, note
that in order to solve a generic min-norm point problem, one typically uses either Wolfe’s algorithm
(continuous) or a divide-and-conquer procedure (combinatorial). The complexity of the former is at
most quadratic in Fr,max , maxv,S |Fr(S ∪ {v})− Fr(S)| [22], while the complexity of the latter
merely depends on logFr,max [14] (see Section A in the Supplement). It is unclear if including the
weight vector w into the projection procedure increases or decreases Fr,max. In either case, given that
in our derivations all elements of w are contained in [1,maxi∈[N ] µi] instead of N or R, we do not
expect to see significant changes in the complexity of the projection operation. Hence, throughout
the remainder of our exposition, we regard the projection operation as an oracle and measure the
complexity of all algorithms in terms of the number of projections performed.

Also, observe that one may avoid computing projections in skewed-norm spaces by introducing in (2)
a weighted rather than an unweighted proximal term. This gives another continuous objective that
still provides a solution to the discrete problem (1). Even in this case, we can prove that the numbers
of iterations used in the different methods listed Table 1 remain the same. Furthermore, by combining
projections in skewed-norm spaces and weighted proximal terms, it is possible to actually reduce
the number of iterations given in Table 1. However, for simplicity, we focus on the objective (2)
and projections in skewed-norm spaces. Methods using weighted proximal terms with and without
skewed-norm projections are analyzed in a similar manner in Section L of the Supplement.

We make frequent use of the following result which generalizes Lemma 4.1 of [11].

Lemma 3.1. Let θ ∈ ⊗Rr=1RN>0, w ∈ RN>0 be two positive vectors. Let y ∈ B and let z be in the
base polytope of the submodular function F . Then, there exists a point ξ ∈ B such that Aξ = z and

‖ξ − y‖2,θ ≤
√
‖θ‖1,∞

2 ‖Ay − z‖1. Moreover, ‖ξ − y‖2,θ ≤
√
‖θ‖1,∞‖w−1‖1

2 ‖Ay − z‖2,w.

3.1 The Incidence Relation AP (IAP)

The following result establishes the basis of our improved AP method leveraging incidence structures.
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Lemma 3.2. The following problem is equivalent to problem (3):

min
a,y
‖a− y‖22,I(µ) s.t. y ∈ B, Aa = 0, and ar,i = 0, ∀(r, i) : i /∈ Sr, r ∈ [R]. (5)

Let A = {a ∈ ⊗Rr=1RN |Aa = 0, ar,i = 0, ∀(r, i) : i /∈ Sr} and A′ = {a ∈ ⊗Rr=1RN |Aa = 0}.
The AP algorithm for problem (5) consists of alternatively computing projections between A and
B, as opposed to those between A′ and B used in the problem (3). However, as already pointed out,
unlike for the classical AP problem (3), the distance in (5) is not Euclidean, and hence the projections
may not be orthogonal.

The IAP method for solving (5) proceeds as follows. We begin with a = a(0) ∈ A, and iteratively
compute a sequence (a(k), y(k))k=1,2,... as follows: for all r ∈ [R], y(k)

r = ΠBr,µ(a
(k)
r ), a

(k)
r,i =

y
(k−1)
r,i − µ−1

i (Ay(k−1))i, ∀ i ∈ Sr. The key difference between the AP and IAP algorithms is that
the latter effectively removes “irrelevant” components of yr by fixing the irrelevant components of a
to 0. In the AP method of Nishihara [15], these components are never zero as they may be “corrupted”
by other components during AP iterations. Removing irrelevant components results in projecting y
into a subspace of lower dimensions, which significantly accelerates the convergence of IAP.

A′

A

By(0)(y′(0))

y′(1)

y′(2)

y(1)

y∗
a′(1)

a′(2)

a(1)

Figure 1: Illustration of the IAP method for solving problem (5): The space A is a subspace of A′,
which leads to faster convergence of the IAP method when compared to AP.

The analysis of the convergence rate of the IAP method follows a similar outline as that used to ana-
lyze (3) in [15]. Following Nishihara et al. [15], we define the following parameter that plays a key role
in determining the rate of convergence of the AP algorithm, κ∗ , sup

y∈Z∪B/Ξ

dI(µ)(y,Ξ)

max{dI(µ)(y,Z),dI(µ)(y,B)} .

Lemma 3.3 ([15]). If κ∗ <∞, the AP algorithm converges linearly with rate 1− 1
κ2
∗

. At the k-th

iteration, the algorithm outputs a value y(k) that satisfies

dI(µ)(y
(k),Ξ) ≤ 2dI(µ)(y

(0),Ξ)

(
1− 1

κ2
∗

)k
.

To apply the above lemma in the IAP setting, one first needs to establish an upper bound on κ∗. This
bound is given in Lemma 3.4 below.

Lemma 3.4. The parameter κ∗ is upper bounded as κ∗ ≤
√
N‖µ‖1/2 + 1.

By using the above lemma and the bound on κ∗, one can establish the following convergence rate for
the IAP method.
Theorem 3.5. After O(N‖µ‖1 log(1/ε)) iterations, the IAP algorithm for solving problem (5)
outputs a pair of points (a, y) that satisfies dI(µ)(y,Ξ) ≤ ε.

Note that in practice, one often has ‖µ‖1 � NR, which shows that the convergence rate of the AP
method for solving the DSBM problem may be significantly improved.

3.2 Sequential Coordinate Descent Algorithms

Unlike the AP algorithm, the CD algorithms by Ene et al. [16] remain unchanged given (4). Our
first goal is to establish whether the convergence rate of the CD algorithms can be improved using a
parameterization that exploits incidence relations.

The convergence rate of CD algorithms is linear if the objective function is component-wise smooth
and `-strong convex. In our case, g(y) is component-wise smooth as for any y, z ∈ B that only differ
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in the r-th block (i.e., yr 6= zr, yr′ = zr′ for r′ 6= r), one has
‖∇rg(y)−∇rg(z)‖2 ≤ ‖y − z‖2. (6)

Here, ∇rg denotes the gradient vector associated with the r-th block.
Definition 3.6. We say that the function g(y) is `-strongly convex in ‖ · ‖2,, if for any y ∈ B

g(y∗) ≥ g(y) + 〈∇g(y), y∗ − y〉+
`

2
‖y∗ − y‖22, or equivalently, ‖Ay −Ay∗‖22 ≥ `‖y∗ − y‖22,

where y∗ = arg min
z∈Ξ
‖z − y‖22. Moreover, we let `∗ = sup{` : g(y) is `-strongly convex in ‖ · ‖2}.

Note that the above definition essentially establishes a form of weak-strong convexity [23]. Then,
using standard analytical tools for CD algorithms [24], we can prove the following result [16].
Theorem 3.7. The RCDM for problem (4) outputs a point y that satisfies E[g(y)] ≤ g(y∗) + ε after
O( R`∗ log(1/ε)) iterations. The ACDM applied to the problem (4) outputs a point y that satisfies
E[g(y)] ≤ g(y∗) + ε after O( R√

`∗
log(1/ε)) iterations.

To precisely characterize the convergence rate, we need to find an accurate estimate of `∗. Ene et
al. [11] derived `∗ ≥ 1

N2 without taking into account the incidence structure. As sparse incidence
side information improves the performance of the AP method, it is of interest to determine if the
same can be accomplished for the CD algorithms. Example 3.1 establishes that this is not possible in
general if one only relies on `∗.
Example 3.1. Consider a DSFM problem with a extremely sparse incidence structure with |Sr| = 2.
More precisely, letN = 2n+1, R = 2n, and ‖µ‖1 =

∑
r∈[R] |Sr| = 4n� NR. Let Fr be incident

to the elements {r, r + 1}, for all r ∈ [R], and be such that Fr({r}) = Fr({r + 1}) = 1, Fr(∅) =
Fr({r, r + 1}) = 0. Then, `∗ < 7

N2 .

Note that the optimal solution of problem (4) for this particular setting equals y∗ = 0. Let us consider
a point y ∈ B specified as follows. First, due to the given incidence relations, the block yr has two
components corresponding to the elements indexed by r and r + 1. For any r ∈ [R],

yr,r = −yr,r+1 =

{
r
n r ≤ n,

2n+1−r
n r ≥ n+ 1.

(7)

Therefore, g(y) = 1
n , ‖y‖

2
2 >

4
3n, which results in `∗ < 3

2n2 ≤ 7
N2 for all n ≥ 3.

Example 3.1 only illustrates that an important parameter of CDMs cannot be improved using incidence
information; but this does not necessarily imply that a sequential RCDM that uses incidence structures
cannot offer better convergence rates than O(N2R). In Section E of the Supplement, we present
additional experimental evidence that supports our observation, using the setting of Example 3.1.

As a final remark, note that Nishihara et al. [15] also proposed a lower bound that does not make use
of sparse incidence structures and only works for the AP method.

3.3 New Parallel CD methods

In what follows, we propose two CDMs which rely on parallel projections and incidence relations.

The following observation is key to understanding the proposed approach. Suppose that we have a
nonempty group of blocks C ⊆ [R]. Let y, h ∈ ⊗Rr=1RN . If hr,i is nonzero only for block r ∈ C
and i ∈ Sr, then,

g(y + h) = g(y) + 〈∇g(y), h〉+
1

2
‖Ah‖22 ≤ g(y) +

∑
r∈C
〈∇rg(y), hr〉+

∑
r∈C

1

2
‖hr‖22,µC . (8)

Hence, for all r ∈ C, if we perform projections onto Br with respect to the norm ‖ · ‖2,µC simultane-
ously in each iteration of the CDM, convergence is guaranteed as the value of the objective function
remains bounded. The smaller the components of µC , the faster the convergence. Note that the
components of µC are the numbers of incidence relations of elements restricted to the set C. Hence,
in each iteration, blocks that ought to be updated in parallel are those that correspond to submodular
functions that have supports with smallest possible intersections.

One can select blocks that are to be updated in parallel in a combinatorially specified fashion or in a
randomized fashion, as dictated by what we call an α-proper distribution. To describe our parallel
RCDM, we first introduce the notion of an α-proper distribution.
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Definition 3.8. Let P be a distribution used to sample a group of C blocks. Define θP =
(θP1 , θ

P
2 , ..., θ

P
R) such that for r ∈ [R], θPr , EC∼P

[
µC |r ∈ C

]
. We say that P is an α-proper

distribution, if for any r ∈ [R] and a given α ∈ (0, 1), we have P(r ∈ C) = α.

We are now ready to describe the parallel RCDM algorithm – Algorithm 1; the description of the
parallel ACDM is postponed to Section J of the Supplement.

Algorithm 1: Parallel RCDM for Solving (4)
Input: B, α
0: Initialize y(0) ∈ B, k ← 0
1: Do the following steps iteratively until the dual gap < ε:
2: Sample Cik using some α-proper distribution P
3: For r ∈ Cik :
4: y

(k+1)
r ← ΠBr,θPr (y

(k)
r − (θPr )−1 �∇rg(y(k)))

5: Set y(k+1)
r ← y

(k)
r for r 6∈ Cik , k ← k + 1

6: Output y(k)

Next, we establish strong convexity results for the space ‖ · ‖2,θP by invoking Lemma 3.1.

Lemma 3.9. For any y ∈ B, let y∗ = arg minξ∈Ξ ‖ξ − y‖22,θP . Then,

‖Ay −Ay∗‖22 ≥
2

N‖θP ‖1,∞
‖y − y∗‖22,θP .

The convergence rate of Algorithm 1 is established in the next theorem.
Theorem 3.10. At each iteration of Algorithm 1, y(k) satisfies

E
[
g(y(k))− g(y∗) +

1

2
d2
θP (yk, ξ)

]
≤
[
1− 4α

(N‖θP ‖1,∞ + 2)

]k [
g(y(0))− g(y∗) +

1

2
d2
θP (y0, ξ)

]
.

The parameter N‖θP ‖1,∞ is obtained by combining the strong convexity constant and the properties
of the sampling distribution P . Small values of ‖θP ‖1,∞ ensure better convergence rates, and we
next bound this value.
Lemma 3.11. For any α-proper distribution P and an element i ∈ [N ], max

r∈[R]:i∈Sr
θPr,i ≥

max{αµi, 1}. Consequently, ‖θP ‖1,∞ ≥ max{α‖µ‖1, N}.

Without considering incidence relations, i.e., by setting ‖µ‖1 = NR, one always has ‖θP ‖1,∞ ≥
αNR, which shows that parallelization cannot improve the convergence rate of the RCDM.

The next lemma characterizes an achievable ‖θP ‖1,∞ obtained by choosing P to be a uniform
distribution, which, when combined with Theorem 3.10, proves the result of the last column in
Table 1.
Lemma 3.12. If C is a set of size 0 < K ≤ R obtained by sampling the K-subsets of [R] uniformly
at random, then θPr = K−1

R−1µ+ R−K
R−1 1. Moreover, ‖θP ‖1,∞ = K−1

R−1 ‖µ‖1 + R−K
R−1 N .

Comparing Lemma 3.11 and Lemma 3.12, we see that the ‖θP ‖1,∞ achieved by sampling uniformly
at random is at most a factor of two of the lower bound since α = K/R. A natural question is if
it is possible to devise a better sampling strategy. This question is addressed in Section K of the
Supplement, where we related the sampling problem to equitable coloring [20]. By using Hajnal-
Szemerédi’s Theorem [25], we derived a sufficient condition under which an α-proper distribution P
that achieves the lower bound in Lemma 3.11 can be found in polynomial time. We also described
a greedy algorithm for minimizing ‖θP ‖1,∞ that empirically convergences faster than sampling
uniformly at random.

4 Experiments

In what follows, we illustrate the performance of the newly proposed DSFM algorithms on a
benchmark datasets used for MAP inference in image segmentation [9] and used for semi-supervised
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Figure 2: Image segmentation example. First row: Gap vs the number of iterations ×α. Second row:
The number of iterations ×α vs α. Here, α is the parallelization parameter, while K = αR equals
the number of projections that have to be computed in each iteration.

learning over graphs 1. More experiments on semi-supervised learning over hypergraphs can be
found in Section M of the Supplement.

In all the experiments, we evaluated the convergence rate of the algorithms by using the smooth
duality gap νs and the discrete duality gap νd. The primal problem solution equals x = −Ay so
that the smooth duality gap can be computed according to νs =

∑
r fr(x) + 1

2‖x‖
2 − (− 1

2‖Ay‖
2).

Moreover, as the level set Sλ = {v ∈ [N ]|xv > λ} can be easily found based on x, the discrete
duality gap can be written as νd = minλ F (Sλ)−

∑
v∈[N ] min{−xv, 0}.

MAP inference. We used two images – oct and smallplant – adopted from [14]2. The images
comprise 640 × 427 pixels so that N = 273, 280. The decomposable submodular functions are
constructed following a standard procedure. The first class of functions arises from the 4-neighbor
grid graph over the pixels. Each edge corresponds to a pairwise potential between two adjacent
pixels i, j that follows the formula exp(−‖vi − vj‖22), where vi is the RGB color vector of pixel i.
We split the vertical and horizontal edges into rows and columns that result in 639 + 426 = 1065
components in the decomposition. Note that within each row or each column, the edges have no
overlapping pixels, so the projections of these submodular functions onto the base polytopes reduce
to projections onto the base polytopes of edge-like submodular functions. The second class of
submodular functions contain clique potentials corresponding to the superpixel regions; specifically,
for region r, Fr(S) = |S|(|Sr| − |S|) [26]. These functions give another 500 decomposition
components. We apply the divide and conquer method in [14] to compute the projections required for
this type of submodular functions. Note that in each experiment, all components of the submodular
function are of nearly the same size, and thus the projections performed for different components
incur similar computational costs. As the projections represent the primary computational units, for
comparative purposes we use the number of iterations (similarly to [14, 16]).

We compared five algorithms: RCDM with a sampling distribution P found by the greedy algorithm
(RCDM-G), RCDM with uniform sampling (RCDM-U), ACDM with uniform sampling (ACDM-U),
AP based on (5) (IAP) and AP based on (3) (AP). Figure 2 depicts the results. In the first row, we
compared the convergence rates of different algorithms for a fixed parallelization parameter α = 0.1.
The values on the horizontal axis correspond to # iterations ×α, the total number of projections
performed divided by R. The results are averaged over 10 independent experiments. We observe
that the CD-based methods outperform AP-based methods, and that ACDM-U is the best performing
CD-based method. IAP significantly outperforms AP. Similarly, RCDM-G outperforms RCDM-U.
We also investigated the relationship between the number of iterations and the parameter α. We
recorded the number of iterations needed to achieve a smooth and discrete gap below a certain given
threshold. The results are shown in the second row of Figure 2. We did not plot the curves for the
AP-based methods as they are essentially horizontal lines. Among the CD-based methods, ACDM-U
performs best. RCDM-G offers a much better convergence rate than RCDM-U since the sampling
probability P produced by the greedy algorithm leads to a smaller value of ‖θP ‖1,∞ compared to

1The code for this work can be found in https://github.com/lipan00123/DSFM-with-incidence-relations.
2Downloaded from the website of Professor Stefanie Jegelka: http://people.csail.mit.edu/stefje/code.html
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Figure 3: Zachary’s Karate Club. Left two: Gap vs the number of iterations ×α. Right two: The
number of iterations ×α vs α. Here, α is the parallelization parameter, while K = αR equals the
number of projections that have to be computed in each iteration.

uniform sampling. The reason behind this finding is that the supports of the components in the
decomposition are localized, which makes the sampling P obtained from the greedy algorithm highly
effective. For RCDM-U, the total number of iterations increases almost linearly with α (= K/R),
which confirms the results of Lemma 3.12.

Note that in the above examples of MAP inference, another way to decompose the submodular
functions is available: as there are three natural layers of non-overlapping incidence sets, we can
merge all vertical edges, all horizontal edges, and all superpixel regions into three components
respectively. Then, each of this component is incident to all pixels, and the derived results in this work
will reduce to those of the former works [14, 16]. However, such a way to decompose submodular
function strongly depends on the particular structure and thus is not general for DSFM problems.
The following example on semi-supervised learning over graphs does not contain natural layers for
decomposition.

Semi-supervised learning. We tested our algorithms over the dataset of Zachary’s karate club [27].
This dataset is used as a benchmark example for evaluating semisupervised learning algorithms over
graphs [28]. It includes N = 34 vertices and R = 78 submodular functions in the decomposition,
each corresponding to one edge in the network. The objective function of both semi-supervised
learning problems may be written as

min
x
τ
∑
r∈[R]

fr(x) +
1

2
‖x− x0‖22 (9)

where τ is a parameter that needs to be tuned, and x0 ∈ {−1, 0, 1}N , so that the nonzero components
correspond to the labels that are known a priori. In our case, as we are only concerned with the
convergence rate of the algorithm, we fix τ = 0.1. In the experiments for Zachary’s karate club, we
set x0(1) = 1, x0(34) = −1 and let all other components of x0 be equal to zero.

Figure 3 shows the results of the experiments pertaining to Zachary’s karate club. In the left two
subfigures, we compared the convergence rates of different algorithms for a fixed parallelization
parameter α = 0.1. The values on the horizontal axis correspond to # iterations×α, the total number
of projections performed divided by R. In the right two subfigures, we controlled the numbers of
projections executed within one iteration by tuning the parameter α and recorded the number of
iterations needed to achieve smooth/discrete gaps below 10−3. The values depicted on the vertical
axis correspond to # iterations ×α, describing the total number of projections needed to achieve
the given accuracy. In all cases, we see the similar tendency to that of the MAP inference. As may
be seen, AP-based methods require more projections than CD-based methods, but IAP consistently
outperforms AP, which is consistent with our theoretical results. Among the CD-based methods,
ACDM-U offers the best performance in general, and RCDM-G slightly outperforms RCDM-U, since
the greedy algorithm used for sampling produces a smaller ‖θP ‖1,∞ than uniform sampling. As the
AP-based methods are completely parallelizable, and increasing the parameter α does not increase the
total number of projections. However, for RCDM-U, the total number of iterations required increases
almost linearly with α, which is supported by the result in Lemma 3.12. The performance curve for
RCDM-G exhibits large oscillations due to the discrete problem component, needed for finding a
balanced partition.
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Supplement

A Discrete Optimization Approach for Computing the Projections ΠBr,w(·)

The following Lemma A.1 describes how the projections ΠBr,w(·) can be performed via discrete
optimization. Discrete methods are especially useful when Fr(S) is concave in |S|, as in this case
they have much smaller complexity than the min-norm algorithm of Wolfe [21].
Lemma A.1. The optimization problem minyr∈Br ‖z − yr‖22,w is the dual of the problem
minx∈RN fr(x) − 〈x, z〉 + 1

2‖x‖
2
2,w−1 . A solution with coordinate accuracy ε for the latter set-

ting can be obtained by solving the discrete problem

min
S
Fr(S)− z(S) + λ

∑
i∈Sr∩S

w−1
i ,

where

λ ∈
[

min
i∈[N ]

[−Fr({i}) + z({i})]wi, max
i∈[N ]

[Fr([N ]/{i})− Fr([N ]) + z({i})]wi
]
,

at most min{|Sr|, log 1/ε} times. The parameter λ is chosen based on a binary search procedure
which requires solving the discrete problem O(log 1/ε) times.

Proof. The first statement follows from fr(x) = maxyr∈Br 〈yr, x〉 and some simple algebra. The
second claim follows from the divide and conquer algorithm described in Appendix B of [14].

B Proof of Lemma 3.1

The first part of the proof follows along the same line as the corresponding proof of Ene et al. [11]
which is based on a submodular auxiliary graph and the path-augmentation algorithm [29], described
in what follows.

Let G = (V,E) be a directed graph such that the vertex set V corresponds to the elements in [N ], and
where the arc set may be written as E = ∪r∈[R]Er, with Er corresponding to a complete directed
graph on the set of elements Sr incident to Fr. With each arc (u, v), we associate a capacity value
based on a y′ ∈ B according to c(u, v) , min{fr(S)− y′r(S) : S ⊆ Sr, u ∈ S, v /∈ S}.
Next, we consider a procedure termed path augmentations overG that sequentially transforms y′ from
y′ = y to a point in B that satisfiesAy′ = z; the vector y′ is kept within B during the whole procedure.
Let the set of source and sink nodes of the graph be defined as N , {v ∈ [N ]|(Ay′)v < zv} and
P , {v ∈ [N ]|(Ay′)v > zv}, where z is as defined in the statement of the lemma. If N = P = ∅,
we have Ay′ = z. It can be shown that there always exists a directed path with positive capacity
from N to P unless N = P = ∅ [11]. In each step, we find the shortest directed path, denoted
by Q, with positive capacity from N to P . For each arc (u, v) in Q, if the arc belongs to Er, we
set y′r,u ← y′r,u + ρ, y′r,v ← y′r,v − ρ, where ρ denotes the smallest capacity of any arc in Q. This
procedure ensures that y′ ∈ B and that the procedure terminates in a finite number of steps, with
N = P = ∅ [29].

The second part of the proof differs from the derivations of Ene et al. [11]. Suppose that {y′(0) =
y, y′(1), ..., y′(t)} is a sequence such that y′(i) equals the vector y′ after the i-th step of the above
procedure. We also assume that Ay′(t) = z, implying that the algorithm terminated at step t. Hence,
the point y′(t) is the desired value of ξ. During path-augmentation, no element appears in more than
two updated arcs. Hence,

‖y′(i) − y′(i−1)‖2,θ ≤
√

2
∑
v

max
r∈[R]:v∈Sr

θr,vρ =
√

2‖θ‖1,∞ρ.

As ‖Ay′(i) −Ay′(i−1)‖1 = 2ρ, we have

‖y′(i) − y′(i−1)‖2,θ ≤
√
‖θ‖1,∞

2
‖Ay′(i) −Ay′(i−1)‖1.
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An important observation is that during the path-augmentation procedure, for each component
v ∈ [N ], the updated sequence {(Ay′(i))v}i=1,2,..,t converges monotonically to zv . Hence, ‖Ay′(t)−
Ay′(0)‖1 =

∑t
i=1 ‖Ay′(i) − Ay′(i−1)‖1. By using the triangle inequality for the norm ‖ · ‖2,θ, we

obtain √
‖θ‖1,∞

2
‖z −Ay‖1 =

√
‖θ‖1,∞

2
‖Ay′(t) −Ay′(0)‖1 ≥

t∑
i=1

‖y′(i) − y′(i−1)‖2,θ

≥ ‖y′(t) − y′(0)‖2,θ = ‖y′(t) − y‖2,θ.

Invoking the Cauchy-Schwarz inequality establishes ‖z −Ay‖1 ≤
√
‖w−1‖1‖z −Ay‖2,w, which

concludes the proof.

C Proof for Lemma 3.2

The equivalence between problem (5) and problem (4) is easy to establish, as y is obtained from y′

by simply removing its zero components. The second statement is proved as follows:

min
y∈B

min
a:Aa=0,ar,i=0, ∀(r,i):i/∈Sr

1

2
‖y − a‖22,I(µ)

= min
y∈B

min
a:ar,i=0, ∀(r,i):i/∈Sr

max
λ∈RN

1

2
‖y − a‖22,I(µ) − 〈λ,Aa〉

1)
= min
y∈B

max
λ∈RN

min
a∈⊗Rr=1R

N

1

2

∑
r∈[R]

∑
i∈Sr

[µi(yr,i − ar,i)2 − 2λiar,i]

= min
y∈B

max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

[µ−1
i λ2

i − 2λi(µ
−1
i λi + yr,i)]

= min
y∈B

max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

(−µ−1
i λ2

i − 2λiyr,i)

2)
= min
y∈B

max
λ∈RN

−1

2
‖λ‖22 − 〈λ,Ay〉

= min
y∈B
‖Ay‖22,

where 1) is obtained using the incidence relations yr,i = ar,i = 0 if i /∈ Sr and 2) holds because
µi = |{r ∈ [R]|i ∈ Sr}|. The optimal y, a, λ satisfy ar,i = yr,i + µ−1

i λi for all i ∈ Sr, r ∈ [R] and
λ = −Ay.

D Proof of Lemma 3.4

First, consider a y ∈ B/Ξ. We have dI(µ)(y,Z) = ‖Ay + x∗‖2, since

1

2
dI(µ)(y,Z)2 = min

a∈Z

1

2
‖y − a‖22,I(µ)

= min
a:ar,i=0, ∀(r,i):i/∈Sr

max
λ∈RN

1

2
‖y − a‖22,I(µ) − 〈λ,Aa+ x∗〉

1)
= max
λ∈RN

min
a∈⊗Rr=1RN

1

2

∑
r∈[R]

∑
i∈Sr

[µi(yr,i − ar,i)2 − 2λiar,i]− 〈λ, x∗〉

= max
λ∈RN

1

2

∑
r∈[R]

∑
i∈Sr

[−µ−1
i λ2

i − λiyr,i]− 〈λ, x∗〉

2)
= max
λ∈RN

−1

2
‖λ‖22 − λT (Ay + x∗)

=
1

2
‖Ay + x∗‖22.
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where 1) is obtained using the incidence relations yr,i = ar,i = 0 if i /∈ Sr and 2) holds because
µi = |{r ∈ [R]|i ∈ Sr}|. Based on Lemma 3.1, we know that there exists a ξ ∈ B such that
Aξ = −x∗ and

‖y − ξ‖2,I(µ) ≤
√
N‖I(µ)‖1,∞

2
‖Ay + x∗‖2 =

√
N‖µ‖1

2
‖Ay + x∗‖2.

Therefore, κ(y) =
dI(µ)(y,Ξ)

dI(µ)(y,Z) ≤
√

N‖µ‖1
2 .

Next, consider a y ∈ Z/Ξ. As B is compact, there exists a y′ ∈ B that achieves dI(µ)(y,B) =
‖y − y′‖2,I(µ). Based on Lemma 3.1, we also know that there exists a ξ ∈ B such that Aξ = −x∗
and

‖ξ − y′‖2,I(µ) ≤
√
‖I(µ)‖1,∞

2
‖Ay′ + x∗‖1 =

√
‖µ‖1

2
‖Ay′ + x∗‖1.

Moreover, we have

‖Ay′ + x∗‖1 =‖Ay′ −Ay‖1 ≤ ‖y′ − y‖1 =
∑
v∈[N ]

∑
r:v∈Sr

|y′r,v − yr,v|

≤
∑
v∈[N ]

[
µv

∑
r:v∈Sr

(y′r,v − yr,v)2

] 1
2

≤
√
N‖y′ − y‖2,I(µ).

As ξ ∈ Ξ, it holds that dI(µ)(y,Ξ) ≤ ‖ξ−y‖2,I(µ) ≤ ‖y′−y‖2,I(µ) +‖y′− ξ‖2,I(µ). In addition, as

‖y′ − ξ‖2,I(µ) ≤
√
δs

2
‖Ay′ + x∗‖1 ≤

√
N‖µ‖1

2
‖y′ − y‖2,I(µ),

we know that dI(µ)(y,Ξ) ≤ (1 +
√

N‖µ‖1
2 )‖y′ − y‖2,I(µ). Therefore,

κ(y) =
dI(µ)(y,Ξ)

dI(µ)(y,B)
≤

(
1 +

√
N‖µ‖1

2

)
,

which concludes the proof.

E Simulation for Example 3.1

We provide additional empirical evidence that the convergence result suggested by the bound on
`∗ ≤ 7

N2 is correct. We constructed a DSFM problem following Example 3.1 and initialized y
according to equation (7). We used the number of iterations k required to attain g(y(k)) ≤ εg(y(0))
as a measure for the speed of convergence. We ran the simulations for n ∈ [5, 50] and averaged the
results for each n over 10 independent runs. Figure 4 shows the results. The values next to the curves
are their slopes obtained via a linear regression involving ln(# Iterations) ∼ ln(N). As the accuracy
threshold increases, the slope approaches the value 3, which indicates that the required number of
iterations equals O(N2R).

F Proof of Lemma 3.9

Choose z = Ay∗ in Lemma 3.1. Then, there is a ξ ∈ B such that ‖Ay − Ay∗‖2 ≥ 2
N‖θP ‖1,∞ ‖y −

ξ‖22,θP . Moreover as Aξ = z = Ay∗ = −x∗, we also have ξ ∈ Ξ. Therefore, ‖y − ξ‖22,θP ≥
‖y − y∗‖22,θP , which concludes the proof.

G Proof for Theorem 3.10

First, given a group of blocks C and y ∈ ⊗Rr=1RN , we define y[C] ∈ ⊗Rr=1RN as

(y[C])r =

{
yr if r ∈ C,
0 if r 6∈ C.

The following lemma holds.
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Figure 4: Simulations accompanying Example 3.1: ln(the number of iterations) vs ln(N).

Lemma G.1. Let C be a group of blocks sampled according to a α−proper distribution P . Then,
for any y ∈ ⊗Rr=1RN and yr,i = 0, whenever i /∈ Sr, one has

EC∼P (‖y[C]‖22,I(µC)) = EC∼P (‖y[C]‖22,θP ).

Proof.

EC∼P (‖y[C]‖22,I(µC)) = EC∼P (
∑
r∈C
‖yr‖22,µC ) =

∑
r∈[R]

EC∼P
[
‖yr‖22,µC1r∈C

]
=
∑
r∈[R]

E
[
1r∈CEC∼P

[
‖yr‖22,µC |r ∈ C

]]
=
∑
r∈[R]

E
[
1r∈C‖yr‖22,θPr

]
= EC∼P (‖y[C]‖22,θP ).

Next, we turn our attention to the proof of the theorem. For this purpose, suppose that y∗ =
arg miny∈Ξ ‖y − y(k)‖2,θP .

G.1 Algorithm 1

We start with by establishing the following results.

Lemma G.2. It can be shown that

〈∇g(y(k)), y∗ − y(k)〉
1)

≤ g(y∗)− g(y(k))− 1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP

2)

≤ 4

N‖θP ‖1,∞ + 2

[
g(y∗)− g(y(k))− 1

2
‖y(k) − y∗‖22,θP

]
. (10)

Proof. From Lemma 3.8 we can infer that

‖Ay(k) −Ay∗‖22 ≥
2

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP ⇒

g(y∗) ≥ g(y(k)) + 〈∇g(y(k)), y∗ − y(k)〉+
1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP , (11)

g(y(k)) ≥ g(y∗) + 〈∇g(y∗), y(k) − y∗〉+
1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP . (12)

As 〈∇g(y∗), y(k) − y∗〉 ≥ 0, (12) gives

g(y∗)− g(y(k)) ≤ − 1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP . (13)

The inequality (11) yields claim 1) in (10). Claim 2) in (10) follows from (13).
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The following lemma is a direct consequence of the optimality of y(k+1)
r for an oblique projection.

Lemma G.3.

〈∇rg(y(k)), y(k+1)
r − y∗r 〉 ≤ 〈y(k)

r − y(k+1)
r , y(k+1)

r − y∗r 〉θPr .

The following lemma follows from a simple manipulation of the Euclidean norm.

Lemma G.4.

1

2
‖y(k+1)
r −y(k)

r ‖22,θPr =
1

2
‖y(k+1)
r − y∗r‖22,θPr +

1

2
‖y∗r − y(k)

r ‖22,θPr + 〈y(k+1)
r − y∗r , y∗r − y(k)

r 〉θPr

=− 1

2
‖y(k+1)
r − y∗r‖22,θPr +

1

2
‖y∗r − y(k)

r ‖22,θPr + 〈y(k+1)
r − y∗r , y(k+1)

r − y(k)
r 〉θPr

Let us analyze next the amount by which the objective function decreases in each iteration. The
following expectation is with respect to Cik ∼ P .

E
[
g(y(k+1))

]
(14)

1)

≤ g(y(k)) + E

 ∑
r∈Cik

[
〈∇rg(y(k)), y(k+1)

r − y(k)
r 〉+

1

2
‖y(k+1)
r − y(k)

r ‖2
2,µ

Cik
r

]
2)
= g(y(k)) + E

 ∑
r∈Cik

[
〈∇rg(y(k)), y(k+1)

r − y(k)
r 〉+

1

2
‖y(k+1)
r − y(k)

r ‖22,θPr

]
= g(y(k)) + E

 ∑
r∈Cik

[
〈∇rg(y(k)), y∗r − y(k)

r 〉+ 〈∇rg(y(k)), y(k+1)
r − y∗r 〉+

1

2
‖y(k+1)
r − y(k)

r ‖22,θPr

]
3)

≤ g(y(k)) + E

 ∑
r∈Cik

[
〈∇rg(y(k)), y∗r − y(k)

r 〉 −
1

2
‖y(k+1)
r − y∗r‖22,θPr +

1

2
‖y∗r − y(k)

r ‖22,θPr

]
= g(y(k)) + α〈∇g(y(k)), y∗ − y(k)〉 − E

[
1

2
‖y(k+1)

[Cik ] − y
∗
[Cik ]‖

2
2,θP

]
+ E

[
1

2
‖y(k)

[Cik ] − y
∗
[Cik ]‖

2
2,θP

]
4)
= g(y(k)) + α〈∇g(y(k)), y∗ − y(k)〉 − E

[
1

2
‖y(k+1) − y∗‖22,θP

]
+ E

[
1

2
‖y(k) − y∗‖22,θP

]
5)

≤ g(y∗)− E
[

1

2
‖y(k+1) − y∗‖22,θP

]
+

[
1− 4α

N‖θP ‖1,∞ + 2

]{
g(y(k))− g(y∗)− 1

2
‖y(k) − y∗‖22,θP

}
,

(15)

where 1) follows from inequality (8), 2) holds due to Lemma G.1, 3) is a consequence of Lemma G.3
and Lemma G.4, 4) is due to y(k+1)

r = y
(k)
r for r /∈ Cik , and 5) may be established from (10).

Equation (15) further establishes that

E
[
g(y(k+1))− g(y∗) +

1

2
d2
θP (yk+1, ξ)

]
≤E

[
g(y(k+1))− g(y∗) +

1

2
‖y(k+1) − y∗‖22,θP

]
≤
[
1− 4α

N‖θP ‖1,∞ + 2

]
E
[
g(y(k))− g(y∗) +

1

2
d2
θP (yk, ξ)

]
.

The proof follows by repeating the derivations for all k.
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H Proof of Lemma 3.11

According to the definition of θP , we have

max
r∈[R]:i∈Sr

θPr,i = max
r∈[R]:i∈Sr

EC∼P
[
µCi |r ∈ C

]
= max
r∈[R]:i∈Sr

EC∼P

 ∑
r′∈[R]:i∈Sr′

1r′∈C |r ∈ C


= max
r∈[R]:i∈Sr

∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] (16)

=
1

α
max

r∈[R]:i∈Sr

∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C, r ∈ C]

≥ 1

αµi

∑
r,r′∈[R]:i∈Sr,Sr′

PC∼P [r′ ∈ C, r ∈ C]

=
1

αµi
EC∼P [|{(r, r′) ∈ C × C : i ∈ Sr, i ∈ Sr′}|]

=
1

αµi
EC∼P

[
(µCi )2

]
≥ 1

αdi

[
EC∼P (µCi )

]2
=

1

αdi

∑
C

∑
r∈[R]:i∈Sr

1r∈CP(C)

2

=
1

αµi

 ∑
r∈[R]:i∈Sr

PC∼P [r ∈ C]

2

=
1

αµi
(αµi)

2
= αµi.

From (16), we also have
∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] ≥ PC∼P [r ∈ C|r ∈ C] = 1, which
proves the claimed result.

I Proof of Lemma 3.12

Similar to what was established for (16), one can show that θPr,i =∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C].

Consider next the right hand side of this equation for α = K
R . In this case, for some r and some

i ∈ Sr, we have∑
r′∈[R]:i∈Sr′

PC∼P [r′ ∈ C|r ∈ C] = PC∼P [r ∈ C|r ∈ C] +
∑

r′∈[R]:i∈Sr′ ,r′ 6=r

PC∼P [r′ ∈ C|r ∈ C]

= 1 +
R

K

∑
r′:i∈Sr′ ,r′ 6=r

PC∼P [r′ ∈ C, r ∈ C]

= 1 +
R

K
(µi − 1)

(
R−2
K−2

)(
R
K

) = 1 +
K − 1

R− 1
(µi − 1).

Therefore, θPr,i = K−1
R−1µi + R−K

R−1 when P is a uniform distribution.

J Analysis of the Accelerated Coordinate Descend Method

In the ACDM setting, we used the APPROX framework proposed by Fercoq and Richtárik in [30]
and adapted it to this particular problem. In the general APPROX framework, the norm in (8) is
chosen as follows: consider an arbitrary function φ with the component-wise smoothness and strong
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convexity property. For block r, one has |∇rφ(x)−∇rφ(y)| ≤ Lr‖xr − yr‖νr , where ‖ · ‖νr is a
norm associated with the r-th block. If one wants to process multiple blocks simultaneously, say
those in a group C, one first needs to find a constant LC such that for any h as defined in (8), it holds
that

φ(y + h) ≤ φ(y) +
∑
r∈C
〈∇rφ(y), hr〉+

∑
r∈C

LC
2
‖hr‖22,νr .

The smaller the value of the multiplier LC , the faster the convergence. Typically, LC lies in
[maxr∈C Lr,

∑
r∈C Lr].

Recall the smoothness property of g from equation (6). A direct application of APPROX to our
problem gives

g(y + h) ≤ g(y) +
∑
r∈C
〈∇rg(y), hr〉+

∑
r∈C

maxi∈[N ] µ
C
i

2
‖hr‖22.

As (maxi∈[N ] µ
C
i ) ≥ µCj for all j ∈ [N ], we obtain convergence rates worse than those implied by

inequality (8). To actually obtain the guarantees in (8), one needs to dispose with the ‖ · ‖2 norm at
the block level and break the blocks into components corresponding to the individual elements. The
elements are evaluated independently through the use of the norm ‖ · ‖2,µC .

Algorithm 2: Parallel ACDM for Solving (4)
Input: B, α, some constant c > 0
0: Initialize y(0) ∈ B, k ← 0

1: c′ ←
⌈

(1 + c)

√
2N‖θP ‖1,∞

α + c

⌉
2: Do the following steps iteratively until the dual gap < ε:
3: If k = lc′ for some l ∈ Z, z(k) ← y(k), λk ← 1
4: p(k) ← (1− λk)y(k) + λkz

(k)

5: Sample Cik using some α-proper distribution P
6: z(k+1) ← z(k)

7: For r ∈ Cik :
8: z

(k+1)
r ← ΠBr,θPr (z

(k)
r − α

λk
(θPr )−1 �∇rg(p(k)))

9: y(k+1) ← p(k) + λk
α (z(k+1) − z(k))

10: λk+1 ←
√
λ4
k+4λ2

k−λ
2
k

2
11: k ← k + 1
12: Output y(k)

Similar to the APPROX method [30], the parallel ACDM can also be implemented to avoid full-
dimensional vector operations (see Section J.2). The following theorem characterizes the convergence
property of Algorithm 2.

Theorem J.1. Given c > 0, let c′ =

⌈
(1 + c)

√
2N‖θP ‖1,∞

α + c

⌉
. Consider the iterations k = lc′ for

l ∈ Z≥0. Then, y(k) of Algorithm 2 satisfies

E
[
g(y(k) − g(y∗)

]
≤ 1

(1 + c)l

[
g(y(0))− g(y∗)

]
.

J.1 Proof of Theorem J.1

We start by establishing a number of background results.

The following lemma is due to the optimality of z(k+1)
r .

Lemma J.2.

〈∇rg(p(k)), z(k+1)
r − y∗r 〉 ≤

λk
α
〈z(k)
r − z(k+1)

r , z(k+1)
r − y∗r 〉θPr .

Once again, one can easily establish the following result pertaining to the Euclidean norm.
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Lemma J.3.
1

2
‖z(k+1)
r −z(k)

r ‖22,θPr =
1

2
‖z(k+1)
r − y∗r‖22,θPr +

1

2
‖y∗r − z(k)

r ‖22,θPr + 〈z(k+1)
r − y∗r , y∗r − z(k)

r 〉θPr

=− 1

2
‖z(k+1)
r − y∗r‖22,θPr +

1

2
‖y∗r − z(k)

r ‖22,θPr + 〈z(k+1)
r − y∗r , z(k+1)

r − z(k)
r 〉θPr .

The next result follows from the convexity property of the function g.
Lemma J.4.
λk〈∇g(p(k)), y∗ − z(k)〉 = 〈∇g(p(k)), λky

∗ − λkz(k)〉 = 〈∇g(p(k)), λky
∗ − (p(k) − (1− λk)y(k))〉

= λk〈∇g(p(k)), y∗ − p(k)〉+ (1− λk)〈∇g(p(k)), y(k) − p(k)〉

≤ λk
[
g(y∗)− g(p(k))

]
+ (1− λk)

[
g(y(k))− g(p(k))

]
.

We are now ready to analyze the decrease of the objective function in each iteration of Algorithm 2.
The expectation in the following equations is performed with respect to Cik ∼ P .

E
[
g(y(k+1))

]
1)

≤ g(p(k)) +
λk
α
E

 ∑
r∈Cik

[
〈∇rg(p(k)), z(k+1)

r − z(k)
r 〉+

λk
2α
‖z(k+1)
r − z(k)

r ‖22,µC
]

2)
= g(p(k)) +

λk
α
E

 ∑
r∈Cik

[
〈∇rg(p(k)), z(k+1)

r − z(k)
r 〉+

λk
2α
‖z(k+1)
r − z(k)

r ‖22,θPr

]
= g(p(k)) +

λk
α
E

 ∑
r∈Cik

[
〈∇rg(p(k)), y∗r − z(k)

r 〉+ 〈∇rg(p(k)), z(k+1)
r − z∗r 〉+

λk
2α
‖z(k+1)
r − z(k)

r ‖22,θPr

]
3)

≤ g(p(k)) +
λk
α
E

 ∑
r∈Cik

[
〈∇rg(p(k)), y∗r − z(k)

r 〉 −
λk
2α
‖z(k+1)
r − y∗r‖22,θPr +

λk
2α
‖y∗r − z(k)

r ‖22,θPr

]
= g(p(k)) + λk〈∇g(p(k)), y∗ − z(k)〉+

λ2
k

2α2
E
[
‖z(k)

[Cik ] − y
∗
[Cik ]‖

2
2,θP − ‖z

(k+1)
[Cik ] − y

∗
[Cik ]‖

2
2,θP

]
4)
= g(p(k)) + λk〈∇g(p(k)), y∗ − z(k)〉+

λ2
k

2α2
E
[
‖z(k) − y∗‖22,θP − ‖z

(k+1) − y∗‖22,θP
]

5)
= g(y∗) + (1− λk)

[
g(y(k))− g(y∗)

]
+

λ2
k

2α2

{
‖z(k) − y∗‖22,θP − E

[
‖z(k+1) − y∗‖22,θP

]}
,

(17)
where 1) follows from (8), 2) may be deduced from Lemma G.1, 3) is a consequence of Lemma J.2
and Lemma J.3, 4) is due to the fact that y(k+1)

r = y
(k)
r for r /∈ Cik , and 5) follows from Lemma J.4.

Based on the definition of {λk}k≥0, we also have
1− λk
λ2
k

=
1

λ2
k−1

, 0 < λk+1 ≤ λk ≤
2

k + 2/λ0
=

2

k + 2
. (18)

Hence, combining the above expression with (17), for k ∈ [1, 2
αd
√
N‖θP ‖1,∞e+ 1], we have

E
[

1− λk
λ2
k

[
g(y(k))− g(y∗)

]
+

1

2α2
‖z(k) − y∗‖22,θP

]
= E

[
1

λ2
k−1

[
g(y(k))− g(y∗)

]
+

1

2α2
‖z(k) − y∗‖22,θP

]
≤ E

[
1− λk−1

λ2
k−1

[
g(y(k−1))− g(y∗)

]
+

1

2α2
‖z(k−1) − y∗‖22,θP

]
≤ · · · ≤ (1− λ0)

λ2
0

[
g(y(0))− g(y∗)

]
+

1

2α2
‖z(0) − y∗‖22,θP . (19)
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Lemma 3.9 implies the strong convexity property as

‖Ay(k) −Ay∗‖22 ≥
2

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP ⇒

g(y(k))− g(y∗) ≥ 〈∇g(y∗), y(k) − y∗〉+
1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP

1)

≥ 1

N‖θP ‖1,∞
‖y(k) − y∗‖22,θP . (20)

Here, 1) holds since y∗ is an optimal solution of miny g(y) and thus 〈∇g(y∗), y(k) − y∗〉 ≥ 0.

Combining (18), (19) and (20), we obtain

E
[
g(y(k))− g(y∗)

]
≤ λ2

k−1

[
1− λ0

λ2
0

(g(y(0))− g(y∗)) +
1

2α2
‖y(0) − y∗‖22,θP

]
≤
(

2

k + 1

)2
1

2α2
‖y(0) − y∗‖22,θP

≤
(

2

k + 1

)2
N‖θP ‖1,∞

2α2
(g(y(0))− g(y∗)).

Therefore, for k =

⌈
(1 + c)

√
2N‖θP ‖1,∞

α + c

⌉
, we have

E

g(y

(⌈
(1+c)

√
2N‖θP ‖1,∞

α +c

⌉)
)− g(y∗)

 ≤ 1

1 + c
(g(y(0))− g(y∗)).

For each value of k = l ×
⌈

(1 + c)

√
2N‖θP ‖1,∞

α + c

⌉
, l ∈ Z≥0, the values z(k), λk are reinitialized.

Using a similar proof as above, we have

E

g(y

(
(l+1)×

⌈
(1+c)

√
2N‖θP ‖1,∞

α +c

⌉)
)− g(y∗)

 ≤ 1

1 + c

g(y

(
l×
⌈

(1+c)

√
2N‖θP ‖1,∞

α +c

⌉)
)− g(y∗)

 .
Therefore,

E

g(y

(
l

⌈
(1+c)

√
2N‖θP ‖1,∞

α +c

⌉)
)− g(y∗)

 ≤ 1

(1 + c)l
(g(y(0))− g(y∗)).

This concludes the proof.

J.2 Avoiding Full-Dimensional Vector Operations

Algorithm 2 can be implemented without full-dimensional vector operations. In each step, only those
coordinates within the blocks in C are updated. Consequently, one only needs to replace p(k) and
y(k) with p(k) = z(k) + λ2

ku
(k) and y(k) = z(k) + λ2

k−1u
(k), where u(k) is a new variable described

in Algorithm 3.

K Minimization of ‖θP‖1,∞

We first define 4∗ , maxr∈[R] |{r′ ∈ [R]|Sr′ ∩ Sr 6= ∅}|, which we use in our subsequent
derivations.

As shown in Theorem 3.10 and Theorem J.1, ‖θP ‖1,∞ plays an important role in the convergence
rate of CDMs. Hence, we are interested in identifying the optimal sampling strategy P that minimizes
‖θP ‖1,∞.
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Algorithm 3: Parallel ACDM for Solving Problem (7) (an efficient implementation)
Input: B, α
0: Initialize z(0) ∈ B, u(0) ← 0 ∈ RN , k ← 0.
1: Do the following steps iteratively until the dual gap < ε:

2: If k = l

⌈
(1 + c)

√
2N‖θP ‖1,∞

α + c

⌉
for some l ∈ Z and c > 0,

z(k) ← z(k) + λ2
k−1u

(k), u(k) ← 0, λk ← 1
3: Sample one set Cik according to a α-proper distribution P
4: For r ∈ Cik :
5: 4zr ← arg min4z+z(k)r ∈Br

‖4z + α
λk

(θPr )−1 �∇rg(z(k) + λ2
ku

(k))‖22,θPr
6: z

(k+1)
r ← z

(k)
r +4zr

7: u
(k+1)
r ← u

(k)
r + λk−α

αλ2
k
4zr

8: λk+1 ←
√
λ4
k+4λ2

k−λ
2
k

2
9: k ← k + 1
10: Output y(k)

Algorithm 4: A Greedy Algorithm for Finding a Balanced-Partition Distribution
Input: {Sr}r∈[R], K
0: Initialize the partition C = {Ci}1≤i≤m, Ci ← ∅, vectors {µCi}1≤i≤m, µCi ∈ RN ,

and µmax ∈ RN , µmax ← 0.
1: For r from 1 to R:
2: For i from 1 to m:
3: If |Ci| < K:
4: 4µCi ← 0
5: For v in Sr, if µCiv is equal to µmax

v ,4µCi ←4µCi + 1
6: else: 4µCi ←∞
7: i∗ ← arg mini4µCi
8: Ci∗ ← Ci∗ ∪ {r}
9: For v in Sr, µCi∗v ← µCi∗v + 1, µmax

v ← max{µmax
v , µCi∗v }.

10: Output C.

For this purpose, consider a partition of [R] into m = d 1
αe parts {Ci}1≤i≤m, such that |Ci| ∈

{K − 1,K}. We refer to such a partition as a balanced partition. In this case, every block r is
in exactly one component Ci and ‖θP ‖1,∞ =

∑
v∈[N ] maxi∈[m] µ

Ci
v . As a result, the problem of

minimizing ‖θP ‖1,∞ is closely related to the so called equitable coloring problem first proposed by
Meyer [20].
Definition K.1 (Meyer [20]). Given a graph, an equitable coloring is an assignment of colors to the
vertices that satisfies the following two properties: no two adjacent vertices share the same color
and the number of vertices in any two color classes differs by at most one. Moreover, the minimum
number of colors in any equitable coloring is termed the equitable coloring number.

Hajnal-Szemerédi’s Theorem [25] established one of the most important results in equitable graph
coloring: a graph is equitably k-colorable if k is strictly greater than the maximum vertex degree.
This bound is tight. We can construct a graph based on the incidence structure of DSFM problem so
that a vertex corresponds to a component submodular function and two vertices are connected iff
the corresponding submodular functions are incident to at least one common point. An equitable
coloring of this graph can be used to assign submodular functions of the same color class to a set Ci
in C. This guarantees that µCiv ≤ 1 for all Ci and all v ∈ [N ]. Note that the maximal degree of this
graph is4∗. By directly applying Hajnal-Szemerédi’s Theorem, we have the following lemma.
Lemma K.2. There exists a balanced-partition distribution P such that ‖θP ‖1,∞ = N , provided
that d 1

αe ≥ 4∗ + 1.

As in many applications, such as image segmentation [9], the value of4∗ is small, and hence using
a balanced-partition instead of one obtained through sampling uniformly at random may produce
significantly better results. Unfortunately, finding the equitable coloring number is an NP-hard
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problem; still, a polynomial time algorithm for finding4∗ + 1 equitable colorings was described
in [31], with complexity O(4∗R2). We describe a greedy algorithm that outputs a balanced-partition
distribution and aims to minimize ‖θP ‖1,∞ in Algorithm 4. According to our experimental results,
the sampling strategy P found by Algorithm 4 works better than sampling uniformly at random.

L Using Weighted Proximal Terms

The AP and RCDM solvers discussed in the main text are designed to solve the convex optimiza-
tion (2), but also produce a solution to the discrete optimization problem (1). To solve the discrete
optimization problem (1), another convex optimization formulation may be considered instead:

min
x∈RN

∑
r∈[R]

fr(x) +
1

2
‖x‖22,w, (21)

where the choice of w ∈ RN>0 will be described later. By using the arguments in [32] or in Chapter
8.1-8.2 of [12], we know that the solution of the discrete optimization problem (1) can be obtained as
S = {i ∈ [N ]|x∗i > 0}, where x∗ is a solution of (21).

Next, we describe how a proper choice of w allows one to avoid compute oblique projections in the
AP and parallel CDM algorithms. If oblique projections are allowed, a good choice for w may also
decrease the computational complexities listed in Table 1. The results obtained based on weighted
proximal terms are summarized in Table 2.

Using Orthogonal Projection ΠBr (·)
The Value of w Complexity

AP w = µ O(N‖µ‖1 RK )

RCDM w = R−K
R−1 1 + K−1

R−1µ O
((

R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)
R
K

)
ACDM w = R−K

R−1 1 + K−1
R−1µ O

((
R−K
R−1 N

2 + K−1
R−1N‖µ‖1

) 1
2 R
K

)
Using Oblique Projection ΠBr,w1/2(·)

The Value of w Complexity
AP w = µ

1
2 O(‖µ 1

2 ‖21 RK )

RCDM w =
(
R−K
R−1 1 + K−1

R−1µ
) 1

2

O

(∥∥∥∥(R−KR−1 1 + K−1
R−1µ

) 1
2

∥∥∥∥2

1

R
K

)
ACDM w =

(
R−K
R−1 1 + K−1

R−1µ
) 1

2

O

(∥∥∥∥(R−KR−1 1 + K−1
R−1µ

) 1
2

∥∥∥∥
1

R
K

)
Table 2: New complexity results based on weighted proximal terms: here, complexity refers to the
required number of iterations needed to achieve an ε−optimal solution (the dependence on ε is the
same for all algorithms and hence omitted). As before, K is the parallelization parameter and it
equals the number of min-norm points problems that are solved within each iteration; K = 1 reduces
to the sequential case.

We now analyze the new objective (21) in more detail. The proof techniques used in the main text
carry over to the setting involving weighted proximal terms.

By using a dual strategy similar to those described in Lemma 2.1 and Lemma 3.2, we arrive at the
dual formulation of problem (21) described in the next lemma. Note that the derivation of (L.1) takes
into account the underlying incidence relations.
Lemma L.1. The dual problem of (21) reads as

min
a,y
‖a− y‖22,I(w−1�µ) s.t. y ∈ B, Aa = 0, and ar,i = 0, ∀(r, i) : i /∈ Sr, r ∈ [R]. (22)

Moreover, problem may be written in a more compact form as

min
y
‖Ay‖22,w−1 s.t. y ∈ B. (23)

For both problems, the primal and dual variables are related according to x = −w−1 �Ay.
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L.1 The Incidence Relations AP (IAP) Method for Solving (L.1)

The steps of the IAP method are listed in Algorithm 5.

Algorithm 5: The IAP Method for Solving (L.1)
0: For all r, initialize y(0)

r ∈ Br, and k ← 0
1: In iteration k:
2: For all r ∈ [R]:
3: a

(k+1)
r,i ← y

(k)
r,i − µ

−1
i (Ay(k))i for all i ∈ Sr

4: y
(k+1)
r ← ΠBr,w−1�µ(a

(k+1)
r )

The convergence properties of Algorithm 5 can be characterized similarly as those
of IAP for solving (5). The latter relies on a finite upper bound for κ∗ ,

sup
y∈Z∪B/Ξ

dI(w−1�µ)(y,Ξ)

max{dI(w−1�µ)(y,Z),dI(w−1�µ)(y,B)} .

Lemma L.2. One has κ∗ ≤
√
‖w−1�µ‖1‖w‖1

2 + 1. When w = µ, κ∗ ≤
√

N‖µ‖1
2 + 1.

Proof. The result follows using the same strategy as the one used to prove Lemma 3.4. Note that
when using Lemma 3.1, one should set θ to I(w−1 � µ) and replace w by w−1.

By setting w = µ, Step 4 of Algorithm 5 reduces to orthogonal projections. In this case, based on
Lemma L.2, Algorithm 5 requires O(N‖µ‖1 log 1

ε ) iterations to achieve an ε-optimal solution. By
setting w = µ

1
2 for all i ∈ [R], Step 4 of Algorithm 5 reduces to the projections Π

Br,w
1
2

(·). In this

case, Algorithm 5 requires O
(∥∥∥µ 1

2

∥∥∥2

log 1
ε

)
iterations to achieve an ε-optimal solution. The latter

result is slightly better because
∥∥∥µ 1

2

∥∥∥2

≤ N‖µ‖1.

L.2 A Parallel RCD Method for Solving (23) with Uniform Sampling Strategies

As discussed in Section 3.3, RCDM strongly depends on an α-proper distribution P that characterizes
the parallel coordinate sampling strategy. In what follows, we choose P to be a uniform distribution.
From Lemma 3.12, we know that when P is uniform, one has θPr = K−1

R−1µ+ R−K
R−1 1 for all r ∈ [R],

where K denotes the number of projections computed in parallel as part of each iteration. In
Algorithm 1, θPr defines the normed space over which to minimize g(y). As our goal is to minimize
gw(y) = 1

2‖Ay‖
2
2,w−1 , the vector used to define the normed space is

ν = w−1 � θPr = w−1 � (
K − 1

R− 1
µ+

R−K
R− 1

1).

The parallel RCDM procedure in this setting is described in Algorithm 6.

Algorithm 6: Parallel RCDM with Uniform Sampling for Solving (23)
Input: B, K
0: Initialize y(0) ∈ B, k ← 0
1: Do the following steps iteratively until the dual gap < ε:
2: Uniformly sample Cik ⊆ [R] so that |Cik | = K.
3: For r ∈ Cik :
4: y

(k+1)
r ← ΠBr,ν(y

(k)
r − (ν−1)�∇rgw(y) )

5: Set y(k+1)
r ← y

(k)
r for r 6∈ Cik

6: k ← k + 1
7: Output y(k)

Similarly to what was done in Lemma 3.9, we can establish weak strong convexity of gw(y) with
respect to the norm ‖ · ‖2,ν by invoking Lemma 3.1.
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Lemma L.3. For any y ∈ B, let y∗ = arg minξ∈Ξ ‖ξ − y‖22,ν . Then,

‖Ay −Ay∗‖22,w−1 ≥
2

‖w‖1‖ν‖1
‖y − y∗‖22,ν .

Therefore, using a strategy similar to the one outlined in the proof of Theorem 3.10, the convergence
rates of Algorithm 6 can be derived as summarized in the next theorem.
Theorem L.4. At each iteration of Algorithm 6, y(k) satisfies

E
[
gw(y(k))− gw(y∗) +

1

2
d2
I(ν)(y

k, ξ)

]
≤
[
1− 4K

R(‖w‖1‖ν‖1 + 2)

]k [
gw(y(0))− gw(y∗) +

1

2
d2
I(ν)(y

0, ξ)

]
.

By setting w = K−1
R−1µ + R−K

R−1 1, we reduce the projections in Step 4 of Algorithm
6 to orthogonal projections. In this case, based on Theorem L.4, Algorithm 6 requires
O
((

K−1
R−1N‖µ‖1 + R−K

R−1 N
2
)
R
K log 1

ε

)
iterations to achieve an ε-optimal solution.

By setting w =
(
K−1
R−1µ+ R−K

R−1

)1/2

for all i ∈ [R], the projections in Step 4 of Al-
gorithm 6 reduce to oblique projections Π

Br,w
1
2

(·). In this case, Algorithm 6 requires

O

(∥∥∥∥(K−1
R−1µi + R−K

R−1

)1/2
∥∥∥∥2

1

log 1
ε

)
iterations to achieve an ε-optimal solution, which is slightly

better than the previous case. The accelerated methods can be analyzed in the same manner.

L.3 Simulations

We now describe simulation results that empirically evaluate Algorithms 5 and 6. The DSFM problem
is designed as follows. We consider N = 100 vertices. The unary potentials of different elements are
iid standard Gaussian variables. We construct a network over these vertices based on the Barabási-
Albert model (BA) [33], initialized with a single edge between vertices 1 and 2. Each edge in the
network gives a pairwise potential for the corresponding vertices. We use the BA model so that the
number of incidence relations corresponding to different vertices vary to a large extent. As we are
using weighted proximal terms, the continuous objectives are not consistent for different w. However,
here, we are only interested in generating solutions for the discrete problem (1) and thus regard the
discrete gap νd as the relevant metric for characterizing convergence properties. The following results
are obtained from 100 independent experiments.

In IAP (Algorithm 5), we set w ∈ {1, µ, µ1/2}, corresponding to three cases: unweighted proximal
term + oblique projections, weighted proximal term + orthogonal projections, weighted proximal
term + oblique projections, respectively. In RCDM-U (Algorithm 6), we set w ∈ {1, K−1

R−1µ +
R−K
R−1 1, (K−1

R−1µ + R−K
R−1 1)1/2}, corresponding to the same three cases. We control the number of

parallel projection operations in each iteration by choosing K ∈ {10, 20, 30, 40, 50}. Figure 5 shows
the convergence curve of the discrete gap for different solvers and different choices of w. We only
plotted results for K = 10, 50 as other values of K produce similar patterns. For both IAP and
RCDM-U, when w corresponds to the weighted proximal term + orthogonal projections case, we
obtain the best convergence rates. The value w = 1, corresponding to the case unweighted proximal
term + oblique projections, results in the worst convergence rates. Albeit somewhat inconsistent with
the results listed in Table 2, the simulations simply imply that using weighted proximal terms can
reduce the complexity of the algorithms at hand and that the weighted proximal term with orthogonal
projections in the inner loop may represent the best choice in practice.

In Table 3, we also list the number of iterations needed by different solvers to obtain a solution for
the discrete problem (1). Again, the w corresponding to the weighted proximal term + orthogonal
projections case results in the smallest number of iterations, while the w corresponding to the
unweighted proximal term + oblique projections case results in the largest number of iterations.
Note that as K increases, the number of iterations ×K/R in IAP does not change as IAP is fully
parallelizable, while the number of operations in RCDM-U slightly increases due to the overlapping
incidence sets of different submodular functions.
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Figure 5: Simulations for Algorithm 5 and 6: log10(discrete gap) vs (number of iterations ×K/R).

Solvers w
K = 10 K = 20 K = 30 K = 40 K = 50

MN MD MN MD MN MD MN MD MN MD

IAP
1 109 103 109 103 109 103 109 103 109 103
µ 43 34 43 34 43 34 43 34 43 34

µ1/2 59 50 59 50 59 50 59 50 59 50

RCDM-U
1 27 22 34 28 43 38 51 46 54 49

K−1
R−1 µ+ R−K

R−1 1 22 17 25 20 29 24 32 24 33 25(
K−1
R−1 µ+ R−K

R−1 1
)1/2

25 19 28 23 33 28 37 31 38 32

Table 3: The number of iterations×K/R needed to find an optimal solution to the discrete problem (1).
MN: mean; MD: median.

M Supplementary experiments

Semi-supervised learning over hypergraphs. We also evaluate the proposed approaches over the
20Newsgroups from the University of California Irvine (UCI) data repository. This dataset is used as
a benchmark example for evaluating semisupervised learning algorithms over hypergraphs [34, 35].
Here, for simplicity, we focused on binary classification tasks and thus paired the four 20Newsgroups
classes, so that one group includes “Comp.” and “Sci”, and the other one includes “Rec.” and “Talk”.
The 20Newsgroups dataset consists of categorical features and we adopt the same approach as the one
described in [34] to construct hyperedges: each feature corresponds to one hyperedge and contributes
one submodular function to the decomposition. Hence, 20Newsgroups contains N = 16242 elements
and R = 100 submodular functions.

In the experiments for 20Newsgroups, we uniformly at random picked 200 elements and set their
corresponding components in x0 of equation (9) to the true labels and set all other entries to
zero. Figure 6 shows the results of the experiments pertaining to 20Newsgroup. We compared
the convergence rate of different algorithms for different values of the parameter α ∈ {0.02, 0.1}.
The value on the horizontal axis, # iterations ×α, equals the total number of projections, scaled by
R. The results are averaged over 10 independent experiments. Once again, we observe that CD-based
methods outperform AP-based methods. ACDM-U offers the best performance among all CD-based
methods and IAP significantly outperforms AP. Similarly, RCDM-G has better performance than
RCDM-U, due to the use of the greedy algorithm for the sampling procedure.
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Figure 6: 20Newsgrounp: Smooth/discrete gap vs the (number of iterations ×α).
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