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1 Details of Algorithms

Here we give an algorithm for our additive and sparse-additive framework as well as an algorithm for
the extension of our proposal to classification. We use a block-wise coordinate descent algorithm for
solving the additive and sparse additive proposal. This algorithm cyclically iterates through features,
and for each feature applies the univariate solution detailed in the main manuscript. The exact details
are given in Algorithm 1 below.

Initialize dj ← 0 for j = 1, . . . , p
While l ≤ max_iter and not converged

For j = 1, . . . , p
Set r−j ← y −

∑
j′ 6=j Rj′W

>dj′

Update dj ← arg min
d∈RK

1
2

∥∥r−j −RjW>d∥∥22 + λ1‖d−1‖1 + λ2‖RjW>d‖2,

Return d1, . . . ,dp
Algorithm 1: Block coordinate descent for the additive and sparse additive framework

We also give an algorithm for the extension of our method to classification based on proximal gradient
descent. To begin let L(d) = 1/(2n)

∑n
i=1 log

(
1 + exp

[
−yi

{(
RW>d

)
i

}])
, or more generally

let it be some differentiable convex loss function. We denote by ∇L(d), the derivative of L at the
point d ∈ RK . Algorithm 2 presents the steps for solving the univariate waveMesh problem with
general loss. The algorithm for extension of additive models to classification (or other loss functions)
can be similarly derived and is omitted in the interest of brevity.

2 Additional simulation results

In this section we present some additional simulation results. The simulation study for both univariate
and multivariate regression, used six functions: 1. polynomial, 2. sine, 3. piecewise polynomial, 4.
heavy sine, 5. bumps and, 6. doppler. The six functions are presented in Figure 1.

∗Mailing address: Box 357232, University of Washington, Seattle, WA 98195-7232

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Initialize d0

For l = 1, 2, . . . until convergence
Select a step size tl via line search
Update

dl ← arg min
d∈RK

1

2

∥∥d− {dl−1 − tl∇L(dl−1)
}∥∥2

2
+ tlλ‖d−1‖1.

Return dl
Algorithm 2: Proximal gradient descent for extension to classification
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Figure 1: Plots of functions f0 for the simulation study. Functions in green are the most smooth and
well-behaved followed by functions with moderate smoothness in orange. Finally, functions in red
are highly irregular functions, e.g., functions with unbounded total variation.

2.1 Univariate simulation study for xi ∼ N (0, 1)

We begin with presenting the table of results for the univariate regression simulation study. In Table 1,
we present the results for normally distributed covariates, i.e., xi ∼ N (0, 1), and then scaled to [0, 1].
We see that other than the polynomial function waveMesh generally outperforms competitors in terms
of prediction error.

2.2 Univariate simulation study for sample sizes not a power of two

In this section, we present results for the simulation study of Section 4 for sample sizes n =
75, 100, 300, 500. The results are presented for xi ∼ U(0, 1) and xi ∼ N (0, 1) in Table 2 and 3,
respectively.

2.3 Effect of truncation level K

In this subsection, we present simulation results which study the effects of using different truncation
levels K. In Figures 2 to 7 we plot the results for each of the 6 functions considered in the simulation
of the manuscript.
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Table 1: Table of results for xi ∼ N (0, 1) averaged over 100 replications of the data. The table
presents the ratio MSE /MSEFG along with 100× the standard error, where MSEFG is the MSE of
waveMesh with K = 2dlog2 ne. Boldface values represent the method with the smallest MSE within
each row of the table.

waveMesh waveMesh Interpolation Isometric Adaptive Lifting
K = 25 K = 26

Polynomial n = 64 1.47 (13.17) 1.41 (11.32) 0.51 (3.04) 1.45 (10.11) 1.59 (9.30)
n = 128 0.78 (5.25) 0.77 (4.95) 0.40 (2.96) 0.87 (4.69) 0.88 (4.84)
n = 256 0.39 (3.75) 0.51 (3.89) 0.43 (2.38) 0.64 (2.81) 0.76 (5.97)
n = 512 0.90 (4.57) 0.77 (4.03) 0.29 (0.98) 0.43 (1.59) 0.33 (2.36)

Sine n = 64 0.92 (9.55) 0.99 (1.49) 1.48 (11.85) 2.22 (21.67) 3.61 (35.07)
n = 128 0.89 (8.74) 0.91 (3.77) 1.71 (10.85) 1.83 (15.18) 3.53 (33.07)
n = 256 0.48 (2.39) 0.73 (1.53) 1.48 (8.74) 1.51 (8.18) 2.73 (22.25)
n = 512 0.36 (1.22) 0.64 (1.63) 1.03 (5.54) 0.74 (2.77) 1.21 (7.62)

Piecewise n = 64 0.78 (1.92) 0.99 (1.01) 1.50 (6.50) 1.64 (7.54) 2.18 (14.06)
Polynomial n = 128 0.86 (2.29) 0.83 (2.04) 1.89 (7.42) 1.59 (4.60) 1.65 (8.86)

n = 256 1.25 (3.80) 0.90 (2.22) 1.64 (5.21) 1.09 (3.24) 1.15 (6.94)
n = 512 1.79 (2.71) 1.27 (2.34) 1.76 (3.24) 0.96 (1.54) 1.01 (4.29)

Heavy Sine n = 64 0.73 (1.81) 1.00 (0.65) 1.23 (4.40) 1.26 (4.03) 1.54 (6.83)
n = 128 0.54 (1.70) 0.78 (1.40) 1.30 (5.02) 1.14 (2.78) 1.12 (6.04)
n = 256 0.47 (0.93) 0.65 (0.98) 1.17 (3.08) 0.89 (1.99) 0.93 (5.45)
n = 512 0.38 (0.87) 0.54 (1.08) 1.40 (2.91) 0.77 (1.24) 0.84 (3.94)

Bumps n = 64 1.27 (0.62) 1.00 (0.06) 0.85 (1.19) 0.36 (0.79) 0.53 (2.24)
n = 128 3.40 (4.69) 2.25 (2.81) 1.35 (2.28) 0.69 (1.50) 0.76 (1.64)
n = 256 6.49 (10.88) 3.71 (5.58) 1.31 (2.03) 1.18 (1.41) 1.10 (2.52)
n = 512 8.83 (10.06) 5.43 (6.03) 1.29 (1.82) 1.28 (1.37) 1.11 (1.90)

Doppler n = 64 0.75 (1.84) 1.00 (0.67) 1.36 (4.74) 1.53 (4.32) 1.56 (6.01)
n = 128 0.99 (1.87) 0.81 (1.44) 1.43 (4.75) 1.49 (3.81) 1.40 (4.35)
n = 256 0.58 (1.11) 0.52 (1.06) 1.26 (3.25) 1.15 (1.86) 0.98 (3.77)
n = 512 0.98 (1.52) 0.58 (1.05) 1.24 (2.38) 0.98 (1.48) 0.85 (2.21)

In the left panel of each figure we plot the MSE as a function of sample size, n. This is done for the
full grid method where we take K = 2log2 n, and for waveMesh with K = 24, 25 and 26 which we
refer to as 4 Grid, 5 Grid and 6 Grid, respectively. In the right panel of each figure we present the
computation time as a function of sample size n for waveMesh with K = 24, 25, 26 and 2log2 n.

We see in Figures 6 and 7, that using a small order K leads to substantially high MSE. This is most
likely due to the nature of the underlying functions. The Doppler function is an example of function
which does not have a bounded variation, estimating such functions by interpolation is extremely
difficult and in general we need a full grid, i.e. K = n. On the other hand for all other functions,
i.e. polynomial, sine etc, we see a clear advantage of using K = 27 basis functions. We also see in
some figures that while using K = 26 leads to substantially smaller MSE using too small a value of
K can be lead to poor prediction performance. We see this even in the simple cases of estimating a
polynomial or sine function.

We notice on the right panels the clear computational advantage of using fewer than n basis functions.
We observe the computation time for fixed K generally does not vary too much with increasing
sample size. This is because the main computational step is the DWT and IDWT via Mallets algorithm.
The other matrix multiplications are sparse and can be computed efficiently.

2.4 Simulation study for adaptive waveMesh

Finally, in this subsection, we present some simulation results regarding the adaptive waveMesh

estimator introduced in Section 2.4 of the Manuscript. In the left panel of Figure 8 to 13 we present
the MSE as a function of sample size for regular waveMesh with K = n and adaptive waveMesh.
We present the minimum MSE over a sequence of 50 λ values. We see that our adaptive estimator
uniformly outperforms the regular estimator in terms of prediction error. The results indicates that if
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Table 2: Table of results for xi ∼ U [0, 1] averaged over 100 replications of the data for sample sizes
that are not powers of 2. The table presents the ratio MSE /MSEFG along with 100× the standard
error, where MSEFG is the MSE of waveMesh with K = 2dlog2 ne. Boldface values represent the
method with the smallest MSE within each row of the table.

waveMesh waveMesh Interpolation Isometric Adaptive Lifting
K = 25 K = 26

Polynomial n = 75 1.20 (3.51) 1.00 (0.00) 1.32 (3.71) 4.98 (22.10) 4.35 (24.12)
n = 100 1.18 (3.96) 1.00 (0.00) 1.39 (4.76) 4.24 (17.06) 3.98 (21.99)
n = 300 0.84 (3.02) 0.81 (2.55) 1.87 (5.91) 5.33 (18.57) 3.86 (19.36)
n = 500 0.96 (2.95) 0.89 (2.69) 2.13 (5.91) 3.36 (14.51) 4.21 (21.17)

Sine n = 75 1.09 (3.76) 1.00 (0.00) 1.55 (5.52) 2.57 (11.78) 3.78 (21.66)
n = 100 1.04 (2.73) 1.00 (0.00) 1.67 (6.81) 1.75 (5.65) 3.43 (19.26)
n = 300 0.67 (1.77) 0.73 (1.95) 2.33 (7.06) 2.18 (6.65) 4.26 (25.07)
n = 500 0.73 (2.08) 0.76 (2.42) 2.72 (8.77) 1.28 (3.35) 4.05 (21.45)

Piecewise n = 75 0.87 (1.55) 1.00 (0.00) 1.32 (2.60) 1.40 (3.16) 1.73 (7.43)
Polynomial n = 100 0.84 (1.42) 1.00 (0.00) 1.33 (2.93) 1.39 (2.59) 1.40 (5.63)

n = 300 0.98 (1.47) 0.92 (1.25) 1.63 (2.51) 1.27 (1.68) 1.40 (5.28)
n = 500 1.19 (1.57) 1.03 (1.13) 1.95 (3.23) 1.26 (1.48) 1.36 (4.01)

Heavy Sine n = 75 0.89 (1.87) 1.00 (0.00) 1.31 (2.92) 1.44 (3.01) 1.79 (6.43)
n = 100 0.87 (1.49) 1.00 (0.00) 1.38 (2.92) 1.72 (3.50) 1.59 (5.33)
n = 300 0.73 (1.39) 0.81 (1.01) 1.87 (3.03) 1.87 (2.93) 1.80 (5.81)
n = 500 0.76 (1.23) 0.80 (1.04) 1.99 (3.17) 1.61 (1.97) 1.77 (5.37)

Bumps n = 75 1.83 (1.10) 1.00 (0.00) 0.76 (1.00) 0.46 (0.61) 0.88 (3.90)
n = 100 1.56 (0.59) 1.00 (0.00) 0.72 (0.80) 0.38 (0.48) 0.61 (1.75)
n = 300 4.47 (3.00) 3.20 (1.99) 0.87 (0.54) 0.81 (0.60) 0.83 (1.17)
n = 500 4.57 (2.03) 3.51 (1.48) 0.80 (0.52) 0.74 (0.53) 0.74 (0.73)

Doppler n = 75 0.96 (1.39) 1.00 (0.00) 1.19 (1.95) 1.47 (2.54) 1.40 (3.54)
n = 100 1.18 (1.30) 1.00 (0.00) 1.25 (2.13) 1.50 (2.33) 1.37 (2.97)
n = 300 2.27 (3.46) 1.10 (1.15) 1.36 (1.53) 1.36 (1.51) 1.37 (2.30)
n = 500 3.44 (4.69) 1.70 (1.98) 1.60 (1.69) 1.42 (1.60) 1.59 (2.29)
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Figure 2: Effect of truncation level K. Results of for the Polynomial function.
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Table 3: Table of results for xi ∼ N (0, 1) averaged over 100 replications of the data for sample sizes
that are not powers of 2. The table presents the ratio MSE /MSEFG along with 100× the standard
error, where MSEFG is the MSE of waveMesh with K = 2dlog2 ne. Boldface values represent the
method with the smallest MSE within each row of the table.

waveMesh waveMesh Interpolation Isometric Adaptive Lifting
K = 25 K = 26

Polynomial n = 75 1.11 (3.83) 1.00 (0.00) 0.99 (4.31) 3.93 (18.03) 3.10 (21.66)
n = 100 1.26 (4.25) 1.00 (0.00) 1.16 (4.45) 4.24 (21.09) 2.94 (17.20)
n = 300 0.68 (2.77) 0.49 (1.11) 1.01 (3.27) 3.19 (7.76) 1.74 (8.14)
n = 500 0.37 (0.93) 0.37 (0.77) 0.80 (2.01) 1.57 (2.39) 0.92 (4.36)

Sine n = 75 0.86 (2.86) 1.00 (0.00) 1.16 (5.27) 1.81 (6.86) 2.64 (12.89)
n = 100 0.87 (2.66) 1.00 (0.00) 1.24 (5.00) 1.82 (6.40) 2.49 (13.27)
n = 300 0.67 (1.75) 0.86 (1.53) 1.12 (4.43) 1.63 (5.41) 1.77 (8.27)
n = 500 0.74 (2.10) 0.73 (1.50) 1.41 (4.43) 1.23 (3.16) 1.69 (7.46)

Piecewise n = 75 0.95 (1.90) 1.00 (0.00) 1.54 (4.27) 1.65 (4.39) 1.74 (7.56)
Polynomial n = 100 0.96 (1.95) 1.00 (0.00) 1.70 (4.76) 1.54 (4.35) 1.55 (6.54)

n = 300 1.32 (2.34) 0.91 (1.07) 1.76 (3.67) 1.27 (2.43) 1.25 (4.37)
n = 500 1.76 (2.45) 1.20 (1.41) 1.79 (3.23) 0.95 (1.54) 1.03 (3.29)

Heavy Sine n = 75 0.81 (1.47) 1.00 (0.00) 1.25 (3.14) 1.48 (2.68) 1.56 (5.69)
n = 100 0.85 (2.11) 1.00 (0.00) 1.48 (4.03) 1.68 (3.34) 1.47 (5.58)
n = 300 0.55 (1.34) 0.66 (1.14) 1.33 (2.59) 1.47 (1.93) 1.01 (3.28)
n = 500 0.73 (1.85) 0.72 (1.12) 1.71 (2.80) 1.12 (1.47) 1.03 (3.56)

Bumps n = 75 1.28 (0.43) 1.00 (0.00) 0.69 (0.59) 0.34 (0.54) 0.48 (1.66)
n = 100 1.42 (0.52) 1.00 (0.00) 0.65 (0.56) 0.35 (0.49) 0.41 (1.34)
n = 300 4.58 (3.42) 3.04 (2.07) 0.83 (0.84) 0.83 (0.76) 0.81 (0.98)
n = 500 7.20 (5.39) 4.46 (3.24) 1.08 (1.03) 1.10 (1.01) 0.91 (1.11)

Doppler n = 75 1.09 (1.70) 1.00 (0.00) 1.37 (3.22) 1.63 (3.08) 1.58 (3.96)
n = 100 1.23 (1.69) 1.00 (0.00) 1.46 (3.17) 1.77 (3.39) 1.61 (4.31)
n = 300 0.68 (1.29) 0.66 (1.11) 1.67 (2.59) 1.51 (2.34) 1.21 (2.99)
n = 500 1.36 (1.69) 0.82 (0.77) 1.79 (2.63) 1.35 (1.78) 1.22 (2.61)
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Figure 3: Effect of truncation level K. Results of for the Sine function.
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Figure 4: Effect of truncation level K. Results of for the Piecewise Polynomial function.
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Figure 5: Effect of truncation level K. Results of for the Heavy sine function.
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Figure 6: Effect of truncation level K. Results of for the Doppler function.
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Figure 7: Effect of truncation level K. Results of for the Bumps function.
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Figure 8: Simulation study for adaptive waveMesh. Results of for the Polynomial function.
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Figure 9: Simulation study for adaptive waveMesh. Results of for the Sine function.

we have a good procedure for selecting the tuning parameter, i.e., if we pick close to the theoretically
ideal tuning parameter then adaptive waveMesh will have a lower MSE.
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Figure 10: Simulation study for adaptive waveMesh. Results of for the Piecewise Polynomial
function.
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Figure 11: Simulation study for adaptive waveMesh. Results of for the Heavy sine function.
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Figure 12: Simulation study for adaptive waveMesh. Results of for the Doppler function.
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Figure 13: Simulation study for adaptive waveMesh. Results of for the Bumps function.
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3 Proofs for univariate results

Here we present the proof for Theorem 1. We consider the estimator

d̂← arg min
d∈RK

1

2n
‖y −RW>d‖22 + λ‖dM‖1, (1)

where dM denotes the sub-vector corresponding to the mother wavelet coefficients. We use this
notation to generalize the case of j0 = 0 where j0 denotes the minimum resolution level. One nice
feature about (1) is that it is exactly the lasso problem [Tibshirani, 1996] with design matrix RW>.

Proof of Theorem 1. We can divide the proof into three parts, (1) the deterministic part, (2) the
stochastic part and (3) the approximation error part. The first 2 parts are standard in the lasso
literature, for this reason we will use the results from the book by van de Geer [2016].

Deterministic Part

As per Theorem 2.1 of van de Geer [2016] let λε satisfy

λε ≥ ‖WR>ε‖∞/n,

where ε is the noise vector. Define for λ > λε

λ = λ+ λε, λ = λ− λε,

and stretching factor L = λ/λ. Further more, for an index set S ⊂ {1, . . . ,K} and stretching factor
L define the compatibility constant as

ϑ̂2(L, S) = min
{
n−1|S|‖RW>d‖22 : ‖dS‖1 = 1, ‖d−S‖1 ≤ L

}
, (2)

where dS is the vector d with values equal to 0 for indices in S. Similarly d−S is the vector d with
values equal to 0 for indices in Sc. Then we have for any set S, and vector d∗ we have

n−1‖f̂ − f0‖22 ≤ n−1‖f0 −RW>d∗‖22 +
|S|λ2

ϑ̂2(L, S)
. (3)

For simplicity we take the λ = 2λε giving us λ = 3λε, λ = λε and L = 3.

We consider a quick calculation of the compatibility constant ϑ̂(L, S). Let Λmin(R) be the minimum
eigenvalue of R, this will normally be greater than 0 if K < n. We then note that:

n−1|S|‖RW>d‖22 ≥ Λmin(R)n−1|S|‖d‖22
= Λmin(R)n−1|S|

{
‖dS‖22 + ‖d−S‖22

}
≥ Λmin(R)n−1|S|

{
‖dS‖21
|S|

+
‖d−S‖21
K − |S|

}
,

and minimizing the right hand side under the constraints ‖dS‖1 = 1 and ‖d−S‖1 ≤ L we can get
that it is bounded below by Λmin(R)n−1. This gives us one possible value for the compatibility
constant ϑ̂2(L, S), notice that this includes the special case of traditional wavelet regression with
R = I and Λmin(R) = 1.

Thus we have that

n−1‖f̂ − f0‖22 ≤ n−1‖f0 −RW>d∗‖22 +
9n|S|λ2ε
Λmin(R)

. (4)

Stochastic part

We focus on obtaining a possible values for λε. We start with the simple case where R = I and
ε ∼ N (0, σ2I), i.e. the traditional wavelet approach with regularly spaced data. In this case we need
to find a λε such that

λε ≥ ‖Wε‖∞/n. (5)
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First note that ε′ = Wε/σ ∼ N (0, I) by orthogonality of W . Hence we have

Pr
(
‖ε′‖∞ >

√
t2 + 2 log n

)
≤ 2p exp

[
− t

2 + 2 log p

2

]
= 2 exp(−t2/2). (6)

Thus with probability at-least 1− 2 exp(−t2/2) we have σ
√
t2 + 2 log n ≥ ‖Wε‖∞. Thus in this

case we can take λε = n−1σ
√
t2 + 2 log n. In the general case we would have the mean zero,

sub-Gaussian K-vector WR>ε. By a slightly more involved argument we can show that we can
take λε = n−1c1

√
t2 + 2 logK where c1 depends on the distribution of ε (i.e., the parameters of the

sub-gaussian distribution) and matrix R.

Thus we have shown so far that with probability at-least 1− 2 exp(−t2/2) we have

n−1‖f̂ − f0‖22 ≤ n−1‖f0 −RW>d∗‖22 +
9c21

Λmin(R)

|S|(t2 + 2 logK)

n
, (7)

or without worrying about optimal constants we get the rate

n−1‖f̂ − f0‖22 ≤ n−1‖f0 −RW>d∗‖22 + C
|S| logK

n
. (8)

To obtain our result we just need the final step: approximation error.

Approximation error part

Now we will bound the term n−1‖f0 − RW>d∗‖22. We will define specific types of vectors d∗
which leads to specific sparse indes sets S. We begin with the decomposition:

n−1‖f0 −RW>d∗‖22 ≤ 2n−1‖f0 −Rf̃0‖22 + 2n−1‖Rf̃0 −RW>d∗‖22, (9)

where f̃0 is the function obtained by interpolating f0 from the data (i/K, f0(i/K)) for i = 1, . . . ,K

and f̃0 = [f̃0(1/K), . . . , f̃0(K/K)]>.

For the second term, define Λmax(R) as the maximum eigenvalue of R>R then

n−1‖Rf̃0 −RW>d∗‖22 ≤ Λmax(R)n−1‖f̃0 −W>d∗‖22 ≤ Λmax(R)‖f̃0 −W>d∗‖2∞.

For the last part we now define d∗, the vector of wavelet coefficients such that it defines a function
f∗ as a linear combination of wavelet basis functions. To be precise we have that

f∗(x) =

2j0−1∑
k=0

φj0k(x)α0
j0k +

J∗−1∑
j=j0

2j−1∑
k=0

ψjk(x)β0
jk, (10)

for some integer J∗, and where α0
j0k and β0

jk are the wavelet coefficients of the true function f0.
Now we obtain:

max
x
|f∗(x)− f0(x)| = max

x

∣∣∣ ∞∑
j=J∗

2j−1∑
k=0

ψjk(x)β0
jk

∣∣∣
≤ max

x
max
j≥J∗,k

|ψjk(x)|
∞∑

j=J∗

2j−1∑
k=0

|β0
jk|

= max
x

max
j≥J∗,k

|ψjk(x)|
∞∑

j=J∗

‖β0
j ‖1,

where βj ∈ R2j is the mother wavelet coefficient vector at level j. Now assuming that f0 ∈ Bsq1,q2
∞∑

j=J∗

‖β0
j ‖1 =

∞∑
j=J∗

2js
′

2js′
‖β0

j ‖1, (s′ = s− 1/2)

≤

 ∞∑
j=J∗

(
2js
′
‖β0

j ‖1
)q21/q2  ∞∑

j=J∗

2−js
′q′2

1/q′2

,

12



where q′2 is such that 1/q2 + 1/q′2 = 1. Using the inequality ‖β0
j ‖1 ≤ 2j(1−1/q1)‖β0

j ‖q1 we get

∞∑
j=J∗

‖β0
j ‖1 ≤

 ∞∑
j=J∗

(
2j(s+1/2−1/q1)‖β0

j ‖q1
)q21/q2  ∞∑

j=J∗

2−js
′q′2

1/q′2

=

 ∞∑
j=J∗

(
2j(s+1/2−1/q1)‖β0

j ‖q1
)q21/q2

× C22−J
∗s,

where the second term can be obtained by looking at S∞ − SJ∗−1 where Sn =
∑n
j=0 2−js

′q′2 . The
first term is bounded because f0 ∈ Bsq1,q2 .

Putting the pieces together

Thus we have shown so far, by taking d∗ as defined above and S being the active set of d∗ (i.e.
|S| = 2J

∗
), that the rate is of the form (upto constants)

n−1‖f̂ − f0‖22 ≤ 2n−1‖f0 −Rf̃0‖22 + C22−(2s)J
∗

+ C32J
∗ logK

n
.

Treating the above as a function of J∗ and minimizing we obtain the approximate truncation order
|S| = O(n1/(2s+1)) which minimizes the right hand side. Finally, putting all the different pieces
together we obtain the bound:

n−1‖f̂ − f0‖22 ≤ C4

(
logK

n

) 2s
2s+1

+ 2n−1‖f0 −Rf̃0‖22.

4 Proofs for additive waveMesh

4.1 Initial results

We will present results in greater generality here. In the interest of brevity and clarity of exposition
we avoided some technical details such as identifiablity and the intercept term in the model. We go
into these details here.

Let f∗ be a sparse additive approximation to f0,

f∗(xi) = c0 +

p∑
j=1

f∗j (xij) = c0 +
∑
j∈S

f∗j (xij),

where S = {j : f∗j 6= 0}, which we call the active set, is a subset of {1, . . . , p} of size |S| and,
c0 = E(ȳ) where ȳ is the sample mean. To ensure identifiability, we assume

∑n
i=1 f

∗
j (xij) = 0

(j = 1, . . . , p).

We consider a large class of estimators of the type:

f̂1, . . . , f̂p = arg min
(fj)

p
j=1∈F

1

2n

n∑
i=1

{
yi − ȳ −

p∑
j=1

fj(xij)
}2

+ λn

p∑
j=1

I(fj) , (11)

where I(·) is a penalty of the form I(fj) = ‖fj‖n + λnΥ(fj), for a semi-norm Υ(·) and, empirical
norm ‖ · ‖n defined for component fj as ‖fj‖2n = n−1

∑n
i=1[fj(xij)]

2. In our case Υ(·) is the Besov
norm of the Bs1,1 space.

Throughout this proof, instead of the smoothness level s, we will use α = 1/s. Before we begin
the main proof, we define the notion of metric entropy which will be used throughout the proof.
For a set F equipped with some metric d(·, ·), the subset {f1, . . . , fN} ⊂ F is a δ-cover if for any
f ∈ F min1≤i≤N d(f, fi) ≤ δ. The log-cardinality of the smallest δ-cover is the δ-entropy of F
with respect to metric d(·, ·). We denote by H(δ, F , Q), the δ-entropy of a function class F with
respect to the ‖ · ‖Q metric for a measure Q, where ‖f‖2Q =

∫
{f(x)}2 dQ(x). For a fixed sample of
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covariate j, x1j , . . . , xnj , we denote by Qnj the empirical measure Qnj = n−1
∑n
i=1 δxij and use

the short-hand notation ‖ · ‖n = ‖ · ‖Qnj .
The main ingridient we require for proving results for sparse additive models is the entropy condition,
specifically we require

H(δ, {fj ∈ F : Υ(fj) ≤ 1}, Qnj) ≤ A0δ
−α,

for α ∈ (0, 2), and so forth.

Note: In the case of our Besov norm, the above entropy condition holds for α = 1/s, i.e.,

H(δ, {fj ∈ F : Υ(fj) ≤ 1}, Qnj) ≤ A0δ
−1/s.

Lemma 1 (Basic inequality). For any function f∗ =
∑p
j=1 f

∗
j , where f∗j ∈ F and, the solution f̂ of

(11), we have the following basic inequality

1

2
‖f̂ − f0‖2n + λIp(f̂) ≤ |〈ε, f̂ − f∗〉n|+ λIp(f

∗) + |ε̄|
p∑
j=1

‖f̂j − f∗j ‖n +
1

2
‖f∗ − f0‖2n,

where 〈ε, f〉n = 1
n

∑n
i=1 εif(xi), ε̄ = 1

n

∑n
i=1 εi and Ip(f) =

∑p
j=1 I(fj) =

∑p
j=1 ‖fj‖n +

λΥ(fj) for an additive function f .

Proof. We have

1

2n

n∑
i=1

{
yi − ȳ − f̂(xi)

}2

+ λIp(f̂) ≤ 1

2n

n∑
i=1

{yi − ȳ − f∗(xi)}2 + λIp(f
∗
j ),

⇔ 1

2n

n∑
i=1

{
εi + c0 − ȳ − (f̂ − f0)(xi)

}2

+ λIp(f̂) ≤ 1

2n

n∑
i=1

{
εi + c0 − ȳ − (f∗ − f0)(xi)

}2
+ λIp(f

∗
j )

⇒ 1

2n

n∑
i=1

(
εi + c0 − ȳ

)2
+ (f̂ − f0)2(xi)− 2(εi + c0 − ȳ)(f̂ − f0)(xi) + λIp(f̂)

≤ 1

2n

n∑
i=1

(
εi + c0 − ȳ

)2
+ (f∗ − f0)2(xi)− 2(εi + c0 − ȳ)(f∗ − f0)(xi) + λIp(f

∗)

⇒ 1

2
‖f̂ − f0‖2n − 〈ε+ c0 − ȳ, f̂ − f0〉n + λIp(f̂)

≤ 1

2
‖f∗ − f0‖2n − 〈ε+ c0 − ȳ, f∗ − f̂ + f̂ − f0〉n + λIp(f

∗)

⇒ 1

2
‖f̂ − f0‖2n − 〈ε+ c0 − ȳ, f̂ − f0〉n + λIp(f̂)

≤ 1

2
‖f∗ − f0‖2n − 〈ε+ c0 − ȳ, f∗ − f̂〉n − 〈ε+ c0 − ȳ, f̂ − f0〉n + λIp(f

∗),

which implies

1

2
‖f̂ − f0‖2n + λIp(f̂) ≤ 1

2
‖f∗ − f0‖2n − 〈ε+ c0 − ȳ, f∗ − f̂〉n + λIp(f

∗)

⇒1

2
‖f̂ − f0‖2n + λIp(f̂) ≤ |〈ε, f̂ − f∗〉n|+

p∑
j=1

〈c0 − ȳ, f̂j − f∗j 〉n + λIp(f
∗) +

1

2
‖f∗ − f0‖2n

⇒1

2
‖f̂ − f0‖2n + λIp(f̂) ≤ |〈ε, f̂ − f∗〉n|+ |c0 − ȳ|

p∑
j=1

‖f̂j − f∗j ‖n + λIp(f
∗) +

1

2
‖f∗ − f0‖2n.
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Now for the second term note that:

|c0 − ȳ| =

∣∣∣∣∣ 1n
n∑
i=1

(c0 − yi)

∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
i=1

c0 − c0 −
p∑
j=1

f0j (xi,j)− εi


∣∣∣∣∣∣ = |ε̄|.

Which leads us to

1

2
‖f̂ − f0‖2n + λIp(f̂) ≤ |〈ε, f̂ − f∗〉n|+ λIp(f

∗) + |ε̄|
p∑
j=1

‖f̂j − f∗j ‖n +
1

2
‖f∗ − f0‖2n.

Lemma 2 (Bounding the term |ε̄|). For ε = (ε1, . . . εn)T such that E(εi) = 0 and

L2
{
E
(
eε

2
i /L

2
)
− 1
}
≤ σ2

0 ,

for all κ > 0 and

ρ = κmax

{
n−

1
2+α ,

(
log p

n

)1/2
}
,

we have that with probability at least 1− 2 exp
(
−nρ2/c1

)
,

|ε̄| ≤ ρ,

for a constant c1 that depends on L and σ0.

Proof. By Lemma 8·2 of van de Geer [2000] (with γn = 1n/n) we have for all t > 0

pr

(∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
− nt2

8(L2 + σ2
0)

}
.

The result follows by setting t = ρ.

Lemma 3 (Bounding the term |〈ε, f̂ − f∗〉n|). For λ ≥ 4ρ where

ρ = κmax

{
n−

1
2+α ,

(
log p

n

)1/2
}
,

for some constant κ, if
H(δ, {f ∈ F : Υ(f) ≤ 1}, Qn) ≤ A0δ

−α,

we then have with probability at least 1− c2 exp
(
−c3nρ2

)
|〈ε, f̂j − f∗j 〉n| ≤ ρ‖f̂j − f∗j ‖n + ρλΥ(f̂j − f∗j ),

for all j = 1, . . . , p and positive constants c2 and c3.

Proof. Firstly, for F0 = {f ∈ F : Υ(f) ≤ 1} we have by assumption a δ cover f1, . . . , fN
such that for all f ∈ F0 we have minj∈{1,...,N} ‖fj − f‖n ≤ δ. Now we are interested in the set
F0,λ = {f ∈ F : λΥ(f) ≤ 1}. Firstly, for a function f ∈ F0,λ,

min
j∈{1,...,N}

‖f − fj/λ‖n = min
j∈{1,...,N}

1

λ
‖λf − fj‖n ≤

δ

λ
,

because Υ(λf) = λΥ(f) ≤ 1 ⇒ λf ∈ F0. This means that the set {f1/λ, . . . , fN/λ} is a δ/λ
cover of the set F0,λ.

This implies that H(δ,F0, Qn) ≤ A0δ
−α ⇒ H(δ/λ,F0,λ, Qn) ≤ A0δ

−α or equivalently
H(δ,F0,λ, Qn) ≤ A0(δλ)−α. Finally, since {f ∈ F : I(f) ≤ 1} ⊂ {f ∈ F : Υ(f) ≤ λ−1} we
have

H(δ, {f ∈ F : I(f) ≤ 1}, Qn) ≤ A0(δλ)−α.
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The same entropy bound holds for the class

F̃ =

{
fj − f∗j

‖fj − f∗j ‖n + λΥ(fj − f∗j )
: fj ∈ F

}
, (12)

and we can now apply Corollary 8.3 of van de Geer [2000] by noting that∫ 1

0

H1/2(u, F̃ , Qn) du ≤ Ã0λ
−α/2,

for some constant Ã0 = Ã0(A0). For some c2 = c2(L, σ0) and all δ ≥ 2c2Ã0λ
−α/2n−1/2 we have

pr

(
sup
fj∈F

∣∣〈ε, fj − f∗j 〉n∣∣
‖fj − f∗j ‖n + λΥ(fj − f∗j )

≥ δ

)
≤ c2 exp

(
−nδ

2

4c22

)
. (13)

Since λ ≥ ρ we note that 2c2Ã0λ
−α/2n−1/2 ≤ 2c2Ã0ρ

−α/2n−1/2 and that

2c2Ã0ρ
−α/2n−1/2 ≤ ρ⇔ ρ ≥

(
2c2Ã0

) 2
2+α

n−
1

2+α .

Which holds by definition since ρ = κmax
{

(log p/n)
1/2

, n−1/(2+α)
}
≥ κn−1/(2+α) and κ is

sufficiently large (any κ ≥
(

2c2Ã0

)2/(2+α)
would suffice). Therefore, we can take δ = ρ in (13)

along with a union bound to obtain

pr

(
max

j=1,...,p
sup
fj∈F

∣∣〈ε, fj − f∗j 〉n∣∣
‖fj − f∗j ‖n + λΥ(fj − f∗j )

≥ ρ

)
≤ pc2 exp

(
−nρ

2

4c22

)
= c2 exp

{
−nρ2

(
1

4c22
− log p

nρ2

)}
≤ c2 exp

(
−nρ2c3

)
,

for some positive constant c3 = c3(c2, Ã0).

Finally, we show that c3 > 0. This follows from the fact that 1/(4c22)− log p/(nρ2) > 0⇔ nρ2 >
4c22 log p. This holds since nρ2 ≥ κ2 log p for κ sufficiently large. Thus, we have with probability at
least 1− c2 exp

(
c3nρ

2
)

for all j = 1, . . . , p

|〈ε, f̂j − f∗j 〉n| ≡ |〈ε, ∆̂j〉n| ≤ ρ‖∆̂j‖n + ρλΥ(∆̂j) .

4.2 Using the active set

So far we have shown that, for λ ≥ 4ρ, with probability at least 1 − 2 exp (−nρ/c1) −
c2 exp

(
−c3nρ2

)
, the following inequality holds

‖f̂ − f0‖2n + 2λ

p∑
j=1

I(f̂j) ≤ 2|〈ε, f̂ − f∗〉n|+ 2|ε̄|
p∑
j=1

‖∆̂j‖n + 2λ

p∑
j=1

I(f∗j ) + ‖f∗ − f0‖2n

≤


p∑
j=1

2ρ‖∆̂j‖n + 2ρλΥ(∆̂j)

+

2ρ

p∑
j=1

‖∆̂j‖n


+

2λ

p∑
j=1

I(f∗j )

+ ‖f∗ − f0‖2n

⇒ ‖f̂ − f0‖2n + 2λ

p∑
j=1

I(f̂j) ≤
p∑
j=1

{
λ‖∆̂j‖n +

λ2

2
Υ(∆̂j) + 2λ‖f∗j ‖n + 2λ2Υ(f∗j )

}
+ ‖f∗ − f0‖2n.
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For notational convenience we will exclude the ‖f∗ − f0‖2n term in the following manipulations. If
S is the active set then we have on the right hand side,

RHS = λ
∑
j∈S

{
‖∆̂j‖n +

λ

2
Υ(∆̂j) + 2‖f∗j ‖n + 2λΥ(f∗j )

}
+ λ

∑
j∈Sc

{
‖f̂j‖n +

λ

2
Υ(f̂j)

}

≤ λ
∑
j∈S

{
‖∆̂j‖n +

λ

2
Υ(∆̂j) + 2‖∆̂j‖n + 2‖f̂j‖n + 2λΥ(f∗j )

}
+ λ

∑
j∈Sc

{
‖f̂j‖n +

λ

2
Υ(f̂j)

}
= 3

∑
j∈S

λ‖∆̂j‖n + 2
∑
j∈S

λ2Υ(f∗j ) +
∑
j∈Sc

λ‖f̂j‖+
1

2

∑
j∈Sc

λ2Υ(f̂j) + 2
∑
j∈S

λ‖f̂j‖n +
1

2

∑
j∈S

λ2Υ(∆̂j),

where the inequality holds by the decomposition ‖f∗j ‖n = ‖f∗j − f̂j + f̂j‖n ≤ ‖∆̂j‖n + ‖f̂j‖n.

On the left hand side we have

LHS = ‖f̂ − f0‖2n + 2λ
∑
j∈S

{
‖f̂j‖n + λΥ(f̂j)

}
+ 2λ

∑
j∈Sc

{
‖f̂j‖n + λΥ(f̂j)

}
≥ ‖f̂ − f0‖2n + 2λ

∑
j∈S

{
‖f̂j‖n + λΥ(∆̂j)− λΥ(f∗j )

}
+ 2λ

∑
j∈Sc

{
‖f̂j‖n + λΥ(f̂j)

}
,

where the inequality follows from the triangle inequality Υ(f̂j) + Υ(f∗j ) ≥ Υ(∆̂j) since Υ(·) is a
semi-norm. By re-arranging the terms we obtain the inequality

‖f̂−f0‖2n+λ
∑
j∈Sc

{
‖f̂j‖n +

3λ

2
Υ(f̂j)

}
+

3λ2

2

∑
j∈S

Υ(∆̂j) ≤ 3λ
∑
j∈S
‖∆̂j‖n+4λ2

∑
j∈S

Υ(f∗j )+‖f∗−f0‖2n

which implies that

‖f̂ − f0‖2n + λ
∑
j∈Sc
‖∆̂j‖n +

3λ2

2

p∑
j=1

Υ(∆̂j) ≤ 3λ
∑
j∈S
‖∆̂j‖n + 4λ2

∑
j∈S

Υ(f∗j ) + ‖f∗ − f0‖2n.

This implies the slow rates for convergence for λ ≥ 4ρ and |S|

1

2
‖f̂ − f0‖2n+ ≤ |S|λ

3
∑
j∈S
‖∆̂j‖n/|S|+ 2λ

∑
j∈S

Υ(f∗j )/|S|

+
1

2
‖f∗ − f0‖2n.

This completes the proof of the first part of the theorem. Recall that λ is of the order:

κmax

{
n−

1
2+α ,

(
log p

n

)1/2
}
,

and for the Besov space Bs1,1 we have α = 1/s.

4.3 Using the compatibility condition

Recall the compatibility condition for f =
∑p
j=1 fj , whenever

∑
j∈Sc
‖fj‖n +

3λ

2

p∑
j=1

Υ(fj) ≤ 3
∑
j∈S
‖fj‖n, (14)

then we have ∑
j∈S
‖fj‖n ≤ |S|1/2‖f‖n/ϑ(S).

Once we assume the compatibility condition we can prove the rest of the theorem by considering the
following two cases.
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Case 1: λ
∑
j∈S ‖∆̂j‖n ≥ 4λ2

∑
j∈S Υ(f∗j ) in which case we have

‖f̂ − f0‖2n + λ
∑
j∈Sc
‖∆̂j‖n +

3λ2

2

p∑
j=1

Υ(∆̂j) ≤ 4λ
∑
j∈S
‖∆̂j‖n + ‖f∗ − f0‖2n ,

hence for the function f̂ − f∗ =
∑p
j=1 ∆̂j (14) holds and hence by the compatibility condition we

have

‖f̂ − f0‖2n + λ
∑
j∈Sc
‖∆̂j‖n +

3λ2

2

p∑
j=1

Υ(∆̂j) ≤
4λ|S|1/2

ϑ(S)
‖f̂ − f∗‖n + ‖f∗ − f0‖2n

≤ 4λ|S|1/2

ϑ(S)
‖f̂ − f0‖n +

4λ|S|1/2

ϑ(S)
‖f∗ − f0‖n + ‖f∗ − f0‖2n

≤ 2

{
2λ(2s)1/2

ϑ(S)

}(
‖f̂ − f0‖n

21/2

)
+ 2

{
2λ|S|1/2

ϑ(S)

}(
‖f∗ − f0‖n

)
+ ‖f∗ − f0‖2n

≤ 4λ2(2|S|)
ϑ2(S)

+
‖f̂ − f0‖2n

2
+

4λ2|S|
ϑ2(S)

+ ‖f∗ − f0‖2n + ‖f∗ − f0‖2n

≤ 12λ2|S|
ϑ2(S)

+
‖f̂ − f0‖2n

2
+ 2‖f∗ − f0‖2n,

where we use the inequality 2ab ≤ a2 + b2 and this implies that

1

2
‖f̂ − f0‖2n + λ

∑
j∈Sc
‖∆̂j‖n +

3λ2

2

p∑
j=1

Υ(∆̂j) ≤
12sλ2

ϑ2(S)
+ 2‖f∗ − f0‖2n.

Case 2: λ
∑
j∈S ‖∆̂j‖n ≤ 4λ2

∑
j∈S Υ(f∗j ) in which case we have

‖f̂ − f0‖2n + λ
∑
j∈Sc
‖∆̂j‖n +

3λ2

2

p∑
j=1

Υ(∆̂j) ≤ 16λ2
∑
j∈S

Υ(f∗j ) + ‖f∗ − f0‖2n

≤ 16|S|λ2
∑
j∈S

Υ(f∗j )/|S|+ ‖f∗ − f0‖2n,

which implies

1

2
‖f̂ − f0‖2n + λ

∑
j∈Sc
‖∆̂j‖n +

3λ2

2

∑
j∈S

Υ(∆̂j) ≤ 16|S|λ2
∑
j∈S

Υ(f∗j )/|S|+ 2‖f∗ − f0‖2n.
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