
A Proofs

A.1 Proof of Theorem 1

The classification risk (1) can be expressed and decomposed as
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where the third equality requires the assumption of p(y = +1|x) 6= 0 stated in Theorem 1. we have
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Then the second term in (9) can be expressed as
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which concludes the proof.

A.2 Proof of Lemma 2

By assumption, it holds almost surely that
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due to the existence of C`, the change of bR(g) will be no more than (C` + C`/Cr)/n if some xi is
replaced with x0
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or equivalently, with probability at least 1� �/2,
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Since bR(g) is unbiased, it is routine to show that [31]
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which proves this direction.

The other direction supg2G
R(g)� bR(g) can be proven similarly.

A.3 Proof of Theorem 3

Based on Lemma 2, the estimation error bound (7) is proven through
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where bR(ĝ)  bR(g⇤) by the definition of bR.

B Neural Network Architectures used in Section 4.2

B.1 CNN architecture

• Convolution (3 in- /18 out-channels, kernel size 5).
• Max-pooling (kernel size 2, stride 2).
• Convolution (18 in- /48 out-channels, kernel size 5).
• Max-pooling (kernel size 2, stride 2).
• Fully-connected (800 units) with ReLU.
• Fully-connected (400 units) with ReLU.
• Fully-connected (1 unit).

B.2 AutoEncoder Architecture

• Convolution (3 in- /18 out-channels, kernel size 5, stride 1) with ReLU.
• Max-pooling (kernel size 2, stride 2).
• Convolutional layer (18 in- /48 out-channels, kernel size 5, stride 1) with ReLU.
• Max-pooling (kernel size 2, stride 2).
• Deconvolution (48 in- /18 out-channels, kernel size 5, stride 2) with ReLU.
• Deconvolution (18 in- /5 out-channels, kernel size 5, stride 2).
• Deconvolution (5 in- /3 out-channels, kernel size 4, stride 1) with Tanh.
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