
Supplementary Material for

Infinite-horizon Gaussian processes

A Nomenclature

In order of appearance. Vectors bold-face small letters, matrices bold-face capital letters.

Symbol Description

n Number of (training) data points
m State dimensionality
t ∈ R Time (input)
i (Typically) Time index, ti
y Observation (output)
y ∈ R

n Collection of outputs, (y1, y2, . . . , yn)
κ(t, t′) Covariance function (kernel)
µ(t) Mean function
θ Vector of model (hyper) parameters

σ2
n Measurement noise variance

ℓ Characteristic length-scale
K ∈ R

n×n Covariance (Gram) matrix, Ki,j = κ(ti, tj)
w ∈ R

n Likelihood precision matrix diagonal
f(t) : R → R Latent function
f Vector of evaluated latent, (f(t1), f(t2), . . . , f(tn))
fi Element in f

f(t) : R → R
m Vector-valued latent function, f(t) = hTf(t)

fi ∈ R
m The state variable, fi = f(ti) and fi ∼ N(mi,Pi)

F ∈ R
m×m Feedback matrix (continuous-time model)

L ∈ R
m×s Noise effect matrix (continuous-time model)

Qc ∈ R
s×s Driving white noise spectral density (continuous-time model)

h ∈ R
m Measurement model

A ∈ R
m×m Dynamic model (discrete-time model)

Q ∈ R
m×m Process noise covariance (discrete-time model)

P∞ ∈ R
m×m Stationary state covariance (prior)

mi ∈ R
m×m State mean

Pi ∈ R
m×m State covariance

k ∈ R
m Kalman gain

G ∈ R
m×m Smoother gain

vi Innovation mean
si Innovation variance
•p Superscript ‘p’ denotes predictive quantities

•f Superscript ‘f’ denotes filtering quantities
•s Superscript ‘s’ denotes smoothing quantities
•̂ The hat denotes steady-state approximation quantities
γ ∈ R+ Likelihood variance
η Learning rate



B Example of a Matérn (ν =
3/2) covariance function

Consider the Matérn covariance function with smoothness ν = 3/2, for which the processes are
continuous and once differentiable:

κMat.(t, t
′) = σ2

(

1 +

√
3 |t− t′|

ℓ

)

exp

(

−
√
3 |t− t′|

ℓ

)

. (13)

It has the SDE representation [8]

F =

(

0 1
−λ2 −2λ

)

, L =

(

0
1

)

, P∞ =

(

σ2 0
0 λ2σ2

)

, and h =

(

1
0

)

, (14)

where λ =
√
3/ℓ. The spectral density of the Gaussian white noise process w(t) is Qc = 4λ3σ2.

For higher-order half-integer Matérn covariance functions, the state dimensionality follows the
smoothness parameter, m = ν + 1/2.

C Forward derivatives for efficient log likelihood gradient evaluation

The recursion for evaluating the derivatives of the log marginal likelihood can be derived by differen-
tiating the steady-state recursions. As the equation for the stationary predictive covariance is given by
the DARE:

P̂p = AP̂p AT −AP̂p h (hTP̂p h+ σ2
n)

−1 hTP̂p AT +Q. (15)

In order to evaluate the derivatives with respect to hyperparameters, the stationary covariance P̂p

must be differentiated. In practice the model matrices A and Q are functions of the hyperparameter
values θ as is the measurement noise variance σ2

n.

Differentiating gives:

∂P̂p = (A−BhT) ∂P̂p (A−BhT)T +C, (16)

where B = AP̂p h (hTP̂p h + σ2
n)

−1 and C = ∂AP̂p AT + AP̂p ∂AT − ∂AP̂p hBT −
BhTP̂p ∂AT +B ∂σ2

n B
T + ∂Q.

Equation (16) is also a DARE, which means that a DARE needs to be solved for each hyperparameter.
However, after this initial cost evaluating the recursion for calculating the gradient of the negative log
marginal likelihood is simply a matter of the following operations:

∇ log p(y |θ) = − n

2 ŝ
∇ŝ−

∑

i

[

v̂i
ŝ
∇v̂i −

v̂2i
2 ŝ2i

∇ŝi

]

, (17)

where the recursion only has to propagate ∂mi over steps for evaluating ∇ŝi. The gradient can be
evaluated very efficiently just as a matter of two additional m2 matrix–vector multiplications per time
step. This is different from the complete state space evaluations, where calculating the derivatives
becomes costly as the entire Kalman filter needs to be differentiated.

D Stabilisation of the forward and backward gains

We have included a figure (Fig. 7) showing the quick stabilisation of the gains in running the toy
experiment in Fig. 1. Even though the data is too small to be practical for IHGP, the edge-effects are
not severe. For larger data sets, the likelihood curves in Fig. 1 keep approaching each others.

E Classification examples

We include two additional figures showing results for classification examples using simulated data.
Fig. 8 shows the results.
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(b) Backward gain

Figure 7: Example of how the gain terms stabilize over the time span of 100 samples. The solid lines
are the true gains and dashed lines the stabilizing infinite-horizon gains. These are the gains for the
results in Fig. 1.
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(a) Classification (logit)
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(b) Classification (probit)

Figure 8: Two examples of IHGP classification on toy data (thresholded sinc function) with a Matérn
(ν = 3/2) GP prior. The figure shows results (the mean and 95% quantiles squashed through the link
function) for a full GP (naïve handling of latent, full EP inference), state space (exact state space
inference of latent, ADF inference), and IHGP. The hyperparameters of the covariance function were
optimised (w.r.t. marginal likelihood) independently using each model.



F Electricity example

In the electricity consumption example we aim to explain the underlying process (occupancy and
living rhythm) that generates the electricity consumption in the household.

We first perform GP batch regression with a GP prior with the covariance function

κ(t, t′) = κ
ν=3/2
Mat. (t, t′) + κ1 day

per (t, t′)κ
ν=3/2
Mat. (t, t′), (18)

where the first component captures the short or long-scale trend variation, and the second component
is a periodic model that aims to capture the time of day variation (with decay, a long length-scale
Matérn). In order not to over-fit, we fix the measurement noise variance and the length-scale of the
multiplicative Matérn component. We optimised the remaining four hyperparameters with respect to
marginal likelihood. The values are visualized in Fig. 9 with dashed lines. Total running time 624 s
on the MacBook Pro used in all experiments.

As the stationary model is clearly an over-simplification of the modelling problem, we also apply
IHGP in an online setting in finding the hyperparameters. Fig. 9 shows the adapted hyperparameter
time-series over the entire time-range.

We have selected three 10-day windows (with 14,400 observations each) to highlight that the model
manages to capture the changes in the data. Subfigure (a) shows the (noisy) daily variation with
a clear periodic structure. In (b) the electricity consumption has been small for several days and
the magnitude of both components has dropped. Furthermore, the periodic model has increased its
length-scale to effectively turn itself off. In (c) the predictive capability of the model shows and
captures the daily variation even though there has been a fault in the data collection.
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(a) Typical daily rhythm
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(b) House vacant

1340 1342 1344 1346 1348

−
2

0
2

Time (days)

E
le

ct
ri

ci
ty

co
n
su

m
p
ti

o
n

(l
o
g

k
W

)

(c) Missing data
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(d) Learned hyperparameters over the time-range

Figure 9: Results for explorative analysis of electricity consumption data over 1,442 days with
one-minute resolution (n > 2M). (d) The batch optimized hyperparameters values shown by dashed
lines, the results for IHGP with adaptation (solid) adapt to changing circumstances. (a)–(c) show
three 10-day windows where the model has adapted to different modes of electricity consumption.
Data shown by dots, predictive mean and 95% quantiles shown by the solid line and shaded regions.


	Supplementary Material for Infinite-horizon Gaussian processes
	Nomenclature
	Example of a Matérn (=32) covariance function
	Forward derivatives for efficient log likelihood gradient evaluation
	Stabilisation of the forward and backward gains
	Classification examples
	Electricity example

