Supplementary Material

A Proof for Proposition 1

The proof is straightforward. The key is to show the one-step gradient update of
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where J is given by Equation 1.
For the case b = B, we have ¢,(Wy,zp_1) = ¢ (yk; Fp(Wp, zB,l)), and the one-step gradient
solution of (1)) is
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which satisfies (2).
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For other cases of b, we have (,( W3, 2p_1) = 5 — F,(Wy, zp-1) H . Suppose the one-step

gradient solution of (I) satisfies (2) for some b. We next verify it for the case b — 1. Since
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Following chain rule, this completes the proof.

B BP through BN for back-matching loss

The gradient for the back matching loss of a fully connected layer with BN is given by
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where m is the mini-batch size, and aVar[ ;7 and 8[” 7 is the gradient on quantities Var[zp] and E[Z]
respectively.



C Local Hessian for convolutional layer

In this part we derive the Hessian of the back-matching loss for a convolutional layer. We change
the notation a bit for clear representation. The weight parameter W is an array with dimension
n X m X w X h, where n and m are the number of output features and the number of input features
respectively, and w and h are the width and height of convolutional kernels. Suppose the output
feature size is 1 X g2 and the input feature size is p; X pa. We use by, 4, to denote the output at
location (u1,u2) of feature k and a;jy, ., to denote the input at location (u;, ug) of feature j, then
the forward process is
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However, this formula of the forward and backward process of convolutional layer make the derivation
of Hessian complex. Note that the convolution operation essentially performs dot products between
the convolution kernels and local regions of the input. The forward pass of a convolution layer
can be formulated as one big matrix multiply with im2col operation. In order to describe back
matching process clearly, we rewrite the convolution layer forward and backward pass with im2col
operation. We use W .., and W, to represent the weight matrices with dimension n x (mwh)
and m x (nwh), respectively, which both are stretched out from W (n,m,w, k). To mimic the
convolutional operation, we rearrange the input features a into a big matrix a;2. through im2col
operation: each column of z;5. is composed of the elements of a that are used to compute one location
in b. Thus if b has dimension n X q; X g3, then a;o. has dimension mwh X ¢;¢qo. Furthermore, we
stack the latter two dimensions of b into a tall vector, denoted as b.,; which has dimension n X ¢1¢s.
The forward process (LT)) of convolutional layer can be rewritten as
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Similarly, we can rewrite the regular BP (12)) and (T3)) as
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where Wy, 4, 18 a vector of dimension ng; g2, whose non-zero elements are those weights that
interact with input location ju;us. There are approximately n X wh/c non-zero elements and ¢ is
a factor related with pooling, padding and stride (if padding=same-size, stride=2, then c=4). The
non-zero elements are scattered into n blocks, with each block wh/c non-zero elements, whose
location within the block is corresponding to (u1,us2). With these notations, we can derive the
formula of local Hessian, given by
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where W, is a nq1q2 X mp;p matrix each column being w jy,u,—. We know W, is a sparse
matrix and so is H ,. Moreover, Hyy,, is a concentrated matrix as each component is a summation of
q1q2 % batch-size variables. As the convolutional layer is essentially a linear mapping, the formulas
here is similar to those of the fully connected layer although they are more involved.

C.1 Approximate convolution layer with BN

We approximate Hy, by a scalar my, w,, = s/||W rouwl|3,,. Where s = g1 is the sharing parameter
and g1 X g2 is the output feature size.

We approximate H, by a scalar my, . = [|W coill3 ./ [|W rowl|3,,./ ¢, Where ¢ is a factor related with
pooling, padding and stride (if padding=same-size, stride=2, then c=4).



Training Loss of VGG13 on CIFAR100
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Figure 1: Multiple runs of Figure 1 for CIFAR100.

D Other experiments

In order to verify the stability of scale-amended SGD, we run and plot multiple times of the learning
curves as in Figure 1 here. We do extensive experiments to verify the effectivity of scale-amended
SGD on training feed-forward neural networks with BN. First we introduce several baseline algorithms
and their settings.

The first base algorithm is the vanilla SGD with Nesterov momentum 0.9. The learning rate is chosen
to be n = 0.1 given a pool of candidates {0.01,0.05,0.1,0.2,0.5}.

The second baseline algorithm is LSALR which uses 7 - (1 + log(1 + 1/||[0W}||2)) as the learning
rate for the layer [. The global learning rate is set to be = 0.1, which achieves best performance
comparing from a pool of candidates {0.006, 0.05,0.1,0.2,0.5}.

The third baseline algorithm is LARS which uses 7 - |\H5vv‘:lll”||22 as the learning rate for layer /. In our

experiment, we use the global learning rate n = 2 for LARS, which achieves best performance from
apool of {0.1,1,2,5,10}.

For baseline algorithms, we apply weight decay with coefficient /e-3 if without specific description.

At last, we present the test accuracy of different VGG nets for classification of CIFAR-10 and CIFAR-
100 in Table[I] We report the median of 3 independent runs of each pair of model and algorithm. For
this group of experiments, we use global learning rate n = 0.1 and weight decay coefficient 5e-3 for
our algorithm. Our algorithm achieves higher test accuracy over its competitors on all four VGG
models with margins.



Table 1: Classification accuracies for CIFAR-10 and CIFAR-100.

| CIFARI0Q | CIFAR100
\ VGGI1 VGG13 VGG16 VGGI19 \ VGG11 VGGI13 VGG16 VGGI9
SGD 92.34 93.90 93.72 93.47 71.84 74.07 72.86 71.35

LARS 91.81 93.40 93.47 93.48 67.26 70.35 69.90 69.52
LSALR 92.58 93.68 93.35 93.46 71.14 73.74 73.14 70.76
OURS 92.45 94.11 93.90 93.88 73.39 75.32 74.68 72.82
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