
Supplementary Material

A Proof for Proposition 1

The proof is straightforward. The key is to show the one-step gradient update of
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where J is given by Equation 1.
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which satisfies (2).
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Following chain rule, this completes the proof.

B BP through BN for back-matching loss

The gradient for the back matching loss of a fully connected layer with BN is given by
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C Local Hessian for convolutional layer

In this part we derive the Hessian of the back-matching loss for a convolutional layer. We change
the notation a bit for clear representation. The weight parameter W is an array with dimension
n×m× w × h, where n and m are the number of output features and the number of input features
respectively, and w and h are the width and height of convolutional kernels. Suppose the output
feature size is q1 × q2 and the input feature size is p1 × p2. We use bku1u2 to denote the output at
location (u1, u2) of feature k and aju1u2

to denote the input at location (u1, u2) of feature j, then
the forward process is
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However, this formula of the forward and backward process of convolutional layer make the derivation
of Hessian complex. Note that the convolution operation essentially performs dot products between
the convolution kernels and local regions of the input. The forward pass of a convolution layer
can be formulated as one big matrix multiply with im2col operation. In order to describe back
matching process clearly, we rewrite the convolution layer forward and backward pass with im2col
operation. We use W row and W col to represent the weight matrices with dimension n × (mwh)
and m × (nwh), respectively, which both are stretched out from W (n,m,w, h). To mimic the
convolutional operation, we rearrange the input features a into a big matrix ai2c through im2col
operation: each column of zi2c is composed of the elements of a that are used to compute one location
in b. Thus if b has dimension n× q1 × q2, then ai2c has dimension mwh× q1q2. Furthermore, we
stack the latter two dimensions of b into a tall vector, denoted as bcol which has dimension n× q1q2.
The forward process (11) of convolutional layer can be rewritten as

bcol = W rowai2c (14)
Similarly, we can rewrite the regular BP (12) and (13) as

δaju1u2
(x) = wT

ju1u2→δb(x), (15)

δW row = Exδbcol(x)zTi2c(x), (16)
where wju1u2→ is a vector of dimension nq1q2, whose non-zero elements are those weights that
interact with input location ju1u2. There are approximately n× wh/c non-zero elements and c is
a factor related with pooling, padding and stride (if padding=same-size, stride=2, then c=4). The
non-zero elements are scattered into n blocks, with each block wh/c non-zero elements, whose
location within the block is corresponding to (u1, u2). With these notations, we can derive the
formula of local Hessian, given by

HWn = Eai2caTi2c, (17)

Ha(j, u1, u2, k, v1, v2) =
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Ha = W T
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where W a is a nq1q2 × mp1p2 matrix each column being wju1u2→. We know W a is a sparse
matrix and so is Ha. Moreover, HWn

is a concentrated matrix as each component is a summation of
q1q2 × batch-size variables. As the convolutional layer is essentially a linear mapping, the formulas
here is similar to those of the fully connected layer although they are more involved.

C.1 Approximate convolution layer with BN

We approximate HWn
by a scalar mb,Wn

= s/‖W row‖22,µ, where s = q1q2 is the sharing parameter
and q1 × q2 is the output feature size.

We approximate Ha by a scalar mb,z = ‖W col‖22,µ/‖W row‖22,µ/c, where c is a factor related with
pooling, padding and stride (if padding=same-size, stride=2, then c=4).

3



Figure 1: Multiple runs of Figure 1 for CIFAR100.

D Other experiments

In order to verify the stability of scale-amended SGD, we run and plot multiple times of the learning
curves as in Figure 1 here. We do extensive experiments to verify the effectivity of scale-amended
SGD on training feed-forward neural networks with BN. First we introduce several baseline algorithms
and their settings.

The first base algorithm is the vanilla SGD with Nesterov momentum 0.9. The learning rate is chosen
to be η = 0.1 given a pool of candidates {0.01, 0.05, 0.1, 0.2, 0.5}.
The second baseline algorithm is LSALR which uses η · (1 + log(1 + 1/‖δW l‖2)) as the learning
rate for the layer l. The global learning rate is set to be η = 0.1, which achieves best performance
comparing from a pool of candidates {0.006, 0.05, 0.1, 0.2, 0.5}.

The third baseline algorithm is LARS which uses η · ‖W l‖2
‖δW l‖2 as the learning rate for layer l. In our

experiment, we use the global learning rate η = 2 for LARS, which achieves best performance from
a pool of {0.1, 1, 2, 5, 10}.
For baseline algorithms, we apply weight decay with coefficient 1e-3 if without specific description.

At last, we present the test accuracy of different VGG nets for classification of CIFAR-10 and CIFAR-
100 in Table 1. We report the median of 3 independent runs of each pair of model and algorithm. For
this group of experiments, we use global learning rate η = 0.1 and weight decay coefficient 5e-3 for
our algorithm. Our algorithm achieves higher test accuracy over its competitors on all four VGG
models with margins.
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Table 1: Classification accuracies for CIFAR-10 and CIFAR-100.

CIFAR10 CIFAR100

VGG11 VGG13 VGG16 VGG19 VGG11 VGG13 VGG16 VGG19

SGD 92.34 93.90 93.72 93.47 71.84 74.07 72.86 71.35
LARS 91.81 93.40 93.47 93.48 67.26 70.35 69.90 69.52
LSALR 92.58 93.68 93.35 93.46 71.14 73.74 73.14 70.76
OURS 92.45 94.11 93.90 93.88 73.39 75.32 74.68 72.82
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