
A Some Clarifications

A.1 Convergence rate of bEM

Dempster et al. [11] showed in their Theorem 4 that the convergence rate of bEM is∥∥∥θ̂E − θ∗∥∥∥2 ≤ (1− λ)−2E
∥∥∥θ̂0 − θ∗∥∥∥2 ,

where 1 − λ is the maximum eigenvalue of ∂R(F (θ∗))/∂θ∗. We define 1 − λ in Sec. 3.3 as the
maximum eigenvalue of ∂F (s∗)/∂s∗. The two definitions are equivalent because at the stationary
point (θ∗, s∗), we have θ∗ = R(s∗) and s∗ = F (θ∗). Note that for two matrices A and B, AB and
BA have the same spectrum. Therefore, ∂F (s∗)/∂s∗ = ∂F (R(s∗))/∂s∗ = (∂F/∂θ∗)(∂R/∂s∗)
has the same spectrum with ∂R(F (θ∗))/∂θ∗ = (∂R/∂s∗)(∂F/∂θ∗), so 1 − λ is the maximum
eigenvalue of both ∂F (s∗)/∂s∗ and ∂R(F (θ∗))/∂θ∗.

Dempster et. al [11] also showed that ∂R(F (θ∗))/∂θ∗ = (I∗ − ∇2L(θ∗))
−1I∗, where I∗ =

−Ep(H|X,θ∗)∇2 log p(H|X, θ∗) � 0 is the Fisher information of p(H|X, θ∗), A � B means A−B
is positive semidefinite, and A � B means A − B is positive definite. If 0 � ∇2L(θ∗), as we
assumed in Theorem 1, then I∗ −∇2L(θ∗) � I∗ � 0, and the eigenvalues of ∂R(F (θ∗))/∂θ∗ are
between [0, 1), so λ > 0.

Finally, the convergence of the sequence of parameters (θ̂t) and sufficient statistics (ŝt) are equivalent
as long as the mappings between them, R(s) and F (θ), are Lipschitz continuous.

A.2 Convergence rate of sEM

Cappe and Moulines [5] showed in their Theorem 2 that the sequence ρ−1/2T (θ̂T − θ∗) converge in

distribution to N (0,Σ(θ∗)), where Σ(θ∗) is irrelevant with ρT . This implies ρ−1T
∥∥∥θ̂T − θ∗∥∥∥2 →

Σ(θ∗), that is
∥∥∥θ̂T − θ∗∥∥∥2 = O(ρT ). Finally, we convert the convergence of (θ̂t) to the convergence

of (ŝt) as mentioned in Sec. A.1.

B Remaining Proof of Theorem 1

Proof. We continue the analysis in Sec. 3.3 of the sequence at+1 ≤ (1 − ερ)at + cρ2a0, where
at = E ‖∆t‖2, ε = λ/4 and c = 8L2

f . We have

aM ≤ (1− ερ)aM−1 + cρ2a0

≤ (1− ερ)Ma0 + cρ2
[
1 + (1− ερ) + · · ·+ (1− ερ)M−1

]
a0

≤ exp(−Mερ)a0 + cρ2
1− (1− ερ)M

ερ
a0

≤
[
exp(−Mερ) +

cρ

ε

]
a0 := AM , (11)

where the third line utilizes the inequality 1 + x ≤ exp(x),∀x ∈ R. Taking derivative of the upper
bound AM w.r.t. ρ, we have

(AM )′ρ =
[
−Mε exp(−Mερ) +

c

ε

]
a0.

Let the derivative be zero, we obtain the optimal upper bound and its corresponding ρ, denoted as ρ∗

ρ∗ = log

(
ε2M

c

)
/(εM), (12)

aM ≤
c

ε2M

(
1 + log

ε2M

c

)
a0. (13)
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Plugging at = E ‖∆t‖2, ε = λ/4 and c = 8L2
f into Eq. (11, 12, 13), we have

E ‖∆M‖2 ≤
[
exp (−Mλρ/4) + 32L2

fρ/λ
]
‖∆0‖2

ρ∗ = 4 log(M/κ2)/(λM) = 4 log
(
λ2M/(128L2

f )
)
/(λM)

E ‖∆M‖2 ≤
[(

1 + log(M/κ2)
)
κ2/M

]
‖∆0‖2 ,

where κ2 = c
ε2 =

128L2
f

λ2 . We can verify that ρ∗ = 4 log
(
λ2M/(128L2

f )
)
/(λM) is less equal than

λ/(32L2
f ), assumed by Theorem 1 because log x < x for all x > 0, where x = λ2M/(128L2

f ).

Finally, because we take ŝE+1,0 = ŝE,M , we get Eq. (6, 7).

C Proof of Theorem 2

We construct an auxiliary function

Q̂e,t(θ) = N
(
η(θ)>ŝe,t −A(θ)

)
,

and its equivalent recursive definition

Q̂e,t+1(θ) = (1− ρ)Q̂e,t(θ) + ρ(Qi(θ; θ̂e,t)−Qi(θ; θ̂e,0) +Q(θ; θ̂e,0)),

Q̂0,0(θ) = Q(θ; θ̂0,0),

where Q(θ; θ̂e,0) is defined in Eq. (1), Qi(θ; θ̂e,0) = Ep(hi|xi,θ̂e,0)[log p(xi, hi; θ)] =

η(θ)>fi(θ̂e,0) − A(θ), and θ̂e,t := argmaxθ Q̂e,t(θ) = R(ŝe,t). This is similar to the original
from of sEM [5] rather than its exponential family form we present in the main text.

According to Assumption (b), log p(xi, hi; θ) is γ-strongly-concave, so Qi(θ; θ̂) =
Ep(hi|xi,θ̂)[log p(xi, hi; θ)] is also γ-strongly-concave with respect to θ. By induction,

Ee,t[Q̂e,t+1(θ)] = (1− ρ)Q̂e,t(θ) + ρQ(θ; θ̂e,t) is also γ-strongly-concave for all e and t.

By the recursive formulation, we have

Q(θ̂e,t+1; θ̂e,0)−Q(θ̂e,t; θ̂e,0) =
1

ρ

(
Q̂e,t+1(θ̂e,t+1)− Q̂e,t+1(θ̂e,t)

)
+

1− ρ
ρ

(
Q̂e,t(θ̂e,t)− Q̂e,t(θ̂e,t+1)

)
+Qi(θe,t; θ̂e,t)−Qi(θe,t+1; θ̂e,t) +Qi(θe,t+1; θ̂e,0)−Qi(θe,t; θ̂e,0).

According to the definition of θ̂e,t, and assuming that the algorithm has not converged, we have

Q̂e,t+1(θ̂e,t+1)− Q̂e,t+1(θ̂e,t) > 0,

Q̂e,t(θ̂e,t)− Q̂e,t(θ̂e,t+1) > 0,

Moreover,

Ee,t[Qi(θ̂e,t; θ̂e,t)−Qi(θ̂e,t+1; θ̂e,t) +Qi(θ̂e,t+1; θ̂e,0)−Qi(θ̂e,t; θ̂e,0)].

=Ee,t[η(θ̂e,t)
>fi(θ̂e,t)− η(θ̂e,t+1)>fi(θ̂e,t) + η(θ̂e,t+1)>fi(θ̂e,0)− η(θ̂e,t)

>fi(θ̂e,0)]

=
(
η(θ̂e,t)− η(θ̂e,t+1)

)> (
F (θ̂e,t)− F (θ̂e,0)

)
.

Therefore,

Ee,t[Q(θ̂e,t+1; θ̂e,0)−Q(θ̂e,t; θ̂e,0)]

>
1

ρ

(
Q̂e,t+1(θ̂e,t+1)− Q̂e,t+1(θ̂e,t)

)
+
(
η(θ̂e,t)− η(θ̂e,t+1)

)> (
F (θ̂e,t)− F (θ̂e,0)

)
≥ γ

2ρ

∥∥∥θ̂e,t+1 − θ̂e,t
∥∥∥2 − LηLf ∥∥∥θ̂e,t − θ̂e,t+1

∥∥∥∥∥∥θ̂e,t − θ̂e,0∥∥∥ , (14)
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where the last line utilizes the γ-strong-concavity of Q̂e,t+1 (recall that ∇Q̂e,t+1(θ̂e,t+1) = 0,
according to the definition of θ̂e,t+1) as well as Lipschitz continuity of η and fi. Summing up
Eq. (14), we have

E[Q(θ̂e,M ; θ̂e,0)−Q(θ̂e,0; θ̂e,0)]

>
γ

2ρ

M−1∑
t=0

∥∥∥θ̂e,t+1 − θ̂e,t
∥∥∥2 − LηLf M−1∑

t=0

∥∥∥θ̂e,t − θ̂e,t+1

∥∥∥∥∥∥θ̂e,t − θ̂e,0∥∥∥
≥ γ

2ρ
∆2
e −M(M − 1)LηLf∆2

e/2,

where ∆e := maxt

∥∥∥θ̂e,t+1 − θ̂e,t
∥∥∥. Therefore, when ρ < γ

M(M−1)LηLf , we have E[Q(θ̂e,M ; θ̂e,0)−

Q(θ̂e,0; θ̂e,0)] > 0 for any θ̂e,0 and θ̂e,M . That is, sEM-vr improves the lower bound of the log
marginal likelihood L in each epoch. Hence sEM-vr can be considered as a generalized EM (GEM)
algorithm [34], which improves the ELBO in every epoch. Applying Wu’s Theorem 1 [34], we
conclude that sEM-vr converges globally to a stationary point.

D Details of Probabilistic Latent Semantic Analysis

In pLSA, we want to model a collection of D documents W = {wd}Dd=1, where each document
wd = {wdn}Ndn=1 is a list of tokens, and each token wdn ∈ {1, . . . , V } is represented by its ID in a
vocabulary of V words. The notations here is different with the main text, but rather similar with the
SCVB0 paper [15].

We define the following generative procedure of the documents:

1. for each topic k ∈ [K], generate φk ∼ Dir(V, β′);
2. for each document d ∈ [D], generate θd ∼ Dir(K,α′);
3. for each position d ∈ [D], n ∈ [Nd], generate zdn ∼ Cat(θd), generate wdn ∼ Cat(φzdn),

where [K] := {1, . . . ,K}, Dir(K,α) is a K-dimensional symmetric Dirichlet distribution with the
concentration parameter α, and Cat(·) is a categorical distribution. This is exactly the same generative
procedure with latent Dirichlet allocation (LDA) [3].

Denote Z, θ and φ to be the collection of zdn, θd and φk, the generative procedure defines a
joint distribution p(W,Z, θ, φ|α′, β′). Our goal is a maximum a posteriori (MAP) estimate of the
parameters (θ, φ).

argmax
θ,φ

log p(θ, φ|W,α′, β′)

= argmax
θ,φ

log
∑
Z

{p(W,Z|θ, φ)p(θ|α′)p(φ|β′)} . (15)

Let α = α′ − 1 and β = β′ − 1, we have

p(W,Z|θ, φ)p(θ|α′)p(φ|β′) ∝
∏
dn

θd,zdnφzdn,wdn
∏
dk

θαdk
∏
kv

φβkv.

=
∏
dk

θCdk+αdk

∏
kv

φCkv+βkv

= exp

{∑
dk

(Cdk + α) log θdk +
∑
kv

(Ckv + β) log φkv

}
, (16)

where Cdk =
∑
n I(zdn = k) and Ckv =

∑
dn I(zdn = k)I(wdn = v), and I(·) is the indicator

function. Eq. (16) is in an exponential family form where (Cdk, Ckv) are the sufficient statistics, and
(log θdk, log φkv) are the natural parameters.

Then,
Q(θ, φ; θ′, φ′) = Ep(Z|W,θ′,φ′) [log p(W,Z|θ, φ)] + log p(θ|α′) + log p(φ|β′) + const.

=
∑
dk

(γdk(θ′, φ′) + α) log θdk +
∑
kv

(γkv(θ
′, φ′) + β) log φkv, (17)
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where const. is a constant term w.r.t. θ and φ,

γdnk(θ, φ) = Ep(zdn|wdn,θ,φ)[I(zdn = k)] = p(zdn = k|wdn, θ, φ) =
θdkφk,wdn∑
k θdkφk,wdn

.

and

γdk(θ, φ) := Ep(Z|W,θ,φ)[Cdk] =
∑
n

γdnk(θ, φ), (18)

γkv(θ, φ) := Ep(Z|W,θ,φ)[Ckv] =
∑
dn

I(wdn = v)γdnk(θ, φ). (19)

D.1 Connection with LDA

The only difference of our pLSA objective Eq. (15) with LDA [3] is whether treating θ as latent
variable or parameter. If θ is marginalized out, we recover the LDA objective

argmax
φ

log p(φ|W,α′, β′)

= argmax
φ

log
∑
Z

∫
θ

{p(W,Z|θ, φ)p(θ|α′)p(φ|β′)} dθ. (20)

Due to their resemblance, a number of LDA training algorithms optimizes the pLSA training
objective Eq. (15) instead of the LDA training objective Eq. (20) for faster convergence, including
CVB0 [2, 30, 18], SCVB0 [15], BP-LDA [9], ESCA [35], and WarpLDA [8]. This approximation
works well in practice [2] when the number of topics is small.

D.2 E-step

In the E-step, we compute the expected sufficient statistics γdk(θ, φ) and γkv(θ, φ) as Eq. (18, 19).

D.3 M-step

In the M-step, we solve the maximization problem

argmax
θ,φ

∑
dk

(γdk + α) log θdk +
∑
kv

(γkv + β) log φkv. (21)

s.t.
∑
k

θdk = 1,∀d ∈ [D],∑
v

φkv = 1,∀k ∈ [K].

The solution is

θdk =
γdk + α∑
k γdk +Kα

, φkv =
γkv + β∑
v γkv + V β

.

D.4 Stochastic EM Updates

According to Sec. 2.2, we can derive an sEM algorithm by replacing the E-step with stochastic
approximation. sEM algorithm for pLSA is known as SCVB0 [15]. SCVB0 optimizes θ and φ
alternatively. To optimize θd for a document d given φ, SCVB0 replaces γdk, the sum over all the
tokens n ∈ [Nd] (Eq. 18), with a stochastic approximation

E step: ŝt+1,d,k = (1− ρt)ŝt,d,k + ρtNdγdnk(θt, φ), n ∼ Uniform(Nd),

M step: θt+1,d,k = (ŝt+1,d,k + α)/(
∑
k

ŝt+1,d,k +Kα),

where ŝt,d,k is an approximation of the batch sufficient statistics γdk, and θt,d,k is the estimated
parameter at iteration t.
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Algorithm 1 Batch E-step for PLSA.
Require: θ, φ,W
∀d, k, γdk ← 0
∀k, v, γkv ← 0
for each document d do

for each token wdn do
∀k, γdnk = θdkφk,wdn/(

∑
k θdkφk,wdn)

∀k, γdk ← γdk + γdnk, γk,wdn ← γk,wdn + γdnk
end for

end for
Return γdk, γkv .

Algorithm 2 SCVB0 algorithm for PLSA.
Require: Initial θ, φ
ŝd,k, ŝk,v ← BatchEStep(θ, φ,W ) (Alg. 1)
for each minibatch of M documents do

Compute the step size ρ
(Update θ)
for each document d do

for each token wdn do
Compute ∀k, γdnk = θdkφk,wdn/(

∑
k θdkφk,wdn),

E-step: ∀k, ŝd,k ← (1− ρ)ŝd,k + ρNdγdnk
M-step: ∀k, θdk ← (ŝd,k + α)/(Nd +Kα).

end for
end for
(Update φ)
∀k, v, ŝkv ← (1− ρ)ŝkv
for each document d do

for each token wdn do
Compute ∀k, γdnk = θdkφk,wdn/(

∑
k θdkφk,wdn),

E-step: ∀k, ŝk,wdn ← ŝk,wdn + ρ DM γdnk
end for

end for
M-step: ∀k, v, φkv ← (ŝkv + β)/(

∑
v ŝkv + V β).

end for

To optimize φ given θ, SCVB0 randomly sample a minibatch D = {d1, . . . , dM} of M documents,
and approximate the sum over the entire corpus, γkv , with ŝt,k,v

E step: ŝt+1,k,v = (1− ρt)ŝt,k,v + ρt
D

M

∑
d∈D

∑
n

I(wdn = v)γdnk(θ, φt),

M step: φt+1,k,v = (ŝt+1,k,v + β)/(
∑
v

ŝt+1,k,v + V β),

where φt is the estimated φ at iteration t. See Alg. 2 for a pseudocode.

D.5 Stochastic EM with Variance Reduction

At each epoch e, sEM-vr computes the full-batch sufficient statistics γdk(θe,0, φe,0) and
γkv(θe,0, φe,0) according to Eq. (18, 19), and performs the following E-step updates:

ŝe,t+1,d,k = (1− ρ)ŝe,t,d,k + ρ (Ndγdnk(θe,t, φe,t)−Ndγdnk(θe,0, φe,0) + γdk(θe,0, φe,0)) ,

ŝe,t+1,k,v = (1− ρ)ŝe,t,k,v + ρ

(
D

M

∑
d∈D

∑
n

I(wdn = v) (γdnk(θe,t, φe,t)− γdnk(θe,0, φe,0)) + γkv(θe,0, φe,0)

)
,

see Alg. 3 for the pseudocode.
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Algorithm 3 sEM-vr for PLSA.
Require: Initial θ, φ
ŝd,k, ŝk,v ← BatchEStep(θ, φ,W ) (Alg. 1)
for each epoch e do

Store ∀d, k, θ̃d,k ← θ̂d,k, ∀k, v, φ̃k,v ← φ̂k,v
s̃d,k, s̃k,v ← BatchEStep(θ, φ,W ) (Alg. 1)
for each minibatch of M documents do

(Update θ)
for each document d do

for each token wdn do
Compute ∀k, γdnk = θdkφk,wdn/(

∑
k θdkφk,wdn),

Compute ∀k, γ̃dnk = θ̃dkφ̃k,wdn/(
∑
k θ̃dkφ̃k,wdn),

E-step: ∀k, ŝd,k ← (1− ρ)ŝd,k + ρ(Ndγdnk −Ndγ̃dnk + γ̃dk)
M-step: θd ← Proj(ŝd, α,K).

end for
end for
(Update φ)
∀k, v, ŝkv ← (1− ρ)ŝkv + ργ̃kv
for each document d do

for each token wdn do
Compute ∀k, γdnk = θdkφk,wdn/(

∑
k θdkφk,wdn),

Compute ∀k, γ̃dnk = θ̃dkφ̃k,wdn/(
∑
k θ̃dkφ̃k,wdn),

E-step: ∀k, ŝk,wdn ← ŝk,wdn + ρ( DM γdnk − D
M γ̃dnk)

end for
end for
M-step: φk ← Proj(ŝk, β, V ).

end for
end for

A subtlety here is ŝe,t,d,k and ŝe,t,k,v can be negative, so we need additional constraints to ensure
that θdk and φkv are non-negative. We solve the following problem in M-step instead of Eq. (21).

argmax
θ,φ

∑
dk

(γdk + α) log θdk +
∑
kv

(γkv + β) log φkv.

s.t.
∑
k

θdk = 1,∀d ∈ [D],∑
v

φkv = 1,∀k ∈ [K].

θdk > ε,∀d ∈ [D], k ∈ [K]

φkv > ε,∀k ∈ [K], v ∈ [V ],

where ε > 0 is a threshold to avoid numerical problems. We adopt ε = 10−10 in all our experiments.
The solution is

θd = Proj(γd, α,K), φk = Proj(γk, β, V ),

where

Proj(γd, α,K)k = ε+ (1−Kε)[γdk + α]+/
∑
k

[γdk + α]+, [a]+ := max{a, 0}.

D.6 Gradient-based Updates

Instead of performing exact maximization of the ELBO in the M-step, we can also do a stochastic
gradient step. However, as the parameters θd and φk are on probabilistic simplex, i.e., θdk > 0,∑
k θdk = 1, φkv > 0 and

∑
v φkv = 0, standard stochastic gradient descent (SGD) for unconstrained

minimization is not applicable. We implement two algorithms, stochastic mirror descent (SMD) [9]
and reparameterized SGD (RSGD), for minimizing on the simplex.
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SMD update parameters by θdk ∝ θdk exp(ρ∇θdkQ) and φkv ∝ φkv exp(ρ∇φkvQ), where Q is the
ELBO defined as Eq. (17). The updates are

θdk ∝ θdk exp (ρ(Ndγdnk + α)/θdk) ,

φkv ∝ φkv exp

[
ρ

(
β +

D

M

∑
d∈D

∑
n

I(wdn = v)γdnk

)
/φkv

]
.

RSGD applies the reparametrization

θdk =
expλdk∑
k expλdk

, φkv =
exp τkv∑
v exp τkv

,

and optimizes the reparameterized ELBO

Q(λ, τ ; θ, φ) =
∑
dk

(γdk(θ, φ) + α)λdk −
∑
d

(Nd +Kα) log

(∑
k

expλdk

)

+
∑
kv

(γkv(θ, φ) + β) τkv −
∑
k

(∑
v

γkv(θ, φ) + V β

)
log

(∑
v

exp τkv

)
.

The updates are

λdk ← λdk + ρ [Ndγdnk + α− (Nd +Kα)θdk] , (22)

τkv ← τkv + ρ

[
γ̂kv + β − (

∑
v

γ̂kv + V β)φkv

]
,

where γ̂kv = D
M

∑
d∈D

∑
n I(wdn = v)γdnk.

We also implement SVRG-based [19] variance reduction for SMD and RSGD, denoting their variance-
reduced version as SMD-vr and RSGD-vr. We compare SMD and RSGD with sEM in Fig. 3 for PLSA.
The gradient based algorithms converges slower than SEM, which has an exact M-step. Moreover,
SMD and RSGD almost make no progress on the large Wiki and PubMed datasets, because of the
bad scaling of the gradient. Take RSGD (Eq. 22) as an example, the gradient is proportional with
the document length Nd. The document length can vary greatly, from less than ten to thousands.
Therefore, the parameters for long documents changes faster than short documents due to the larger
gradient. If the learning rate is large, the gradients of long documents can be so large that the update
is not stable. Therefore, the learning rate is limited by the length of the longest document, and all the
other shorter documents will converge slowly. In contrast, sEM updates do not have this problem
because all the documents forgets the past sufficient statistics at the same rate. SMD and RSGD can
be improved with better tuning of the learning rate, such as line search and adaptive learning rates [9].
However this significantly complicates the implementation, and how to apply variance reduction to
these algorithms are unclear.
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Figure 3: PLSA convergence experiments.
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