
A Convergence Analysis for FastRNN

Algorithm 1: Randomized Stochastic Gradient
Input: Initial point θ1, iteration limit M, step sizes γk≥1, Probability mass function PR(·)

supported on {1, 2, . . . ,M}
Initialize: R be a random variable with probability mass function PR
for m = 1, . . . , R do

Obtain sample of stochastic gradient∇Lt(θt)
θt ← θt−1 − γt∇Lt(θt)

Output: θR

Let θ = (W,U,v) represent the set of parameters of the scalar gated recurrent neural network.
In order to prove the convergence properties of Randomized Stochastic Gradient (see Algorithm
1) as in [15], we first obtain a bound on the Lipschitz constant of the loss function L(X, y; θ) :=
log(1 + exp (−y · v>hT )) where hT is the output of FastRNN after T time steps given input X.

The gradient ∇θL of the loss function is given by ( ∂L∂W , ∂L∂U ,
∂L
∂v ) wherein

∂L

∂U
= α

T∑
t=0

Dt

(
T−1∏
k=t

(αU>Dk+1 + βI)

)
(∇hTL)h>t−1 (9)

∂L

∂W
= α

T∑
t=0

Dt

(
T−1∏
k=t

(αU>Dk+1 + βI)

)
(∇hTL)x>t (10)

∂L

∂v
=
−y exp (−y · v>hT )

1 + exp (−y · v>hT )
hT , (11)

where∇hT
L = −c(θ)y · v, with c(θ) = 1

1+exp (y·v>hT )
. We do a perturbation analysis and obtain a

bound on ‖∇θL(θ)−∇θL(θ + δ)‖2 where δ = (δW, δU, δv).

Deviation bound for hT : In this subsection, we consider bounding the term ‖hT (θ+ δ)− hT (θ)‖2
evaluated on the same input X. Note that for FastRNN, hT = αh̃T + βhT−1. For notational
convenience, we use h′T = hT (θ + δ) and hT = hT (θ).

‖h′T − hT ‖2 ≤ β‖h′T−1 − hT−1‖2 + α‖σ(WxT + UhT−1)− σ((W + δW)xT + (U + δU)h′T−1)‖2
ζ1
≤ β‖h′T−1 − hT−1‖2 + α‖UhT−1 − δWxT −Uh′T−1 − δUh′T−1‖2

≤ (α‖U‖2 + β)‖h′T−1 − hT−1‖2 + α(
√
D̂ · ‖δU‖2 + ‖δW‖2Rx)

...

≤ α(
√
D̂ · ‖δU‖2 + ‖δW‖2Rx)

(
1 + (α‖U‖2 + β) + . . .+ (α‖U‖2 + β)T−1

)
ζ2
≤ α(

√
D̂ · ‖δU‖2 + ‖δW‖2Rx)

(α(‖U‖2 − 1) + 1)T − 1

α(‖U‖2 − 1)
≤ 2α(

√
D̂ · ‖δU‖2 + ‖δW‖2Rx) · T

≤ 2
√
D̂ · ‖δU‖2 + 2‖δW‖2Rx

|‖U‖2 − 1| , (12)

where ζ1 follows by using 1-lipschitz property of the sigmoid function and ζ2 follows by setting
α = O( 1

T ·|‖U‖2−1| ) and β = 1− α.

Deviation bound for c(θ): In this subsection, we consider bounding the deviation c(θ)− c(θ + δ).

|c(θ)− c(θ + δ)| ≤ |v>hT − (v + δ>v )h′T |

≤ |v>(hT − h′T )|+ ‖δv‖2‖ht‖2
≤ ‖v‖2‖hT − h′T ‖2 + ‖δv‖2‖ht‖2

≤ Rv‖hT − h′T ‖2 +
√
D̂‖δv‖2. (13)

13



Deviation bound for ∂L
∂v : In this subsection we consider the bounds on ‖∂L∂v (θ)− ∂L

∂v (θ + δ)‖2.∥∥∥∥∂L∂v (θ)− ∂L

∂v
(θ + δ)

∥∥∥∥
2

=

∥∥∥∥ hT
1 + exp (yv>hT )

− h′T
1 + exp (y(v + δv)>h′T )

∥∥∥∥
2

=
∥∥c(θ)hT − c(θ + δ)h′T )

∥∥
2

= ‖(c(θ)− c(θ + δ)) · hT + c(θ + δ) · (hT − h′T )‖2

≤
√
D̂ · |c(θ)− c(θ + δ)|+ ‖hT − h′T ‖2

≤
(√

D̂Rv + 1
)
· ‖hT − h′T ‖2 + D̂‖δv‖2. (14)

Deviation bound for ∂L
∂W : In this subsection, we analyze ‖ ∂L∂W (θ) − ∂L

∂W (θ + δ)‖2. Let D =

supk,θ ‖Dθ
k‖.∥∥∥∥ ∂L∂W (θ)− ∂L

∂W
(θ + δ)

∥∥∥∥
F

= αRx

∥∥∥∥∥
T∑
t=0

[(
c(θ)Dθ

t

T−1∏
k=t

(αU>Dθ
k+1 + βI)

)
v −

(
c(θ + δ)Dθ+δ

t

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

)
(v + δv)

]∥∥∥∥∥
2

.

(15)

Let us define matrices Aθt := Dθ
t

∏T−1
k=t (αU>Dθ

k+1 + βI) and similarly Aθ+δt :=

Dθ+δ
t

∏T−1
k=t (α(U + δU)>Dθ+δ

k+1 + βI). Using this, we have,∥∥∥∥ ∂L∂W (θ)− ∂L

∂W
(θ + δ)

∥∥∥∥
F

= αRx

∥∥∥∥∥
T∑
t=0

[
c(θ) · Aθtv − c(θ + δ) · Aθ+δt (v + δv)

]∥∥∥∥∥
2

≤ αRx

(
|c(θ)− c(θ + δ)| ·

∥∥∥∥∥
T∑
t=0

Aθtv

∥∥∥∥∥
2

+

∥∥∥∥∥
T∑
t=0

Aθtv −Aθ+δt (v + δv)

∥∥∥∥∥
2

)

≤ αRx

(
|c(θ)− c(θ + δ)| ·

∥∥∥∥∥
T∑
t=0

Aθtv

∥∥∥∥∥
2

+

∥∥∥∥∥
T∑
t=0

(Aθt −Aθ+δt )v

∥∥∥∥∥
2

+

∥∥∥∥∥
T∑
t=0

Aθ+δt δv

∥∥∥∥∥
2

)

≤ αRx

(
|c(θ)− c(θ + δ)| ·Rv

∥∥∥∥∥
T∑
t=0

Aθt

∥∥∥∥∥
2

+Rv

∥∥∥∥∥
T∑
t=0

Aθt −Aθ+δt

∥∥∥∥∥
2

+ ‖δv‖2

∥∥∥∥∥
T∑
t=0

Aθ+δt

∥∥∥∥∥
2

)
. (16)

We will proceed by bounding the first term in the above equation. Consider,∥∥∥∥∥
T∑
t=0

Aθt

∥∥∥∥∥
2

≤ D
T∑
t=0

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)

∥∥∥∥∥
2

≤ D
T∑
t=0

(αD · ‖U‖2 + β)T−t

≤ D|(αD · ‖U‖2 + β)T+1 − 1|
|αD · ‖U‖2 + β − 1|

ζ1
≤ D (1 + α · (D‖U‖2 − 1))T+1 − 1

α|D‖U‖2 − 1|
ζ2
≤ 2D · (T + 1), (17)

where ζ1 follows by setting β = 1− α and ζ2 follows by using the inequality (1 + x)r ≤ 1 + 2rx
for (r − 1)x ≤ 1/2 and the fact that α ≤ 1

4T ·|D‖U‖2−1| . Note that the third term in Equation (17)
can be bounded in a similar way as above by 2D · (T + 1) using α ≤ 1

4T ·RU
. We now proceed to

14



bound the second term. Consider the following for any fixed value of t,∥∥∥Aθt −Aθ+δt

∥∥∥
2

=

∥∥∥∥∥Dθ
t

T−1∏
k=t

(αU>Dθ
k+1 + βI)−Dθ+δ

t

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2

≤

∥∥∥∥∥(Dθ
t −Dθ+δ

t )

T−1∏
k=t

(αU>Dθ
k+1 + βI)

∥∥∥∥∥
2

+D

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)−

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2

≤
∥∥∥Dθ

t −Dθ+δ
t

∥∥∥
2
·

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)

∥∥∥∥∥
2

+D

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)−

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2

≤
∥∥∥Dθ

t −Dθ+δ
t

∥∥∥
2
· (α‖U‖2D + β)T−t +D

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)−

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2︸ ︷︷ ︸

(I)

.

Let ∆θ
k := Dθ

k −Dθ+δ
k . We will later show that

∥∥∆θ
k

∥∥
2
≤ ∆θ independent of the value of k. We

focus on term (I) in the expression above:∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)−

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2

≤

∥∥∥∥∥
T−1∏
k=t

(αU>Dθ+δ
k+1 + βI + αU>∆θ

k+1)−
T−1∏
k=t

(αU>Dθ+δ
k+1 + βI + αδ>UDθ+δ

k+1)

∥∥∥∥∥
2

. (18)

Let Bk := αU>Dθ+δ
k + βI, Ck := αU>∆θ

k+1 and Gk := αδ>UDθ+δ
k+1. Note that we have the

following bounds on the operator norms of these matrices:
‖Bk‖2 ≤ αD·‖U‖2 +β = Bmax, ‖Ck‖2 ≤ α∆θ ·‖U‖2 = Cmax, ‖Gk‖ ≤ αD·‖δU‖2 = Gmax.

(19)
By our assumptions on α, Bk is invertible and I + BkCkB−1

k , I + BkGkB−1
k are diagonizable.

Moreover, ‖B−1
k ‖ ≤ 2αD · ‖U‖2 + β = B−1

max.

Hence, we can rewrite Equation (18) as,∥∥∥∥∥
T−1∏
k=t

(αU>Dθ
k+1 + βI)−

T−1∏
k=t

(α(U + δU)>Dθ+δ
k+1 + βI)

∥∥∥∥∥
2

≤

∥∥∥∥∥
T−1∏
k=t

(Bk + Ck)−
T−1∏
k=t

(Bk + Gk)

∥∥∥∥∥
≤ 4‖Bt‖ ·

∥∥∥∥∥
T−1∏
k=t

(
I + B−1

t CkBt+1

)
−
T−1∏
k=t

(
I + B−1

t GkBt+1

)∥∥∥∥∥
≤ 4‖Bt‖ ·

(
(1 + Bmax · Cmax · B−1

max)T−t − 1 + (1 + Bmax · Gmax · B−1
max)T−t − 1

)
, (20)

where BT := I and the last equation follows from the following fact: ‖
∏T
k=1(I + Ck) − I‖ ≤

(maxk ‖Ck‖+ 1)T − 1.

Combining the above term with Equation (16):∥∥∥∥∥
T∑
t=0

Aθt −Aθ+δt

∥∥∥∥∥
2

≤
T∑
t=0

∥∥∥Aθt −Aθ+δt

∥∥∥
2

≤ ∆θ ·
T∑
t=0

(αD · ‖U‖2 + β)T−t +D · B−1
max · Bmax

·
T∑
t=0

(
(1 + Bmax · Cmax · B−1

max)T−t − 1 + (1 + Bmax · Gmax · B−1
max)T−t − 1

)
≤ ∆θ ·

T∑
t=0

(αD · ‖U‖2 + β)T−t + 2D · (B−1
max)3 · (Bmax)3 · T 2 · ((Cmax)2 + (Gmax)2)

ζ1
≤ 2∆θ · (T + 1) + 2D · (B−1

max)3 · (Bmax)3 · T 2 · ((Cmax)2 + (Gmax)2), (21)

15



where ζ1 follows by summing the geometric series and using the fact that α ≤ 1
4T ·|D‖U‖2−1| .

Using the definition of Dθ
k = diag(σ′(Wxk + Uhk−1)) from Section 3 of the paper, we obtain a

bound on ∆θ
k.∥∥∥Dθ

k −Dθ+δ
k

∥∥∥
2
≤ 2

(
Rx · ‖δW‖2 +

√
D̂ · ‖δU‖2 +RU · ‖hk−1 − h′k−1‖2

)
ζ1
≤ 2

(
Rx · ‖δW‖2 +

√
D̂ · ‖δU‖2 +RU ·

2
√
D̂ · ‖δU‖2 + 2‖δW‖2Rx

|‖U‖2 − 1|

)
, (22)

where ζ1 follows from using the bound from Equation (12). Combining bounds obtained in Equations
(16), (17), (21) and (22), we obtain that,∥∥∥∥ ∂L∂W (θ)− ∂L

∂W
(θ + δ)

∥∥∥∥
F

≤ O(αT ) · ‖δ‖F , for

α ≤ min

(
1

4T · |D‖U‖2 − 1| ,
1

4T ·RU
,

1

2T ·∆θ‖U‖2
,

1

T · |‖U‖2 − 1|

)
where the O notation hides polynomial dependence of the Lipschitz smoothness constant of L on
RW, RU, Rv, Rx, ‖U‖2, ‖W‖2 and the ambient dimensions D, D̂.

Deviation bound for ∂L
∂U : Following similar arguments as we did above for ∂L

∂W , we can derive the
perturbation bound for the term ∂L

∂U as∥∥∥∥ ∂L∂U
(θ)− ∂L

∂U
(θ + δ)

∥∥∥∥
F

= O(αT ) · ‖δ‖F (23)

where the O notation is the same as above.

Using our bounds in corollary 2.2 of [15], we obtain the following convergence theorem.

Theorem 3.1 (Convergence Bound). Let [(X1, y1), . . . , (Xn, yn)] be the given labeled sequential
training data. Let L(θ) = 1

n

∑
i L(Xi, yi; θ) be the loss function with θ = (W,U,v) be the

parameters of FastRNN architecture (2) with β = 1− α and α such that

α ≤ min

(
1

4T · |D‖U‖2 − 1|
,

1

4T ·RU
,

1

2T ·∆θ‖U‖2
,

1

T · |‖U‖2 − 1|

)
,

where D = supθ,k ‖Dθ
k‖2. Then, randomized stochastic gradient descent [15], a minor variation of

SGD, when applied to the data for a maximum of M iteration outputs a solution θ̂ such that:

E[‖∇θL(θ̂)‖22‖] ≤ BM :=
O(αT )L(θ0)

M
+

(
D̄ +

4RWRURv

D̄

)
O(αT )√

M
,

where RX = maxX ‖X‖F for X = {U,W,v}, L(θ0) is the loss of the initial classifier, and the

step-size of the k-th SGD iteration is fixed as: γk = min
{

1
O(αT ) ,

D̄
T
√
M

}
, k ∈ [M ], D̄ ≥ 0.

A.1 Generalization Bound for FastRNN

In this subsection, we compute the Rademacher complexity of the class of real valued scalar gated
recurrent neural networks such that ‖U‖F ≤ RU, ‖W‖F ≤ RW. Also the input xt at time step t is
assumed to be point-wise bounded ‖xt‖2 ≤ Rx The update equation of FastRNN is given by

ht = ασ(Wxt + Uht−1) + βht−1.

For the purpose of this section, we use the shorthand hit to denote the hidden vector at time t
corresponding to the ith data point Xi. We denote the Rademacher complexity of a T layer FastRNN

16



byRn(FT ) evaluated using n data points.

nRn(FT ) = Eε

[
sup
W,U

∥∥∥∥∥
n∑
i=1

εih
i
T

∥∥∥∥∥
]

= Eε

[
sup
W,U

∥∥∥∥∥
n∑
i=1

εi
(
ασ(WxiT + UhiT−1) + βhiT−1

)∥∥∥∥∥
]

ζ1
≤ Eε

[
sup
W,U

β

∥∥∥∥∥
n∑
i=1

εih
i
T−1

∥∥∥∥∥
]

+ Eε

[
sup
W,U

α

∥∥∥∥∥
n∑
i=1

εi(σ(WxiT + UhiT−1))

∥∥∥∥∥
]

ζ2
≤ βRn(FT−1) + 2Eε

[
sup
W,U

α

∥∥∥∥∥
n∑
i=1

εi(WxiT + UhiT−1)

∥∥∥∥∥
]

ζ3
≤ βRn(FT−1) + 2αEε

[
sup
W

∥∥∥∥∥
n∑
i=1

εiWxiT

∥∥∥∥∥
]

+ 2αEε

[
sup
W,U

∥∥∥∥∥
n∑
i=1

εiUhiT−1)

∥∥∥∥∥
]

ζ4
≤ βRn(FT−1) + 2αRWEε

[∥∥∥∥∥
n∑
i=1

εix
i
T

∥∥∥∥∥
]

+ 2αRUEε

[
sup
W,U

∥∥∥∥∥
n∑
i=1

εih
i
T−1)

∥∥∥∥∥
]

≤ (β + 2αRU)Rn(FT−1) + 2αRWRX

√
n

≤ (β + 2αRU)2Rn(FT−2) + 2αRWRX

√
n(1 + (β + 2αRU))

...

≤ 2αRWRX

T−1∑
t=0

(β + 2αRU)
T−t√

n

≤ 2αRWRX

(
(β + 2αRU)

T+1 − 1

(β + 2αRU)− 1

)
√
n

≤ 2αRWRX

(
(1 + α(2RU − 1))

T+1 − 1

α(2RU − 1)

)
√
n

ζ5
≤ 2RWRX

(
2α(2RU − 1)(T + 1)

(2RU − 1)

)√
n,

where ζ1, ζ3 follows by triangle inequality and noting that the terms in the sum of expectation are
pointwise bigger than the previous term, ζ2 follows from the Ledoux-Talagrand contraction, ζ4
follows using an argument similar from Lemma 1 in [16] and ζ5 holds for α ≤ 1

2(2RU−1)T .

Theorem 3.2 (Generalization Error Bound). [6] Let Y, Ŷ ⊆ [0, 1] and let FT denote the class
of FastRNN with ‖U‖F ≤ RU, ‖W‖F ≤ RW. Let the final classifier be given by σ(v>hT ),
‖v‖2 ≤ Rv . Let L : Y × Ŷ → [0, B] be any 1-Lipschitz loss function. Let D be any distribution on
X × Y such that ‖xit‖2 ≤ Rx a.s. Let 0 ≤ δ ≤ 1. For all β = 1− α and alpha such that,

α ≤ min

(
1

4T · |D‖U‖2 − 1|
,

1

4T ·RU
,

1

T · |‖U‖2 − 1|

)
.

where D = supθ,k ‖Dθ
k‖2, we have that with probability at least 1 − δ, all functions f ∈ v ◦ FT

satisfy,

ED[L(f(X), y)] ≤ 1

n

n∑
i=1

L(f(Xi), yi) + CO(αT )√
n

+B

√
ln( 1

δ )

n
,

where C = RWRURxRv represents the boundedness of the parameter matrices and the data.

The Rademacher complexity bounds for the function class FT have been instantiated from the
calculations above.

17



B Dataset Information

Google-12 & Google-30: Google Speech Commands dataset contains 1 second long utterances of
30 short words (30 classes) sampled at 16KHz. Standard log Mel-filter-bank featurization with 32
filters over a window size of 25ms and stride of 10ms gave 99 timesteps of 32 filter responses for
a 1-second audio clip. For the 12 class version, 10 classes used in Kaggle’s Tensorflow Speech
Recognition challenge1 were used and remaining two classes were noise and background sounds
(taken randomly from remaining 20 short word utterances). Both the datasets were zero mean - unit
variance normalized during training and prediction.

Wakeword-2: Wakeword-2 consists of 1.63 second long utterances sampled at 16KHz. This dataset
was featurized in the same way as the Google Speech Commands dataset and led to 162 timesteps
of 32 filter responses. The dataset was zero mean - unit variance normalized during training and
prediction.

HAR-22: Human Activity Recognition (HAR) dataset was collected from an accelerometer and
gyroscope on a Samsung Galaxy S3 smartphone. The features available on the repository were
directly used for experiments. The 6 activities were merged to get the binarized version. The classes
{Sitting, Laying, Walking_Upstairs} and {Standing, Walking, Walking_Downstairs} were merged to
obtain the two classes. The dataset was zero mean - unit variance normalized during training and
prediction.

DSA-193: This dataset is based on Daily and Sports Activity (DSA) detection from a resource-
constrained IoT wearable device with 5 Xsens MTx sensors having accelerometers, gyroscopes and
magnetometers on the torso and four limbs. The features available on the repository were used for
experiments. The dataset was zero mean - unit variance normalized during training and prediction.

Yelp-5: Sentiment Classification dataset based on the text reviews4. The data consists of 500,000
train points and 500,000 test points from the first 1 million reviews. Each review was clipped or
padded to be 300 words long. The vocabulary consisted of 20000 words and 128 dimensional word
embeddings were jointly trained with the network.

Penn Treebank: 300 length word sequences were used for word level language modeling task using
Penn Treebank (PTB) corpus. The vocabulary consisted of 10,000 words and the size of trainable
word embeddings was kept the same as the number of hidden units of architecture.

Pixel-MNIST-10: Pixel-by-pixel version of the standard MNIST-10 dataset 5.The dataset was zero
mean - unit variance normalized during training and prediction.

AmazonCat-13K [34, 8]: AmazonCat-13K is an extreme multi-label classification dataset with
13,330 labels. The raw text from title and content for Amazon products was provided as an input with
each product being assigned to multiple categories. The input text was clipped or padded to ensure
that it was 500 words long with a vocabulary of size 267,134. The 50 dimensional trainable word
embeddings were initialized with GloVe vectors trained on Wikipedia.

Evaluation on Multilabel Dataset

The models were trained on the AmazonCat-13K dataset using Adam optimizer with a learning
rate of 0.009 and batch size of 128. Binary Cross Entropy loss was used where the output of each
neuron corresponds to the probability of a label being positive. 128 hidden units were chosen across
architectures and were trained using PyTorch framework.

The results in Table 6 show that FastGRNN-LSQ achieves classification performance similar to
state-of-the-art gated architectures (GRU, LSTM) while still having 2-3x lower memory footprint.
Note that the model size reported doesn’t include the embeddings and the final linear classifier
which are memory intensive when compared to the model itself. FastRNN, as shown in the earlier

1https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+

smartphones
3https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
4https://www.yelp.com/dataset/challenge
5http://yann.lecun.com/exdb/mnist/

18

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
https://www.yelp.com/dataset/challenge
http://yann.lecun.com/exdb/mnist/


Table 6: Extreme Multi Label Classification
Dataset AmazonCat - 13K

P@1 P@2 P@3 P@4 P@5 Model Size -
RNN (KB)

GRU 92.82 85.18 77.09 69.42 61.85 268
RNN 40.24 28.13 22.83 20.29 18.25 89.5
FastGRNN-LSQ 92.66 84.67 76.19 66.67 60.63 90.0
FastRNN 91.03 81.75 72.37 64.13 56.81 89.5
UGRNN 92.84 84.93 76.33 68.27 60.63 179

experiments, stabilizes standard RNN and achieves an improvement of over 50% in classification
accuracy (P@1).

C Supplementary Experiments

Accuracy vs Model Size: This paper evaluates the trade-off between model size (in the range
0-128Kb) and accuracy across various architectures.

Model Size (KB)

0 20 40 60 80 100 120

A
c

c
u

ra
c

y

80

85

90

95
Google-12 - Accuracy vs Model Size

FastGRNN

FastGRNN - LSQ

SpectralRNN

UGRNN

GRU

LSTM

Figure 3: Accuracy vs Model Size

Model Size (KB)

0 20 40 60 80 100 120

A
c

c
u

ra
c

y

75

80

85

90

95
Google-30 - Accuracy vs Model Size

FastGRNN

FastGRNN - LSQ

SpectralRNN

UGRNN

GRU

LSTM

Figure 4: Accuracy vs Model Size

Figures 3, 4 show the plots for analyzing the model-size vs accuracy trade-off for FastGRNN,
FastGRNN-LSQ along with leading unitary method SpectralRNN and the gated methods like
UGRNN, GRU, and LSTM. FastGRNN is able to achieve state-of-the-art accuracies on Google-12
and Google-30 datasets at significantly lower model sizes as compared to other baseline methods.

Bias due to the initial hidden states: In order to understand the bias induced at the output by the
initial hidden state h0, we evaluated a trained FastRNN classifier on the Google-12 dataset with 3
different initializations sampled from a standard normal distribution. The resulting accuracies had
a mean value of 92.08 with a standard deviation of 0.09, indicating that the initial state does not
induce a bias in FastRNN prediction in the learning setting. In the non-learning setting, the initial

19



state can bias the final solution for very small values of α. Indeed, setting α = 0 and β = 1 will
bias the final output to the initial state. However, as Figure 5indicates, such an effect is observed
only for extremely small values of α ∈ (0, 0.005). In addition, there is a large enough range for
α ∈ (0.005, 0.08) where the final output of FastRNN is not biased and is easily learnt by FastRNN.

0.005 0.02 0.04 0.06 0.08 0.1 0.12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c

c
u

ra
c

y

Google-30

Google-12

Figure 5: Accuracy vs α in non-learning setting where the parameters of the classifier was learnt and
evaluated for a range of fixed α values (using 99 timesteps).

α and β of FastRNN: α and β are the trainable weights of the residual connection in FastRNN.
Section 3.1.1 shows that FastRNN has provably stable training for the setting of α/β = O(1/T ).
Table 7 shows the learnt values of α and β for various timesteps (T ) across 3 datasets.

Table 7: Scaling of α and β vs Timesteps for FastRNN with tanh non-linearity: With α set as a
trainable parameter, it scales as O(1/T ) with the number of timesteps as suggested by Theorem 3.1.

Google-12 HAR-2 MNIST-10

Timesteps α β Timesteps α β Timesteps α β

99 0.0654 0.9531 128 0.0643 0.9652 112 0.0617 0.9447
33 0.2042 0.8898 64 0.1170 0.9505 56 0.1193 0.9266
11 0.5319 0.7885 32 0.1641 0.9606 28 0.2338 0.8746

9 0.5996 0.7926 16 0.2505 0.9718 14 0.3850 0.8251
3 0.6878 0.8246 8 0.3618 0.9678 7 0.5587 0.8935

D Compression Components of FastGRNN

The Compression aspect of FastGRNN has 3 major components: 1) Low-rank parameterization (L) 2)
Sparsity (S) and 3) Byte Quantization (Q). The general trend observed across dataset is that low-rank
parameterization increase classification accuracies while the sparsity and quantization help reduced
the model sizes by 2x and 4x respectively across datasets.

Tables 8, 9 and 10 show the trend when each of the component is gradually removed from FastGRNN
to get to FastGRNN-LSQ. Note that the hyperparameters have been re-tuned along with the relevant
constraints to obtain each model in the table. Figure 6 shows the effect of each of LSQ components
for two Google datasets.

E Hyperparameters of FastGRNN for reproducibility:

Table 11 lists the hyperparameters which were used to run the experiments with a random-seed
of 42 on a P40 GPU card with CUDA 9.0 and CuDNN 7.1. One can use the Piece-wise linear
approximations of tanh or sigmoid if they wish to quantize the weights.

F Timing Experiments on more IoT boards

Table 12 summarizes the timing results on the Raspberry Pi which has a more powerful processor as
compared with Arduino Due. Note that the Raspberry Pi has special instructions for floating point

20



Table 8: Components of Compression
Dataset FastGRNN FastGRNN-Q FastGRNN-SQ FastGRNN-LSQ

Accuracy
(%)

Model
Size (KB)

Accuracy
(%)

Model
Size (KB)

Accuracy
(%)

Model
Size (KB)

Accuracy
(%)

Model
Size (KB)

Google-12 92.10 5.50 92.60 22 93.76 41 93.18 57
Google-30 90.78 6.25 91.18 25 91.99 38 92.03 45
HAR-2 95.59 3.00 96.37 17 96.81 28 95.38 29
DSA-19 83.73 3.25 83.93 13 85.67 22 85.00 208
Yelp-5 59.43 8.00 59.61 30 60.52 130 59.51 130
Pixel-MNIST-10 98.20 6.00 98.58 25 98.72 37 98.72 71

Table 9: Components of Compression for Wakeword-2

Dataset FastGRNN FastGRNN-Q FastGRNN-SQ FastGRNN-LSQ

F1
Score

Model
Size (KB)

F1
Score

Model
Size (KB)

F1
Score

Model
Size (KB)

F1
Score

Model
Size (KB)

Wakeword-2 97.83 1 98.07 4 98.27 8 98.19 8

Table 10: Components of Compression for PTB
Dataset FastGRNN FastGRNN-Q FastGRNN-SQ FastGRNN-LSQ

Test
Perplexity

Model
Size (KB)

Test
Perplexity

Model
Size (KB)

Test
Perplexity

Model
Size (KB)

Test
Perplexity

Model
Size (KB)

PTB-10000 116.11 38.5 115.71 154 115.23 384 115.92 513

0 10 20 30 40 50 60

Model Size (KB)

88

89

90

91

92

93

94

95

A
c

c
u

ra
c

y

Google-12 - Effect of Compression

FastGRNN

FastGRNN - Q

FastGRNN - SQ

FastGRNN - LSQ

0 10 20 30 40 50 60

Model Size (KB)

88

89

90

91

92

93

A
c
c
u

ra
c
y

Google-30 - Effect of Compression

FastGRNN

FastGRNN - Q

FastGRNN - SQ

FastGRNN - LSQ

(a) (b)
Figure 6: Figures (a) and (b) show the effect of LSQ components over the model size range of 0-64KB.

arithmetic and hence quantization doesn’t provide any benefit with respect to compute in this case,
apart from bringing down the model size considerably.

G Vectorized FastRNN

As a natural extension of FastRNN, this paper also benchmarked FastRNN-vector wherein the scalar
α in FastRNN was extended to a vector and β was substituted with ζ(1− α) + ν with ζ and ν are
trainable scalars in [0, 1]. Tables 13, 14 and 15 summarize the results for FastRNN-vector and a
direct comparison shows that the gating enable FastGRNN is more accurate than FastRNN-vector.
FastRNN-vector used tanh as the non-linearity in most cases except for a few (indicated by +) where
ReLU gave slightly better results.

21



Table 11: Hyperparameters for reproducibility - FastGRNN-Q

Dataset Hidden
Units rw ru sw su Nonlinearity Optimizer

Google-12 100 16 25 0.30 0.30 sigmoid Momentum
Google-30 100 16 35 0.20 0.20 tanh Momentum
Wakeword-2 32 10 15 0.20 0.30 tanh Momentum
Yelp-5 128 16 32 0.30 0.30 sigmoid Adam
HAR-2 80 5 40 0.20 0.30 tanh Momentum
DSA-19 64 16 20 0.15 0.05 sigmoid Adam
Pixel-MNIST-10 128 1 30 1.00 0.30 sigmoid Adam
PTB-10000 256 64 64 0.30 0.30 sigmoid Adam

Table 12: Prediction Time on Raspberry Pi 3 (ms)
Method Google-12 HAR-2 Wakeword-2

FastGRNN 7.7 1.8 2.5
RNN 15.7 2.9 3.6
UGRNN 29.7 5.6 9.5
SpectralRNN 123.2 391.0 17.2

Table 13: FastRNN Vector - 1

Dataset Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Google-12 92.98+ 57 0.71
Google-30 91.68+ 64 1.63
HAR-2 95.24+ 19 0.06
DSA-19 83.24 322 0.04
Yelp-5 57.19 130 3.73
Pixel-MNIST-10 97.27 44 13.75

Table 14: FastRNN Vector - 2

Dataset F1
Score

Model
Size (KB)

Train
Time (hr)

Wakeword-2 97.82 8 0.86

Table 15: FastRNN Vector - 3

Dataset Test
Perplexity

Train
Perplexity

Model
Size (KB)

Train
Time (min)

PTB-300 126.84 98.29 513 11.7

H Effects of Regularization for Language Modeling Tasks

This section studies the effect of various regularizations for Language Modeling tasks with the PTB
dataset. [36] achieved state-of-the-art performance on the PTB dataset using a variety of different
regularizations and this sections combines those techniqeus with FastGRNN and FastGRNN-LSQ.
Table 16 summarizes the train and test perplexity of FastGRNN. The addition of an extra layer leads
to a reduction of 10 points on the test perplexity score as compared to a single layer architecture of
FastGRNN. Other regularizations like weight decay and weight dropping also lead to gains of upto 8
points in test perplexity as compared to the baseline FastGRNN architecture, exhibiting that such
regularization techniques can be combined with the proposed architectures to obtain better dataset
specific performance, especially on the language modelling tasks of the PTB dataset.

The experiments carried out in this paper on the PTB dataset use a sequence length of 300 as
compared to those used in [38, 53, 21, 35, 36] which are generally in the range of 35-70. While
standard recurrent architectures are known to work with such short sequence lengths, they typically
exhibit unstable behavior in the regime where the sequence lengths are longer. These experiments
exhibit the stability properties of FastGRNN (with 256 hidden units) in this regime of long sequence
lengths with limited compute and memory resources.

22



Table 16: Language Modeling on PTB - Effect of regularization on FastGRNN
Method Hidden Units Test Perplexity Train Perplexity

1-layer 256 116.11 81.31
2-layer 256 106.23 69.37
1-layer + Weight decay 256 111.57 76.89
1-layer + Weight-dropping 256 108.56 72.46
1-layer + AR/TAR 256 112.78 78.79

23


