
Supplementary Material to “Differentially Private Robust

Low-Rank Approximation"

A Auxiliary Lemma

We need the following results about product of pseudo-inverse.
Fact 16. If A has a left-inverse, then A

† = (AT
A)�1

A
T

and if A has right-inverse, then A
† =

A
T(AA

T)�1
.

Theorem 17 (Product of pseudoinverse). Let A and B be conforming matrices and either,

1. A has orthonormal columns (i.e., A
T
A is an identity matrix) or,

2. B has orthonormal rows (i.e., BB
T

is an identity matrix),

3. A has all columns linearly independent (full column rank) and B has all rows linearly

independent (full row rank) or,

4. B = A
T

(i.e., B is the conjugate transpose of A),

then (AB)† = B
†
A

†
.

The following lemma follows from Holder’s inequality and minimality of x̂.
Lemma 18 (`2 relaxation of `p regression). Let p 2 [1, 2). For any A 2 Rn⇥d

and b 2 Rn
,

define x
⇤ = argmin kAx� bkp and x̂ = argmin kAx� bk2. Then, kAx

⇤ � bkp  kAx̂� bkp 
n
1/p�1/2 kAx

⇤ � bkp.

Lemma 19 (Subsampling and rescaling lemma). Let k be a parameter and s = O(k log k). Let

S 2 Rs⇥d
be a random matrix with every entries sampled i.i.d. from C(0, 1), Cauchy distribution

with variance 1, and scaled by 1/s. Let A,B 2 Rd⇥p
be real-valued matrices such that rank(A)  k.

Let S
0 2 Rs⇥d

be a matrix with i-th row S
0
i: defined using the following probability distribution

S
0
i: =

⇢
s
kSi: with probability k/s

0d otherwise

Then with probability 24/25, kS0
A� SBk1  O(log d) kA�Bk1.

Proof. Let p̃ = sp. We use the notation C(0, 1) to define Cauchy random variable with variance 1.
We call a random variable c half clipped Cauchy random variable if c ⇠ |C(0, 1)|. Define Gu to be
event when half clipped random Cauchy variable cu, such that cu < 100p̃. Let Good = \Gu. We
can easily compute the probability that Gu and Good happens. Using the pdf of Cauchy, we have

Pr[Gu] = 1� 2

⇡
tan�1(1/100sp) � 1� 1

50⇡p̃
.

Union bound then implies that Pr[¬Good]  1
50⇡ . Using total probability theorem and Markov’s

inequality, we have

Pr[kS0
A� SBk1 � (100 log p) kA�Bk1]  Pr[kS0

A� SBk1 � (100 log p) kA�Bk1 |Good]

+ Pr[¬Good] 
E[kS0

A� SBk1 |Good]
100 log p kA�Bk1

+
1

50⇡
(3)

10

Let A:i denote the i-th column of the matrix A. Then

E[kS0
A� SBk1 |Good] =

pX

i=1

E[kS0
A:i � SB:ik1 |Good]

=
pX

i=1

E

2

4
sX

j=1

�����

dX

`=1

1

s
S
0
j,`A`,i � Sj,`B`,i

����� |Good

3

5

=
1

s

pX

i=1

sX

j=1

E[s̄i,j |Good]

=
1

s

pX

i=1

sX

j=1

kA:i �B:ikE[ci+p(j�1)|Good], (4)

where s̄i,j ⇠ |C(0, kA:i �B:ik1)| and ci+p(j�1) is half clipped Cauchy random variable, i.e.,
ci+p(j�1) ⇠ |C(0, 1)|. We next compute E[ci+p(j�1)|Good]. Let u = i+ p(j � 1).

Since for any random variable X and Y , E[X] =
P

y Pr[Y = y]E[X|Y = y]), we have

E[cu|Gu] = Pr[Good|Gu]E[cu|Gu \ Good] + Pr[¬Good|Gu]E[cu|Gu \ ¬Good]
� E[cu|Gu \ Good]Pr[Good|Gu] = E[cu|Good]Pr[Good|Gu],

In other words,

E[cu|Good] 
E[cu|Gu]Pr[Gu]

Pr[Good|Gu]
.

Now E[cu|Gu] =
log(1+(sp)2)
⇡Pr[Gu]

. Using Bayes theorem and the fact that Pr[Good] = Pr[Good \ Gu],
this implies that

E[cu|Good] 
E[cu|Gu]Pr[Gu]

Pr[Good]
=

log(1 + (sp)2)

⇡Pr[Gu]

Pr[Gu]

Pr[Good]

 log(1 + (sp)2)

⇡(1� 1/(50⇡))
 2 log(sp).

We can now bound equation (4) as below:

E [kS0
A� SBk1 |Good] =

1

s

pX

i=1

sX

j=1

kA:i �B:ik1 E[ci+p(j�1)|Good] = 2 log pkA�Bk1.

Plugging this in equation (3), we have

Pr[kS0
A� SBk1 � 100 log p kA�Bk1] 

E[kS0
A� SBk1 |Good]

50 log p kA�Bk1
+

1

5⇡

 2 log sp

100 log p
+

1

50⇡
 1

25
,

where the last inequality holds because s  p. This completes the proof.

B Missing Proofs

B.1 Proof of Theorem 10

Reminder of Theorem 10. Algorithm ROBUST-LRA, (see Algorithm 1), is (", �)-differentially
private. Furthermore, given a matrix A 2 Rn⇥d, it runs in poly(k, n, d) time, eO(k(n+d)) space, and
outputs a rank k matrix M such that, with probability 9/10 over the randomness of the algorithm,

kA�Mkp  O((k log k log(1/�))2(2�p)/plog d log n)OPTk(A) + eO(k2(n+kd) log2(1/�)/"),

11

Proof of Theorem 10. We first give the privacy proof of Theorem 10. Let A and A
0 be neighboring

matrices, i.e., kA�A
0k 1  1. We argue the privacy result for p = 1 (the case for p 2 (1, 2)

follows from invoking Holder’s inequality. The private matrix is used to generate three sketches:
Yc, Yr, and Z. Since �, , S, and T are sampled from distribution of random matrices that preserves
the `1-norm, we have that k�(A�A

0)k 1  C� kA�A
0k 1 = C� with probabilty at least 1 � �.

The privacy proof now follows from Laplace mechanism. Note that for p 2 (1, 2), we have
k�(A�A

0)kp  C� k(A�A
0)kp  C� k(A�A

0)k1.

We now give the utility proof of Theorem 10. Let

U
⇤
, V

⇤ := argmin
U2Rn⇥k

V 2Rk⇥d

kUV �A)kp

Our proof relies on three fundamental techniques.

Two fundamental techniques. The first fundamental technique is to use the fact that solving
generalized linear regression problem in the projected space gives an approximate solution to the
original generalized regression problem. The second main idea is the reduction from low-rank
approximation to a generalized linear regression problem.

Let B = A+ S
†
N3T

†, then SBT = Z. Also let C = A+ �†
N1, then �C = Yr. Let

eV := argmin
V 2Rk⇥d

k�(U⇤
V � C)kp ,

bV := argmin
V 2Rk⇥d

k�(U⇤
V � C)kF ,

V
0 := argmin

V 2Rk⇥d

kU⇤
V � C)kp

Then using Lemma 8 and the fact that kU⇤
V

0 �B)kp  kU⇤
V �B)kp for all V (and in particular,

V
⇤), we have

���U⇤ eV � C)
���
p
 O(C�) kU⇤

V
0 � C)kp

 O(C�)
⇣
kU⇤

V
⇤ �A)kp +

���†
N1

��
p

⌘
. (5)

Since bV:i = (�U⇤)†�C:i = argminx k�(U⇤
x� C:i)kF , using Holder’s inequality, we have

���(U⇤ bV � C)
���
p
=

dX

i=1

���(U⇤ bV 0
:i � C:i)

���
p


p
�

dX

i=1

���(U⇤ eV:i � C)
���
p

(Lemma 18)

=
p
�

���U⇤ eV � C)
���
p
.

Combining this with equation (5), we have
���(U⇤ bV � C)

���
p
 O(C�

p
�) kU⇤

V
⇤ �A)kp +O(C�

p
�)

���†
N1

��
p
.

Moreover, ���(U⇤ bV � C)
���
p
�

���U⇤ bV �A)
���
p
�

���†
N1

��
p
.

Combining the last two inequalities gives us
���(U⇤ bV �A)

���
p
 O(C�

p
�) kU⇤

V
⇤ �A)kp +O(C�

p
�)

���†
N1

��
p
. (6)

12

Further let,

eU := argmin
U2Rn⇥k

���(U bV �A)
���
p
,

bU := argmin
U2Rn⇥k

���(U bV �A)
���
F
,

U
0 := argmin

U2Rn⇥k

���U bV �A)
���
p

Then using Lemma 8 and the fact that
���U 0 bV �B)

���
p


���U bV �B)
���
p

for all U (and in particular,

U
⇤), we have

���eU bV �A)
���
p
 O(C)

���U 0 bV �A)
���
p

 O(C)
���(U⇤ bV �A)

���
p
. (7)

We know that bUi: = A:i (bV)† = argminx

���(xbV �Ai:)
���
F

. Equation (7) then gives us

���(bU bV �A)
���
p
=

nX

i=1

���(bUi:
bV �Ai:)

���
p


p

dX

i=1

���(eUi:
bV �Ai:)

���
p

(Lemma 18)

=
p

���eU bV �A)
���
p

 O(C
p
)

���(U⇤ bV �A)
���
p
. (8)

Substituting the value of bU = A (bV)†,
���A (bV)† bV �A

���
p
 O(C�C

p
 �) kU⇤

V
⇤ �Akp +O(C�C

p
 �)

���†
N1

��
p

(9)

Recall that Yc = A +N by the construction in the algorithm. Using subadditivity of norms and
substituting bV = (�U⇤)†Yr, we have

���Yc(bV)† bV �A

���
p


���A (bV)† bV �A

���
p
+
���N(bV)† bV

���
p

(subadditivity)

 O(C�C
p
 �) kU⇤

V
⇤ �A)kp +

���N2(bV)† bV
���
p

(equation (9))

+O(C�C
p
 �)

���†
N1

��
p

(10)

Now again from subadditivity, we have
���Yc(bV)† bV �B

���
p


���Yc(bV)† bV �A

���
p
+
��S†

N3T
†��

p

Combining equation (10) with the above inequality, we get
���Yc(bV)† bV �B

���
p
 O(C�C

p
 �) kU⇤

V
⇤ �A)kp

+
���N2(bV)† bV

���
p
+
��S†

N3T
†��

p

+O(C�C
p
 �)

���†
N1

��
p
.

13

Further, since U
⇤ has rank at most k and bV = (�U⇤)†Yr, (bV)†(�U⇤)†� has rank at most k. This

implies that

min
r(X)k

kYcXYr �Bkp 
���Yc(bV)†(�U⇤)†Yr �B

���
p

(minimality)

 O(C�C
p
 �) kU⇤

V
⇤ �A)kp +

���N2(bV)† bV
���
p

+
��S†

N3T
†��

p
+O(C�C

p
 �)

���†
N1

��
p

(11)

Third fundamental technique. The last fundamental technique that we use is that an approximate
solution of low-rank problem in the projected space also gives an approximate solution of the original
low-rank problem. Let Q = SAT and

bX = Vc⌃
†
c[U

T
c ZV

T
r]k⌃

†
rU

T
r .

Let eX := argminrank(Y)k kSYcXYrT � Zkp. To show that we can achieve an approximate
solution of a low-rank problem in the projected space, we use Holder’s inequality. More precisely,
we have the following set of inequalities:

���SYc
bXYrT � Z

���
p


p
st

���SYc
bXYrT � Z

���
F

=
p
st min

rank(Y)k

���SYc
bXYrT � Z

���
F

(by definition)


p
st

���SYc
eXYrT � Z

���
F

(by minimality)


p
st

���SYc
eXYrT � Z

���
p

=
p
st min

rank(Y)k
kSYcXYrT � Zkp , (12)

where the first and last inequalites follow from Holder’s inequality, second inequality from the
minimality, the first equality is due to [32], and the last equality is by definition. Using Lemma 9, we
have

���Yc
bXYr �B

���
p
 eO(

p
st) min

rank(X)k
kYcXYr �Bkp .

Now, we have from subadditivity of norm,
���Yc

bXYr �A

���
p
�
��S†

N3T
†��

p


���Yc
bXYr �B

���
p
.

Combining this with equation (11), we have
���Yc

bXYr �B

���
p
 eO(C�C

p
 �st) kU⇤

V
⇤ �A)kp +

p
st

���N2(bV)† bV
���
p

+ 2
p
st
��S†

N3T
†��

p
+O(C�C

p
 �st)

���†
N1

��
p

(13)

Note that Yc
bXYr is the output of the algorithm. Therefore, all that remain is to bound each of the

above additive term. The following claim does this.

Claim 20. With probability at least 24/25,

���†
N1

��
p
 eO(C�d�/"),

���N2(bV)† bV
���
p
 eO(C kn/"),

��S†
N3T

†��
p
 eO(CsCtst/").

14

Proof. Now N2(bV)† bV = bN2. Using no dilation property of �, we have
���N2(bV)† bV

���
p


O(C)
��� bN2

���
p
. This can be bound using the standard tail inequality for Laplace mechanism, i.e,

with probability at least 99/100,
��� bN1

���
p
= eO(kn). Similarly, ��†

N1 = bN1 and SS
†
N3T

†
T = N3.

Using dilation and contraction properties of �, , S, and T completes the proof of claim.

Using Claim 20 in equation (13) completes the proof of Theorem 10.

B.2 Proof of Theorem 15

Restatement of Theorem 15. Algorithm ROBUST-PCA, (see Algorithm 2), is (", �)-differentially
private. Further, given a matrix A 2 Rn⇥d with OPTk(A) := minrank(X)k kA�Xkp, it runs in
time poly(k, n, d), space eO(k(n+ d)), and outputs a rank k orthonormal projection matrix ⇧ such
that, with probability 9/10 over the random coin tosses of the algorithm,

kA�A⇧kp  O((k log k log(1/�))2(2�p)/p log n log3 d)OPTk(A) + eO(k2d log n/").

Proof of Theorem 15. We start by giving the privacy proof. Let A and A
0 be neighboring matrices,

i.e., kA�A
0k1  1. We argue the privacy result for p = 1 (the case for p 2 (1, 2) follows from

invoking Holder’s inequality. The private matrix is used to generate two sketches: Yc, Yr. Since �, ,
and T are sampled from distribution of random matrices that preserves the `p-norm, we have that
k�(A�A

0)k1  C� kA�A
0k1 = C� with probabilty at least 1� �. The privacy proof now follows

from Laplace mechanism. Note that for p 2 (1, 2), we have k�(A�A
0)kp  C� k(A�A

0)kp 
C� k(A�A

0)k1.

We now move to prove the utility guarantee. For the ease of presentation, we just present the case for
p = 1. The case for p 2 (1, 2) follows similarly.

Let us define bX = Vc⌃†
c[U

T
c ZV

T
r]k⌃†

rU
T
r . Further, let

U
⇤
, V

⇤ := argmin
U2Rn⇥k

V 2Rk⇥d

kUV �A)kp

Two fundamental techniques. The first fundamental technique is to use the fact that solving
generalized linear regression problem in the projected space gives an approximate solution to the
original generalized regression problem. Then we use the reduction from low-rank approximation to
a generalized linear regression problem.

Let B = A
T + �†

N1T
†, then �BT = Z. We now define the following optimization problems:

eV := argmin
V 2Rk⇥d

k�(U⇤
V �B)kp ,

bV := argmin
V 2Rk⇥d

k�(U⇤
V �B)kF ,

V
0 := argmin

V 2Rk⇥d

kU⇤
V �B)kp

Then using Lemma 8 and the fact that kU⇤
V

0 �B)kp  kU⇤
V �B)kp for all V (and in particular,

V
⇤), we have

���U⇤ eV �B)
���
p
 O(log d) kU⇤

V
0 �B)kp (Lemma 8)

 O(log d)
��U⇤

V
⇤ �A

T)
��
p
+O(log d)

���†
N1T

†��
p
.

15

Since bV:i = (�U⇤)†�B:i = minx k�(U⇤
x�B:i)kF , using Holder’s inequality, we have

���(U⇤ bV �B)
���
p
=

dX

i=1

���(U⇤ bV 0
:i �B:i)

���
p


p
�

dX

i=1

���(U⇤ eV:i �B)
���
p

(Lemma 18)

=
p
�

���U⇤ eV �B)
���
p
. (14)

In other words,
���(U⇤ bV �B)

���
p
 O(

p
� log d)

��U⇤
V

⇤ �A
T)

��
p
+O(

p
� log d)

���†
N1T

†��
p
.

Moreover, ���(U⇤ bV �B)
���
p
�

���U⇤ bV �A
T)

���
p
+
���†

N1T
†��

p
.

Combining the last two inequalities gives us
���(U⇤ bV �A

T)
���
p
 O(

p
� log d)

��U⇤
V

⇤ �A
T)

��
p
+O(

p
� log d)

���†
N1T

†��
p
. (15)

Now define the following optimization problems:

eU := argmin
U2Rn⇥k

���(U bV �A
T)

���
p
,

bU := argmin
U2Rn⇥k

���(U bV �A
T)

���
F
,

U
0 := argmin

U2Rn⇥k

���U bV �A
T)

���
p

with solutions eU, bU, and U
0. Then using Lemma 8 and the fact that

���U 0 bV �A
T)

���
p


���U bV �A

T)
���
p

for all U (and in particular, U⇤), we have
���eU bV �A

T)
���
p
 O(log n)

���U 0 bV �A
T)

���
p

(Lemma 8)

 O(log n)
���(U⇤ bV �A

T)
���
p
. (minimality) (16)

We know that bUi: = A
T
:i (bV)† = minx

���(xbV �A
T
i:)

���
F

. Using Holder’s inequality and equa-
tion (16), we have

���(bU bV �A
T)

���
p
=

nX

i=1

���(bUi:
bV �A

T
i:)

���
p


p

dX

i=1

���(eUi:
bV �A

T
i:)

���
p

(Lemma 18)

=
p

���eU bV �A
T)

���
p

 O(
p
 log n)

���(U⇤ bV �A
T)

���
p
, (17)

where the last inequality follows from equation (16). Substituting the value of bU = A
T (bV)†,

���AT (bV)† bV �A
T
���
p
 O(log d log n

p
�)

��U⇤
V

⇤ �A
T)

��
p

+O(
p
� log d log n)

���†
N1T

†��
p

16

Recall that Yc = A
T + N2 by construction in the algorithm. Using subadditivity of norms and

substituting bV = (�U⇤)†�AT , we have

���Yc(bV)† bV �A
T
���
p
=

���Yc(bV)†(�U⇤)†�B �A
T
���
p


���AT (bV)† bV �A

T
���
p
+
���N2(bV)† bV

���
p

 O(
p
� log d log n)

��U⇤
V

⇤ �A
T)

��
p
+
���N2(bV)† bV

���
p

+O(
p
� log d log n)

���†
N1T

†��
p

(18)

Now,

���Yc(bV)† bV �B

���
p


���Yc(bV)† bV �A
T
���
p
+
���†

N1T
†��

p

Combining the above two inequalities, we get

���Yc(bV)† bV �B

���
p
 O(

p
� log d log n)

��U⇤
V

⇤ �A
T)

��
p
+

���N2(bV)† bV
���
p

+O(
p
� log d log n)

���†
N1T

†��
p

Further, since U⇤ has rank at most k, we have that bV = (�U⇤)†�B has rank at most k. This implies
that

min
rank(X)k

kYcXB �Bkp 
���Yc(bV)†(�U⇤)†�B �B

���
p

 O(
p
� log d log n)

��U⇤
V

⇤ �A
T)

��
p
+
���N2(bV)† bV

���
p

+O(
p
� log d log n)

���†
N1T

†��
p

(19)

Third fundamental technique. The last fundamental technique that we use is that an approximate
solution of low-rank problem in the projected space also gives an approximate solution of the
original low-rank problem. Let R = PU⌃(�PU⌃)†�, where bX = Vc⌃†

c[U
T
c ZV

T
r]s⌃†

rU
T
r . Let

X̄ = argminX

����(PYc
bXX�B �B)T

���
1
. We have the following:

k�(RB �B)Tk1 
p
st
���(PU⌃(�PU⌃)†�B �B)T

��
F

(definition of P)

=
p
stmin

X
k�(PU⌃X�B �B)TkF (by definition of normal form)


p
st
���(PU⌃X̄�B �B)T

��
F


p
st
���(PU⌃X̄�B �B)T

��
1

=
p
stmin

X
k�(PU⌃X�B �B)Tk1 . (definition of X̄)

This implies that (�U⌃P)† is the approximate solution of minX k�(PU⌃X�B �B)Tk1. Us-
ing Lemma 9, we have

���PU⌃(�PYc
bX)†�B �B

���
p


p
stmin

X
kPU⌃X�B �Bkp

17

Let �̄ =

✓
�k

0

◆
and �0 be the matrix such that �0

i: = �̄⇡(i):. Then we have the following set of

inequalities

min
X

kPU⌃X�B �Bkp 
����
�

k
�†(U⌃)†(U⌃)�Yc(bV)†�B �B

����
1

(by minimality)

 O(log d)

����
�

k
��†(U⌃)†(U⌃)�Yc(bX)†�B � �B

����
1

(no-dilation property)

 O(log d)

����
�

k
(U⌃)†(U⌃)�Yc(bX)†�B � �B

����
1

(��† = I)

= O(log d)

����
�

k
�0

Yc(bV)†�B � �B
����
1

(definition)

 O(log2 d)
���Yc(bX)†�B �B

���
1

(Lemma 19).

Combining this with equation (19) and using the value of ⇧ gives
��⇧AT �A

T
��
p
 O(log3 d log n

p
st�)

��U⇤
V

⇤ �A
T)

��
p
+O(

p
st log2 d)

���N2(bV)† bV
���
p

+O(
p
st log2 d)

���Yc
bX(�Yc

bX)†N1T
†
���
p
+O(

p
st� log3 d log n)

���†
N1T

†��
p

(20)

All that remain is to bound each of the above additive term. The following claim does this.

Claim 21. With probability at least 97/100,

���N2(bV)† bV
���
p
 eO(kd log n/"),

���†
N1T

†��
p
 eO(CsCtst/"),

���Yc
bX(�Yc

bX)†N1T
†
���
p
 eO(Ctst/").

Proof. Now N2(bV)† bV = bN2. Using no dilation property of , we have
���N2(bV)† bV

���
p


log n
��� bN2

���
p

This can be bound using the standard tail inequality for Laplace mechanism, i.e,

with probability at least 99/100,
��� bN2

���
p
= eO(kd). Similarly, �Yc

bX(�Yc
bX)†N1T

†
T = bN1 and

��†
N1T

†
T = N1. Using dilation and contraction properties of �, , and T completes the proof of

claim.

We finish the proof by proving that the projection matrix is an orthonormal projection matrix with
high probability.

Claim 22. PU⌃(�PU⌃)†� is an orthonormal projection matrix with probability 99/100.

Proof. Since � is a Cauchy matrix with i.i.d. entries, � is a full row matrix with probability 99/100.
Therefore, it follows from the definition of P that

⇧ = PU⌃(�PU⌃)†�

= �†(U⌃)†U⌃(��†(U⌃)†U⌃)†�

= �†(U⌃)†U⌃((U⌃)†U⌃)†�

= �†(U⌃)†U⌃(�†(U⌃)†U⌃)†

with probability 99/100. This completes the proof.

18

The next proposition follows from the definition of bX and the fact that N,N1, and N2 are i.i.d.
Laplace matrix.

Proposition 23. Yc
bX has rank-k with probability at least 1� �, where the probability is over the

randomness of the algorithm.

Using Claim 21 in equation (20) completes the proof of Theorem 15.

C Local Learning

Local differential privacy, a stronger variant of privacy, has gained a lot of attention recently. For
e.g., it is the privacy guarantee employed by Apple in their new iOS [1] and has been used by Google
for various data analysis [15]. In the local privacy model, there is no central database of private
data. Instead, each individual has its own data element (a database of size one), and sends a report
based on its own datum in a differentially private manner. The local model allows individuals to
retain control of their data since privacy guarantees are enforced directly by their devices. However,
it entails a different set of algorithmic techniques from the central model. In principle, one could
also use cryptographic techniques to simulate central model algorithms in a local model, but such
algorithms currently impose bandwidth and liveness constraints that make them impractical for large
deployments.

Formally, we consider the database X = [x1, · · · , xn]> as a collection of n elements (rows) from
some domain X ✓ Rd, with each row held by a different individual. The i

th individual has access
to "i-local randomizer, Ri : X ! W which is an "i-differentially private algorithm that takes
as input a database of size n = 1. We assume that the algorithms may interact with the database
only through local randomizers. We can then define local differential privacy as follows [13]. An
algorithm is "-locally differentially private if it accesses the database X via the local randomizers,
R1(x1), · · · , Rn(xn), where Ri is an "i-local randomizer, and max {"1, · · · , "n}  ".

We note that what we have defined above is a non-interactive local differential privacy algorithm
where an individual only sends a single message to the server. Another well studied variant is that of
interactive local differential privacy where the server sends several query messages, each to a subset
of users. Each such message, together with responses from users, counts as a round of interaction.
In the end, the server aggregates and summarizes the messages it received from every user (over
possibly multiple rounds), and uses it to answer queries about the data. It was argued in [27] that
from an implementation point of view, it is more desirable to have as few rounds of interactions
as possible because interaction introduces latency, synchronization, and bandwidth issues. In fact,
existing large-scale deployments [1, 15] are limited to one that are noninteractive. Therefore, we
limit our study to what is possible in the noninteractive variant of local differential privacy. We study
robust principal component analysis in local model of differential privacy. We show that with high
probability, we have that kA⇧�Akp  ` · OPTk(A) + eO("�1

knd).

Our result is applicable in the setting when kAkp � O(nd). We note that, in practice, robust LRA is
used on corrupted data matrix with a reasonable fraction of entries corrupted by large values. There
are other scenarios, like network analysis, where private matrices have large entries. In such scenarios,
typically kAkp � O(nd), and outputting an all zero matrix would incur an error far greater than
what we incurred. If we wish to output a rank-k matrix with provable guarantees, the naive algorithm
that works as follows: every user add Laplace vector to their data and send the report to the server,
and the server runs a non-private algorithm leads to worse additive error. This is because the low-rank
approximation is now done on A+N for N ⇠ Lap(0, 1/")n⇥d. We next show that we can convert
ROBUST-PCA to the model of local differential privacy. See Figure 3 for details. Our algorithm is
non-interactive; therefore, we can use the generic transformation of [6] to get an "-local differentially
private algorithm.
Theorem 24. Algorithm LOCAL-ROBUST-PCA (see Figure 3) is an "-local differentially private

algorithm. Furthermore, given a matrix A 2 Rn⇥d
with OPTk(A) := minrank(X)k kA�Xkp,

LOCAL-ROBUST-PCA runs in time poly(k, n, d), space eO(k(n+d)), and outputs a rank k projection

matrix ⇧ such that, with probability 9/10 over the randomoziation of the algorithm,

kA�A⇧kp  O(log n log3 d (k log k log(1/�))2(2�p)/p)OPTk(A) + eO(k2nd/").

19

Algorithm 3 LOCAL-ROBUST-PCA
Input: Every user i 2 [n] having access to a row Ai, target rank k

Output: Rank-k projection matrix ⇧ 2 Rd⇥d

1: Initialization. Sample � 2 R�⇥d
, 2 Rn⇥

, S 2 Rs⇥d, and T 2 Rn⇥t with every entry
sampled iid from Dp. All these matrices are publicly available.

2: user side computation: every user i, do

3: Sample private noise. Sample N1,i ⇠ Lap(0, C�Ct)�⇥t
, N0,i ⇠ Lap(0, C)d⇥ , N2,i ⇠

Lap(0, CsCt)s⇥t using its private coin.
4: Construct. A

(i) 2 Rd⇥n with all zero entries except the column i has entry Ai.
5: Compute. Yr,i = �A(i)

T + N1,i, Yc,i = A
(i) + N0,i and Zi = Yr,i, where �, T and

are sketching matrices with every entries sampled i.i.d. from a p-stable distribution.
6: Send. (Yr,i, Yc,i, Zi) to the server.
7: end user side computation:

8: server’s computation: get {Yr,i, Yc,i, Zi}ni=1, do

9: Compute. Yc =
P

Yc,i, Yr =
P

Yr,i, and Z =
P

Zi.
10: Compute. SVD(�Yc) = [Uc,⌃c, Vc]. and SVD(Yr) = [Ur,⌃r, Vr].
11: Set. bX = Vc⌃†

c[U
T
c ZV

T
r]k⌃†

rU
T
r , where [B]k = argminr(X)k kB �XkF .

12: Pick: a permutation matrix Q 2 R
�⇥�

.

13: Compute: the full SVD of Yc
bX , [U 0

,⌃0
, V

0]. Set U = U
0
Q, ⌃ = ⌃0

Q, and P = �†(U⌃)†.
14: Output: ⇧ = PU⌃(�PU⌃)†�.
15: end server’s computation:

Note that the naive algorithm that works as follows: every user add Laplace vector to their data and
send the report to the server, and the server runs a non-private algorithm leads to a slight worse additive
error. This is because the low-rank approximation is now done on A+N for N ⇠ Lap(0, 1/")n⇥d.
Song et al. [29] would then imply that the additive error would be about O(C�C

p
st �nd).

Proof of Theorem 24. Using the same arithmetic as in the proof of Theorem 15, the error incurred
would be

kA�A⇧kp  O(C�C
p
st�)OPTk,p(A) + c2

✓
2n

��� eN1

���
p
+ 2n

��� eN2

���
p

◆
,

where ⇧ := PU⌃(�PU⌃)†�, OPTk,p(A) := kU⇤
V

⇤ �A)kp, N1 is an n times a d ⇥ random
Laplace matrix, eN1 and eN2 are as formed in the proof of Theorem 15. Using the same calculation
completes the proof of Theorem 24.

D A Closer Look on Current Techniques

We first give the argument we made in the main text for the accuracy guarantees by using the ⇣-net
mechanism of Blum et al. [4]. To apply Blum et al. [4] in our setting, we need to compute the number
of k-tuples of unit vectors in Rd and Rn. The size of ⇣-net of unit vectors in Rd (for row space) is
p = ⇣

1�d. Hence, number of k-tuples of unit vectors is
�p
k

�
. Similarly, for column space, it is

�⇣1�n

k

�
.

This gives us the error claimed earlier in the introduction.

There are two main approaches for efficient private algorithms – output perturbation and input
perturbation. In output perturbation, we first compute the output (e.g. rank-k approximation of a
given matrix) non-privately and then add appropriately scaled noise to preserve privacy. In input
perturbation, we add noise to the private matrix and then compute the output on the noisy matrix.
Both these approaches require adding noise to every entry of the given input matrix or to every entry
of the non-private output matrix. Consequently, both of these methods would incur an additive error
of O(nd).

Alternatively, one could consider iterative approaches, such as noisy Krylov subspace iteration [19],
for finding low-rank matrix approximation with respect to spectral norm. However, it is not imme-
diately clear how to adapt such an algorithm for `p low-rank approximation. The methods used in
known results for differentially private low-rank approximation with respect to entrywise `2-norm,

20

say [18, 14, 32], also has some hurdles. The main problem here is that the given objective is not
rotationally invariant. If we just use the output produced in any of the results for Frobenius norm and
then use, say Holder’s inequality, then the accuracy would depreciate proportional to (nd)1/p�1/2.

One may then argue that we can solve robust low-rank approximation for constant dimension by
using exponential mechanism [26]. For using exponential mechanism, we need to find a suitable
scoring function, which is not clear in the case of entrywise `p-norm. Even if we are able to find a
scoring function analogous to one used in [21], it is not clear whether we can iterate it for k rounds to
get all the top-k subspace. More precisely, it is not clear whether a result analogous to the Deflation
lemma of [21] holds in the case of entrywise `p approximation.

21

	Introduction
	Formal Problem Statement and Contributions

	Basic Preliminaries
	Differentially private robust LRA
	Proposed Algorithm
	Extension to Other Models of Differential Privacy

	Differentially Private Robust Principal Component Analysis
	Discussion
	Auxiliary Lemma
	Missing Proofs
	Proof of Theorem 10
	Proof of Theorem 15

	Local Learning
	A Closer Look on Current Techniques

