
Learning safe policies with expert guidance

Jessie Huang1 Fa Wu12 Doina Precup1 Yang Cai1
1School of Computer Science, McGill University

2Zhejiang Demetics Medical Technology
{jiexi.huang,fa.wu2}@mcgill.ca, {dprecup,cai}@cs.mcgill.ca

Abstract

We propose a framework for ensuring safe behavior of a reinforcement learning
agent when the reward function may be difficult to specify. In order to do this,
we rely on the existence of demonstrations from expert policies, and we provide
a theoretical framework for the agent to optimize in the space of rewards consis-
tent with its existing knowledge. We propose two methods to solve the resulting
optimization: an exact ellipsoid-based method and a method in the spirit of the
"follow-the-perturbed-leader" algorithm. Our experiments demonstrate the behav-
ior of our algorithm in both discrete and continuous problems. The trained agent
safely avoids states with potential negative effects while imitating the behavior of
the expert in the other states.

1 Introduction

In Reinforcement Learning (RL), agent behavior is driven by an objective function defined through
the specification of rewards. Misspecified rewards may lead to negative side effects [3], when the
agent acts unpredictably responding to the aspects of the environment that the designer overlooked,
and potentially causes harms to the environment or itself. As the environment gets richer and more
complex, it becomes more challenging to specify and balance rewards for every one of its aspects.
Yet if we want to have some type of safety guarantees in terms of the behavior of an agent learned by
RL once it is deployed in the real world, it is crucial to have a learning algorithm that is robust to
mis-specifications.

We assume that the agent has some knowledge about the reward function either through past ex-
perience or demonstrations from experts. The goal is to choose a robust/safe policy that achieves
high reward with respect to any reward function that is consistent with the agent’s knowledge 1.We
formulate this as a maxmin learning problem where the agent chooses a policy and an adversary
chooses a reward function that is consistent with the agent’s current knowledge and minimizes the
agent’s reward. The goal of the agent is to learn a policy that maximizes the worst possible reward.

We assume that the reward functions are linear in some feature space. Our formulation has two
appealing properties: (1) it allows us to combine demonstrations from multiple experts even though
they may disagree with each other; and (2) the training environment/MDP in which the experts
operate need not be the same as the testing environment/MDP where the agent will be deployed, our
results hold as long as the testing and training MDPs share the same feature space. As an application,
our algorithm can learn a maxmin robust policy in a new environment that contains a few features
that are not present in the training environment. See our gridworld experiment in Section 5.

Our first result (Theorem 1) shows that given any algorithm that can find the optimal policy for
an MDP in polynomial time, we can solve the maxmin learning problem exactly in polynomial

1Note that the safety as used here is more in the context of AI safety, and a policy is safe because it is robust
to misspecified rewards and the consequent negative side effects.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

time. Our algorithm is based on a seminal result from combinatorial optimization – the equivalence
between separation and optimization [9, 14] – and the ellipsoid method. To understand the difficulty
of our problem, it is useful to think of maxmin learning as a two-player zero-sum game between the
agent and the adversary. The deterministic policies correspond to the pure strategies of the agent.
The consistent reward functions we define in Section 3 form a convex set and the adversary’s pure
strategies are the extreme points of this convex set. Unfortunately, both the agent and the adversary
may have exponentially many pure strategies, which are hard to describe explicitly. This makes
solving the two-player zero-sum game challenging. Using tools from combinatorial optimization,
we manage to construct separation oracles for both the agent’s and the adversary’s set of policies
using the MDP solver as a subroutine. With the separation oracles, we can solve the maxmin learning
problem in polynomial time using the ellipsoid method.

Theorem 1 provides a polynomial time algorithm, but as it heavily relies on the ellipsoid method,
it is computationally expensive to run in practice. We propose another algorithm (Algorithm 3)
based on the online learning algorithm – followed-the-perturbed-leader (FPL), and show that after T
iterations the algorithm computes a policy that is at most O (1/

√
T) away from the true maxmin policy

(Theorem 2). Moreover, each iteration of our algorithm is polynomial time. Notice that many other
low-regret learning algorithms, such as the multiplicative weights update method (MWU), are not
suitable for our problem. The MWU requires explicitly maintaining a weight for every pure strategy
and updates them in every iteration, resulting in an exponential time algorithm for our problem.
Furthermore, we show that Algorithm 3 still has similar performance when we only have a fully
polynomial time approximation scheme (FPTAS) for solving the MDP. The formal statement and
proof are postponed to the supplemental material due to space limit.

1.1 Related Work

In the sense of using expert demonstrations, our work is related to inverse reinforcement learning
(IRL) and apprenticeship learning [18, 1, 21, 20]. In particular, the apprenticeship learning problem
aims to learn a policy that performs at least as well as the expert’s policy on all basis rewards, and
can also be formulated as a maxmin problem [21, 20]. Despite the seemingly similarity, our maxmin
learning problem aims to solve a completely different problem than apprenticeship learning. Here is
a simple example: consider in a gridworld, there are two basis rewards, w1 and w2, and there are
only two routes/policies – top and bottom. The expert takes the top route, getting 100 under w1 and
70 under w2. Alternatively, taking the bottom route gets 90 under both w1 and w2. Apprenticeship
learning will return the top route, because taking the alternative route performs worse than the expert
under w1 and violates the requirement. What is our solution? Assuming ε = 25 2, both w1 and w2

(or any convex combination of them) are consistent with the expert demonstration. If we choose the
top route, the worst case performance (under w2 in this case) is 70, while the correct maxmin solution
to our problem is to take the bottom route so that its worst performance is 90. In the worst case
(under w2), our maxmin policy has better guarantees and thus is more robust. Unlike apprenticeship
learning/IRL, we do not want to mimic the experts or infer their rewards, but we want to produce
a policy with robustness guarantees by leveraging their data. As a consequence, our results are
applicable to settings where the training and testing environments are different (as discussed in the
Introduction). Moreover, our formulation allows us to combine multiple expert demonstrations.

Inverse reward design [10] uses a proxy reward and infers the true reward by estimating its posterior.
Then it uses risk-averse planning together with samples from the posterior in the testing environment
to achieve safe exploration. Our approach achieves a similar goal without assuming any distribution
over the rewards and is arguably more robust. We apply a single reward function to the whole MDP
while they apply (maybe too pessimistically) per step/trajectory maxmin planning. Furthermore,
our algorithm is guaranteed to find the maxmin solution in polynomial time, and can naturally
accommodate multiple experts.

In repeated IRL [2], the agent acts on the behalf of a human expert in a variety of tasks, and the
human expert corrects the agent when the agent’s policy is far from the optimum. The goal is to
minimize the number of corrections from the expert, and they provide an upper bound on the number
of corrections by reducing the problem to the ellipsoid method. Their model requires continuous
interaction with an expert while our model only assumes the availability of one or a couple expert

2See Section 3 for the formal definition of consistent rewards. Intuitively, it means that the expert’s policy
yields a reward that is within ε of the optimal possible reward.

2

policies prior to training. Furthermore, we aim to find a maxmin optimal policy, while their paper
focuses on minimizing the number of corrections needed.

Robust Markov Decision Processes [19, 12] have addressed the problem of performing dynamic
programming-style optimization environments in which the transition probability matrix is uncertain.
Lim, Xu & Mannor [16] have extended this idea to reinforcement learning methods. This body of
work also uses min-max optimization, but because the optimization is with respect to worst-case
transitions, this line of work results in very pessimistic policies. Our algorithmic approach and
flavor of results are also different. [17] have addressed a similar adversarial setup, but in which the
environment designs a worst-case disturbance to the dynamics of the agent, and have addressed this
setup using H∞ control.

Paper Organization: We introduce the notations and define the maxmin learning problem in
Section 2. We provide three different ways to define the set of consistent reward functions in
Section 3, and present the ellipsoid-based exact algorithm and its analysis in Section 4.1. The FPL-
based algorithm and its analysis are in Section 4.2, followed by experimental results in Section 5.

2 Preliminary

An MDP is a tuple M = (S,A, Psa, γ,D,R), including a finite set of states, S, a set of actions, A,
and transition probabilities, Psa. γ is a discount factor, and D is the distribution of initial states. The
reward function R instructs the learning process. We assume that the reward is a linear function of
some vector of features φ: S → [0, 1]k over states. That is R(s) = w · φ(s) for every state s ∈ S,
where w ∈ Rk is the reward weights of the MDP. The true reward weights w∗ is assumed to be
unknown to the agent. We use 〈·〉 to denote the bit complexity of an object. In particular, we use 〈M〉
to denote the bit complexity of M , which is the number of bits required to represent the distribution
of initial states, transition probabilities, the discount factor γ, and the rewards at all the states. We use
the notation M\R to denote a MDP without the reward function, and 〈M\R〉 is its bit complexity.
We further assume that φ(s) can be represented using at most 〈φ〉 bits for any state s ∈ S.

An agent selects the action according to a policy π. The value of a policy under rewards
w is Es0∼D[V π(s0)|M] = w · E[

∑∞
t=0 γ

tφ(st)|M,π]. It is expressed as the weights multi-
plied by the accumulated discounted feature value given a policy, which we define as Ψ(π) =
E[
∑∞
t=0 γ

tφ(st)|M,π].

MDP solver We assume that there is a RL algorithm ALG that takes an MDP as input and outputs
an optimal policy and its corresponding representation in the feature space. In particular, ALG(M)
outputs (π∗, µ∗) such that Es0∼D[V π

∗
(s0)|M] = maxπ Es0∼D[V π(s0)|M] and µ∗ = Ψ(π∗).

Maxmin Learning All weights that are consistent with the agent’s knowledge form a set PR. We
will discuss several formal ways to define this set in Section 3. The goal of the agent is to learn a policy
that maximizes the reward for any reward function that could be induced by weights in PR and adver-
sarially chosen. More specifically, the max-min learning problem is maxµ∈PF minw∈PR w

Tµ,
where PF is the polytope that contains the representations of all policies in the feature space, i.e.
PF = {µ | µ = Ψ(π) for some policy π }. WLOG, we assume that all weights lie in [−1, 1]k.

Separation Oracles To perform maxmin learning, we often need to optimize linear functions over
convex sets that are intersections of exponentially many halfspaces. Such optimization problem is
usually intractable, but if the convex set permits a polynomial time separation oracle, then there
exists polynomial time algorithms (e.g. ellipsoid method) that optimize linear functions over it.

Definition 1. (Separation Oracle) Let P be a closed, convex subset of Euclidean space Rd. Then a
Separation Oracle for P is an algorithm that takes as input a point x ∈ Rd and outputs “YES” if
x ∈ P , or a hyperplane (w, c) such that w · y ≤ c for all y ∈ P , but w · x > c. Note that because P
is closed and convex, such a hyperplane always exists whenever x /∈ P .

3 Consistent Reward Polytope

In this section, we discuss several ways to define the consistent reward polytope PR.

3

Explicit Description We assume that the agent knows that the weights satisfy a set of explicitly
defined linear inequalities of the form c · w ≥ b. For example, such an inequality can be learned by
observing that a particular policy yields a reward that is larger or smaller than a certain threshold. 3

Implicitly Specified by an Expert Policy Usually, it may not be easy to obtain many explicit
inequalities about the weights. Instead, we may have observed a policy πE used by an expert. We
further assume that the expert’s policy has a reasonably good performance under the true rewards
w∗. Namely, πE’s expected reward is only ε less than the optimal one. Let the expert’s feature vector
µE = Ψ(πE). The set PR therefore contains all w such that µE · w ≥ µT · w − ε,∀µ ∈ PF . It is
not hard to verify that under this definition PR is a convex set. Even though explicitly specifying
PR is extremely expensive as there are infinitely many µ ∈ PF , we can construct a polynomial time
separation oracle SOR (Algorithm 1). An alternative way to define PR is to assume that the expert
policy can achieve (1− ε) of the optimal reward (assuming the final reward is positive). We can again
design a polynomial time separation oracle similar to Algorithm 1.

Algorithm 1 Separation Oracle SOR for the reward polytope PR
input w′ ∈ Rk

1: Let µw′ := argmaxµ∈PF µ · w
′. Notice that µw′ is the feature vector of the optimal policy under

reward weights w′. Hence, it can be computed by our MDP solver ALG.
2: if µw′ · w′ > µE · w′ + ε then
3: output “NO” , and (µE − µw′) · w + ε ≥ 0 as the separating hyperplane, since for all

w ∈ PR, µE · w ≥ µw′ · w − ε.
4: else
5: output “YES”.
6: end if

Combining Multiple Experts How can we combine demonstrations from experts operating in
drastically different environments? Here is our model. For each environment i, there is a separate
MDP Mi, and all the MDPs share the same underlying weights as they are all about completing the
same task although in different environments. The i-th expert’s policy is nearly optimal in Mi. More
specifically, for expert i, her policy πEi is at most εi less than the optimal policy in Mi. Therefore,
each expert i provides a set of constraints that any consistent reward needs to satisfy, and PR is the
set of rewards that satisfy all constraints imposed by the experts. For each expert i, we can design a
separation oracle SO(i)

R (similar to Algorithm 1) accepting weights that respect the constraints given
by expert i’s policy. We can easily design a separation oracle for PR that only accepts weights that
will be accepted by all separation oracles SO(i)

R .

From now on, we will not distinguish between different ways to define and access the consistent
reward polytope PR, but simply assume that we have a polynomial time separation oracle for it. All
the algorithms we design in this paper only require access to this separation oracle. In Section 5, we
will specify how the PR is defined for each experiment.

4 Maxmin Learning using an Exact MDP Solver

In this section, we show how to design maxmin learning algorithms. Our algorithm only interacts
with the MDP through the MDP solver, which can be either model-based or model-free. Our first
algorithm solves the maxmin learning problem exactly using the ellipsoid method. Despite the
fact that the ellipsoid method has provable worst-case polynomial running time, it is known to be
inefficient sometimes in practice. Our second algorithm is an efficient iterative method based on the
online learning algorithm – follow-the-perturbed-leader (FPL).

4.1 Ellipsoid-Method-Based Solution

Theorem 1. Given a polynomial time separation oracle SOR for the consistent reward polytope PR
and an exact polynomial time MDP solver ALG, we have a polynomial time algorithm such that

3Note that with a polynomial number of trajectories, one can apply standard Chernoff bounds to derive
such inequalities that hold with high probability. It is often the case that the probability is so close to 1 that the
inequality can be treated as true always for any practical purposes.

4

for any MDP without the reward function M\R, the algorithm computes the maxmin policy π∗ with
respect to M\R and PR.

max z

subject to z ≤ µ · w, ∀w ∈ PR
µ ∈ PF

Figure 1: Maxmin Learning LP.

The plan is to first solve the maxmin learning
problem in the feature space then convert it back
to the policy space. Solving the maxmin learn-
ing problem in the feature space is equivalent to
solving the linear program in Figure 1.

The challenges for solving the LP are that (i) it
is not clear how to check whether µ lies in the polytope PF , and (ii) there are seemingly infinitely
many constraints of the type z ≤ µ · w as there are infinitely many w ∈ PR. Next, we show that
given an exact MDP solver ALG, we can design a polynomial time separation oracle for the set of
feasible variables (µ, z) of LP 1. With this separation oracle, we can apply the ellipsoid method (see
Theorem 3 in the supplementary material) to solve LP 1 in polynomial time.

First, we design a separation oracle for polytope PF by invoking a seminal result from optimization –
the equivalence between separation and optimization.
Lemma 1 (Separation ≡ Optimization). [9, 14] Consider any convex polytope P = {x : Ax ≤
b} ∈ Rd and the following two problems:

Linear Optimization: given a linear objective c ∈ Rd, compute x∗ ∈ argmaxx∈P c · x
Separation: given a point y ∈ Rd, decide that y ∈ P , or else find h ∈ Rd s.t. h ·x < h · y, ∀x ∈ P .

If P can be described implicitly using 〈P 〉 bits, then the separation problem is solvable
in poly(〈P 〉, d, 〈y〉) time for P if and only if the linear optimization problem is solvable in
poly(〈P 〉, d, 〈c〉) time.

It is not hard to see that if one can solve the separation problem, one can construct a separation oracle
in polynomial time and apply the ellipsoid method to solve the linear optimization problem. The
less obvious direction in the result above states that if one can solve the linear optimization problem,
one can also use it to construct a separation oracle. The equivalence between these two problems
turns out to have profound implications in combinatorial optimization and has enabled numerous
polynomial time algorithms for many problems that are difficult to solve otherwise.

Algorithm 2 Separation Oracle for the feasible (µ, z) in LP 1
input (µ′, z′) ∈ Rk+1

1: Query SOF (µ′).
2: if µ′ /∈ PF then
3: output “NO” and output the same separating hyperplane as outputted by SOF (µ′).
4: else
5: Let w∗ ∈ argminw∈PR µ

′ · w and V = µ′ · w∗. This requires solving a linear optimization
problem over PR using the ellipsoid method with the separation oracle SOR.

6: if z′ ≤ V then
7: output “YES”
8: else
9: output “NO”, and a separating hyperplane z ≤ µ · w∗, as z′ > µ′ · w∗ and all feasible

solutions of LP 1 respect this constraint.
10: end if
11: end if

Our goal is to design a polynomial time separation oracle for the polytope PF . The key observation is
that the linear optimization problem over polytope PF : maxµ∈PF w ·µ is exactly the same as solving
the MDP with reward function R(·) = w · φ(·). Therefore, we can use the MDP solver to design a
polynomial time separation oracle for PF .
Lemma 2. Given access to an MDP solver ALG that solves any MDP M in time polynomial in
〈M〉, we can design a separation oracle SOF for PF that runs in time polynomial in 〈M\R〉, 〈φ〉, k,
and the bit complexity of the input 4.

4Note that SOF only depends on the bit complexity of M\R, but not the actual model of M\R such as the
distributions of the initial states or the transition probabilities. We only require access to ALG and an upper
bound of 〈M\R〉.

5

With SOF , we first design a polynomial time separation oracle for checking the feasible (z, µ) pairs
in LP 1 (Algorithm 2). With the separation oracle, we can solve LP 1 using the ellipsoid method.
The last difficulty is that the optimal solution only gives us the maxmin feature vector instead of the
corresponding maxmin policy. We use the following nice property of SOF to convert the optimal
solution in the feature space to the policy space. See Section 8 in the supplementary material for
intuition behind Lemma 3.
Lemma 3. [9, 14, 7] If SOF (µ) = “YES”, there exists a set, C, of weights w ∈ Rk such that SOF
has queried the MDP solver ALG on reward function w · φ(·) for every w ∈ C. Let (πw, µw) be the
output of ALG on weight w, then µ lies in the convex hull of {µw|w ∈ C}.

Proof of Theorem 1: It is not hard to see that Algorithm 2 is a valid polynomial time separation oracle
for the feasible (µ, z) pairs in LP 1. Hence, we can solve LP 1 in polynomial time with the ellipsoid
method with access to Algorithm 2. Next, we show how to convert the optimal solution µ∗ of LP 1
to the corresponding maxmin optimal policy π∗. Here, we invoke Lemma 3. We query SOF on µ∗
and we record all weights w that SOF has queried the MDP solver ALG on. Let C = {w1, . . . , w`}
be all the queried weights. As SOF is a polynomial time algorithm, ` is also polynomial in the
input size. By Lemma 3, we know that µ is in the convex hull of ({µw|w ∈ C}), which means there
exists a set of nonnegative numbers p1, . . . , p`, such that

∑`
i=1 pi = 1 and µ∗ =

∑`
i=1 pi · µwi .

Clearly, the discounted accumulated feature value of the randomized policy
∑`
i=1 pi · πwi equals

to
∑`
i=1 pi · Ψ(πwi) =

∑`
i=1 pi · µwi = µ∗. We can compute the pis in poly-time via linear

programming and
∑`
i=1 pi · πwi is the maxmin policy. 2

4.2 Finding the Maxmin Policy using Follow the Perturbed Leader

The exact algorithm of Theorem 1 may be computationally expensive to run, as the separation oracle
SOF requires running the ellipsoid method to answer every query, and on top of that we need to run
the ellipsoid method with queries to SOF . In this section, we propose a simpler and faster algorithm
that is based on the algorithm – follow-the-perturbed-leader (FPL) [13].
Theorem 2. For any ξ ∈ (0, 1/2), with probability at least 1 − 2ξ, Algorithm 3 finds a policy π
after T rounds of iterations such that its expected reward under any weight from PR is at least

maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

. In every iteration, Algorithm 3 makes one query to

ALG and O
(
k2
(

(log k)2 + ((b+ 〈φ〉)(|A||S|+ k) + log T)
2
))

queries to SOR, where b is an
upper bound on the number of bits needed to specify the transition probability Psa for any state s
and action a.

FPL is a classical online learning algorithm that solves a problem where a series of decisions d1, d2, ...
need to be made. Each di is from a possibly infinite set D ⊆ Rn. The state st ∈ S ⊆ Rn at step
t is observed after the decision dt. The goal is to have the total reward

∑
t dt · st not far from the

reward of the best fixed decision from D in hindsight, that is maxd∈D
∑
t d · st. The FPL algorithm

guarantees that after T rounds, the regret
∑
t dt · st −maxd∈D

∑
t d · st scales linearly in

√
T . This

guarantee holds for both oblivious and adaptive adversary, and the bound holds both in expectation
and with high probability (see Theorem 4 in Section 8 of the supplementary material for the formal
statement).

FPL falls into a large class of algorithms that are called low-regret algorithms, as the regret grows
sub-linearly in T . It is well known that low-regret algorithms can be used to solve two-player zero-
sum games approximately. The maxmin problem we face here can also be modeled as a two-player
zero-sum games. One player is the agent whose strategy is a policy π, and the other player is the
reward designer whose strategy is a weight w ∈ PR. The agent’s payoff is the reward that it collects
using policy π, which is Ψ(π) · w, and the designer’s payoff is −Ψ(π) · w. Finding the maxmin
strategy for the agent is equivalent to finding the maxmin policy. One challenge here is that the
numbers of strategies for both players are infinite. Even if we only consider the pure strategies
which correspond to the extreme points of PF and PR, there are still exponentially many of them.
Many low-regret algorithms such as multiplicative-weights-update requires explicitly maintaining a
distribution over the pure strategies, and update it in every iteration. In our case, these algorithms
will take exponential time to finish just a single iteration. This is the reason why we favor the FPL
algorithm, as the FPL algorithm only requires finding the best policy giving the past weights, which

6

can be done by the MDP solver ALG. We also show that a similar result holds even if we replace the
exact MDP solver with an additive FPTAS ÂLG. The proof of Theorem 2 can be found in Section 8
in the supplementary material. Our generalization to cases where we only have access to ÂLG is
postponed to Section 9 in the supplementary material.

Algorithm 3 FPL Maxmin Learning
input T : the number of iterations

1: Set δ := 1/k
√
T .

2: Arbitrarily pick some policy π1, compute µ1 ∈ PF . Arbitrarily pick some reward weights w1,
and set t = 1.

3: while t ≤ T do
4: Use ALG to compute the optimal policy πt and µt = Ψ(πt) that maximizes the expected

reward under reward function
(∑t−1

i=1 wi + pt

)
· φ(·), where pt is drawn uniformly from

[0, 1/δ]k.
5: Let wt := argminw∈PR w

T (
∑t−1
i=1 µt + qt), where qt is drawn uniformly from [0, 1/δ]k.

6: t := t+ 1.
7: end while
8: Output the randomized policy 1

T ·
∑T
t=1 πt.

5 Experiments

Gridworld We use gridworlds in the first set of experiments. Each grid may have a different
"terrain" type such that passing the grid will incur certain reward. For each grid, a feature vector φ(s)
denotes the terrain type, and the true reward can be expressed as R∗ = w∗ · φ(s). The agent’s goal
is to move to a goal grid with maximal reward under the worst possible weights that are consistent
with the expert. In other words, the maxmin policy is a safe policy, as it avoids possible negative side
effects [3]. In the experiments, we construct the expert policy πE in a small (10×10) demonstration
gridworld that contains a subset of the terrain types. One expert policy is provide, and the number
of trajectories that we need to estimate the expert policy’s cumulative feature follows the sample
complexity analysis as in [21]. In the following experiment we set ε = 0.5 which defines PR and
captures how close to optimal the expert is.

Figure 2: Experiment results comparing our
maxmin policy to a baseline. The baseline was
computed with a random reward for the fifth ter-
rain and the other four terrain rewards set the same
as the demonstration MDP. Our maxmin policy
is much safer than the baseline as it completely
avoids traversing the fifth (unknown) terrain type.
It should also be noticed that the maxmin policy
learns from the expert policy while achieving the
goal of avoiding potential negative side effects,
as the fraction of trajectory of each terrain type
closely resemble the expert.

An example behavior is shown in Figure 3.
There are 5 possible terrain types. The expert
policy in Figure 3 (left) has only seen 4 terrain
types. We compute the maxmin policy in the
"real-world" MDP of a much larger size (50×50)
with all 5 terrain types using Algorithm 3 with
the reward polytope PR implicitly specified by
the expert policy. Figure 3 (middle) shows that
our maxmin policy avoids the red-colored ter-
rain that was missing from the demonstration
MDP. To facilitate observation, Figure 3 (right)
shows the same behavior by an agent trained in
a smaller MDP. Figure 2 compares the maxmin
policy to a baseline. The baseline policy is com-
puted in an MDP whose reward weights are the
same as the demonstration MDP for the first
four terrain types and the fifth terrain weight is
chosen at random. Our maxmin policy is much
safer than the baseline as it completely avoids
the fifth terrain type. It also imitates the expert’s
behavior by favoring the same terrain types.

We also implemented the maxmin method in
gridworlds with a stochastic transition model.
The maxmin policy (see Figure 8 in Section 10

7

of the supplementary material) is more conservative comparing to the deterministic model, and
chooses paths that are further away from any unknown terrains. More details and computation time
can be found in the supplementary material.

It should be noted that the training and testing MDPs are different. More specifically, the red
terrain type is missing from the expert demonstration, and the testing MDP is of a larger size. As
discussed in the Introduction, our formulation allows the testing MDP in which the agent operates
to be different from the training MDP in which the expert demonstrates, as long as the two MDPs
share the same feature space. All of our experiments have this property. To the limit of our
knowledge, apprenticeship learning requires the training and testing MDPs to be the same, thus a
direct comparison is not possible. For example, in the gridworld experiments, one has to explicitly
assign a reward to the "unknown" feature in order to apply apprenticeship learning, which may cause
the problem of reward misspecification and negative side effects. Our maxmin solution is robust to
such issues.

Figure 3: An example of maxmin policy in gridworlds. Left: an expert policy in the small demon-
stration MDP, where 4 of 5 terrain types were used and their weights were randomly chosen. The
expert policy guides moving towards the yellow goal grid while preferring the terrains with higher
rewards (light blue and light green). Middle: when faced with terrain types (red-colored) that the
expert policy never experienced, maxmin policy avoids such terrains and the accompanying negative
side effects. The agent learns to operate in a larger (50×50) grid world. Right: an agent in a smaller
MDP to facilitate observation.The maxmin policy generates two possible trajectories.

Figure 4: Modified cartpole task with
two additional features – questions
blocks to either side of the center. The
rewards associated with passing these
blocks are not provided to the agent.

CartPole Our next experiments are based on the classic
control task of cartpole and the environment provided by
OpenAI Gym [6]. While we can only solve the problem
approximately using model-free learning methods, our
experiments show that our FPL-based algorithm can learn
a safe policy efficiently for a continuous task. Moreover, if
provided with more expert policies, our maxmin learning
method can easily accomodate and learn from multiple
experts.

We modify the cartpole problem by adding two possible
features to the environment as the two question blocks
shown in Figure 4, and more details in the supplementary
material. The agent has no idea of what consequences passing these two blocks may have. Instead of
knowing the rewards associated with these two blocks, we have expert policies from two other related
scenarios. The first expert policy (Expert A) performs well in scenario A where only the blue block to
the left of the center is present, and the second expert policy (Expert B) performs well in scenario B
where only the yellow block to the right of the center is present. The behavior of expert policies in a
default scenario (without any question blocks), and scenarios A and B are shown in Figure 5. It is
obvious that comparing with the default scenario, the expert policies in the other two scenarios prefer
to travel to the right side. Intuitively, it seems that the blue block incurs negative effects while the
yellow block is either neutral or positive.

Now we train the agent in the presence of both question blocks. First, we provide the agent with
Expert A policy alone, and learn a maxmin policy. The maxmin policy’s behavior is shown in Figure 6
(top). It tries to avoid both question blocks since it observes that Expert A avoids the blue block and
it has no knowledge of the yellow block. Then, we provide both Expert A and Expert B to the
agent, and the resulting maxmin policy guides movement in a wider range extending to the right of

8

Figure 5: Behavior examples of different poli-
cies. Occupancy is defined as the number of
steps appearing at a location divided by the to-
tal steps. top: In the default setting without
any question blocks, the travel range is relatively
symmetric around the center of the field. mid:
In the presence of the blue question block to the
left, an expert policy A guides movements to
the right. bottom: In scenario B where only the
yellow question block is present, expert policy
B also guides movement to the right.

Figure 6: Maxmin policy learnt with different
expert policies. top: Given Expert A policy only,
the agent learns to stay within a narrow range
near slightly right to the center to avoid both
question blocks. Because the agent has no knowl-
edge about the yellow block, a maxmin policy
avoids it. bottom: When given both Expert A
and Expert B policies, the agent learns that it
is safe to pass the yellow block, so the range is
wider and extends more to the right comparing
to the maxmin policy learnt from Expert A alone.

the field as shown in Figure 6 (bottom). This time, our maxmin policy also learns from Expert B that
the yellow block is not harmful. The experiment demonstrates that our maxmin method works well
with complex reinforcement learning tasks where only approximate MDP solvers are available.

6 Discussion

In this paper, we provided a theoretical treatment of the problem of reinforcement learning in the
presence of mis-specifications of the agent’s reward function, by leveraging data provided by experts.
The posed optimization can be solved exactly in polynomial-time by using the ellipsoid methods,
but a more practical solution is provided by an algorithm which takes a follow-the-perturbed-leader
approach. Our experiments illustrate the fact that this approach can successfully learn robust policies
from imperfect expert data, in both discrete and continuous environments. It will be interesting to see
whether our maxmin formulation can be combined with other methods in RL such as hierarchical
learning to produce robust solutions in larger problems.

7 Acknowledgement

Doina Precup and Jessie Huang gratefully acknowledge funding from Open Philanthropy Fund
and NSERC which made this research possible. Yang Cai and Fa Wu thank the NSERC for its
support through the Discovery grant RGPIN2015-06127 and FRQNT for its support through the
grant 2017-NC-198956.

9

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1. ACM,
2004.

[2] Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. In
Advances in Neural Information Processing Systems, pages 1813–1822, 2017.

[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[4] Aharon Ben-Tal, Elad Hazan, Tomer Koren, and Shie Mannor. Oracle-based robust optimization
via online learning. Operations Research, 63(3):628–638, 2015.

[5] Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods. From
Stanford EE 364b lecture notes, 2007.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Reducing Revenue to Welfare
Maximization : Approximation Algorithms and other Generalizations. In the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

[8] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

[9] Martin Grötschel, László Lovász, and Alexander Schrijver. The Ellipsoid Method and its
Consequences in Combinatorial Optimization. Combinatorica, 1(2):169–197, 1981.

[10] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. In Advances in Neural Information Processing Systems, pages 6768–6777, 2017.

[11] Marcus Hutter and Jan Poland. Adaptive online prediction by following the perturbed leader.
Journal of Machine Learning Research, 6(Apr):639–660, 2005.

[12] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, 2005.

[13] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

[14] Richard M. Karp and Christos H. Papadimitriou. On linear characterizations of combinatorial
optimization problems. SIAM J. Comput., 11(4):620–632, 1982.

[15] Leonid G. Khachiyan. A Polynomial Algorithm in Linear Programming. Soviet Mathematics
Doklady, 20(1):191–194, 1979.

[16] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust markov decision
processes. In Advances in Neural Information Processing Systems, pages 701–709, 2013.

[17] Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–
359, 2005.

[18] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
pages 663–670, 2000.

[19] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

[20] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear
programming. In Proceedings of the 25th international conference on Machine learning, pages
1032–1039. ACM, 2008.

[21] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in neural information processing systems, pages 1449–1456, 2008.

10

Supplementary Material

8 Missing Proofs from Section 4

The Ellipsoid Method The following theorem, reworded from [15, 9, 14], states that given a
separation oracle of a convex polytope, the ellipsoid method can optimize any linear function over
the convex polytope in polynomial time.

Theorem 3 (Ellipsoid Method). ([15, 9, 14]) Let P be a d-dimensional closed, convex subset of Rd
defined as the intersection of finitely many halfspaces, and SO be a poly-time separation oracle for P .
Then it is possible to find an element in argmaxx∈P {c ·x} for any c ∈ Rd (i.e. solve linear programs)
in time polynomial in d and 〈P 〉 using the ellipsoid method, if P can be described implicitly using
〈P 〉 bits. 5

Proof of Lemma 2: Lemma 4 shows that PF can be implicitly described using 〈PF 〉 = poly(〈M \
R〉, 〈φ〉, k) bits. Maximizing any linear function w · µ can be solved by querying ALG on MDP
M \R with reward function w ·φ(·). Since MDP (M \R,w · φ(·)) has bit complexity polynomial in
〈M \R〉, 〈φ〉, k, and 〈w〉, we can solve the linear optimization problem in time poly(〈PF 〉, k, 〈w〉).
By Lemma 1, we can solve the separation problem in time poly(〈PF 〉, k, 〈y〉) on any input y ∈ Rk.
Hence, we can design a polynomial time separation oracle. 2

Lemma 4. Polytope PF for any MDP without reward function M \R can be implicitly described
using poly(〈M \R〉, 〈φ〉, k) bits.

Proof. The following constraints explicitly describe all µ ∈ PF , where xsas correspond to the
occupancy measure of some policy π.

µ =
∑
s

φ(s)
∑
a

xsa∑
a

xsa = Pr(s0 = s) + γ
∑
s′,a

xs′aPsa ∀s

xsa ≥ 0

Our statement follows from the fact that all the coefficients in these constraints have bit complexity
〈M \R〉 or 〈φ〉.

Intuition behind Lemma 3 The intuition behind Lemma 3 is that the separation oracle SOF tries
to search over all possible weights w to find one to separate the query point µ from PF using the
ellipsoid method. Along the way, it queries a set of weights (this is our set C) on ALG trying to find
a separating weight w such that µ ·w > µw ·w. If such a separating weight is found, SOF terminates
immediately and outputs “NO” together with the corresponding separating hyperplane. The SOF
says “YES” only when it has searched over a polynomial number of weights and concludes that there
is no possible weight to separate µ. The reason that SOF can draw such a conclusion is due to the
ellipsoid method. In particular, when SOF says “YES”, the correctness of the ellipsoid algorithm
implies that µ is in the convex hull of all the extreme points of PF that have been outputted by the
ALG.

Follow-the-Perturbed-Leader Kalai and Vempala [13] proposed the FPL algorithm and showed
that in expectation, the regret is small against any oblivious adversary. [11] showed that the same
regret bound extends to settings with adaptive adversary. To obtain a high probability bound, one can
construct a martingale to connect the actual reward and the expected reward obtained by the agent,
then apply the Hoeffding-Azuma inequality.

Theorem 4 (Follow-the-Perturbed-Leader). [13, 11, 8] Let d1, . . . , dT be a sequence of decisions.
Let s1, . . . , sT be a state sequence chosen by an adaptive adversary, that is, st can be selected based
on all the previous states s1, . . . , st−1 and all the previous decisions d1, . . . , dt−1 for every t ≤ T .

5We say a polytope P can be described implicitly using ` bits if there exists a description of the polytope P
such that all constraints only use coefficients with bit complexity `.

11

If we let dt be argmaxd∈Dd ·
(∑t−1

i=1 si + pt

)
, where pt is drawn uniformly from [0, 1/δ]n for some

δ > 0, then

E

[
T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st

]
≥ −δ · C1C2T −

2C3

δ
.

C1 is an upper bound of ||s||1 for all s ∈ S, C2 is an upper bound of |d · s| for all d ∈ D and s ∈ S,
and C3 is an upper bound of ||d||1 for all d ∈ D. Moreover, for all ξ ≥ 0, with probability at least
1− ξ, the actual accumulative reward under any adaptive adversary satisfies,

T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st ≥ −δ · C1C2T −
2C3

δ
− 2C2

√
T ln

1

ξ
.

Using Theorem 4, we are ready to prove Theorem 2.

Proof of Theorem 2: We use P to denote the sequence p1, . . . , pT and Q to denote the sequence
q1, . . . , qT . First, notice that every realization of Q defines a deterministic adaptive adversary
for the agent. In the setting of Algorithm 3, we can take C1 to be k, C2 to be k2, and C3 to
be k. By Theorem 4 (Section 8 of the supplementary material), we know that for all ξ ≥ 0,
PrP∼U [0,1/δ]kT [

∑T
t=1 µt·wt−maxµ∈PF

∑T
t=1 µ·wt ≥ −k2

√
T (3+2

√
ln 1/ξ)|Q] ≥ 1−ξ for every

realization of Q. Similarly, every realization of P also defines a deterministic adaptive adversary for
the designer, and by Theorem 4 , we know that PrQ∼U [0,1/δ]kT [−

∑T
t=1 µt ·wt+minw∈PR

∑T
t=1 µt ·

w ≥ −k2
√
T (3+2

√
ln 1/ξ)|P] ≥ 1− ξ for any realization of P . Let B = k2

√
T
(

3 + 2
√

ln 1/ξ
)

.
By the union bound, with probability at least 1− 2ξ over the randomness of P and Q

T∑
t=1

µt · wt − max
µ∈PF

T∑
t=1

µ · wt ≥ −B (1)

and

−
T∑
t=1

µt · wt + min
w∈PR

T∑
t=1

µt · w ≥ −B (2)

Next, we argue that 1
T ·
∑T
t=1 πt is an approximate maxmin policy.

min
w∈PR

T∑
t=1

µt · w ≥
T∑
t=1

µt · wt −B (Eq. (2))

≥ max
µ∈PF

T∑
t=1

µ · wt − 2B (Eq. (1))

≥ T · max
µ∈PF

min
w∈PR

µ · w − 2B

The last inequality is because that on the LHS (line 2) the designer is choosing a fixed strategy 1
T ·∑T

t=1 wt, while on the RHS (line 3) the designer can choose the worst possible strategy for the agent.
Therefore, if the agent uses policy 1

T ·
∑T
t=1 πt, it guarantees expected reward maxµ∈PF minw∈PR µ ·

w − 2B/T .

Finally, in every iteration t, we query ALG once to compute πt and µt, and we use the ellipsoid
method to find wt using O(k2(〈M\R〉2 + (log T)2)) queries to SOR and poly(k, 〈M\R〉, log T)
regular computation steps. During each query, SOR calls ALG. Thus, our result is a reduction from
the maxmin learning problem to simply solving an MDP under given weights. Any improvement on
ALG will also improve the running time of Algorithm 3. We discuss the empirical running time in
section 10 of the supplementary material. 2

9 Maxmin Learning using an Approximate MDP Solver

In the previous sections, we assume that we have access to an MDP solver ALG that solves any
MDP M optimally in time polynomial in 〈M〉. However, in practice, solving large-size MDPs,

12

e.g. continuous control problems, exactly could be computationally expensive or infeasible. Our
FPL-based algorithm also works in cases where we can only solve MDPs approximately.

Suppose we are given access to an additive FPTAS ÂLG for solving MDPS. More specifically,
ÂLG finds in time polynomial in 〈M〉, 1/η a solution (π∗η , µ

∗
η), such that Es0∼D[V π

∗
η (s0)|M] ≥

maxπ Es0∼D[V π(s0)|M]− η. Notice that the weights of M ’s reward function have L1-norm L.

We face two challenges when we replace ALG with ÂLG: (i) we can no longer find the best policy
µt with respect to all the previous weights plus the perturbation in every iteration, and (ii) we no
longer have a separation oracle for PR, as the SOR (Algorithm 1) relies on the MDP solver when
PR is implicitly specified by the expert’s policy. It turns out (i) is not hard to deal with, as the FPL
algorithm is robust enough to work with only an approximate leader. (ii) is much more subtle. We
design a new algorithm and use it as a proxy for the polytope PR. We call this new algorithm a weird
separation oracle (following the terminology in [7]) as the points it may accept do not necessarily
form a convex set, even though it does accept all points in PR. It may seem at first not clear at all why
such a weird separation oracle can help us. However, we manage to prove that just with this weird
separation oracle, we can still compute an approximate minimizing weight vector wt in PR in every
iteration (Step 5 of Algorithm 3). Combining this with our solution for challenge (i), we can still
compute an approximately maxmin policy with essentially the same performance as in Algorithm 3.

Theorem 5. If we replace the exact MDP solver ALG with an approximate solver ÂLG in step 4 of
Algorithm 3, then for any ξ ∈ (0, 1/2) and any c > 0, with probability at least 1− 2ξ, Algorithm 3
finds a policy π after T rounds of iterations such that its expected reward under any weight from PR

is at least maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

− 2c. In every iteration, Algorithm 3 makes

one query to ÂLG and a polynomial number of queries to SOR. In particular, for every query to
ÂLG, we first divide the input by 2T then feed it to ÂLG and ask for a policy that is at most c/2T
worse than the optimal one.

The proof of Theorem 5 is similar to the proof of Theorem 2. We use the bounds provided by Lemma 5
instead of Theorem 4, and change the RHS in Equation (1) from −B to −k2

√
T
(

3 + 2
√

ln 1/ξ
)
−

2cT accordingly. The rest of the proof remains the same.

Assume we have a procedure Mη for η-approximating linear programs over the decision set D such
that for all s ∈ Rk,

s ·Mη(s) ≥ argmaxd∈Ds · d− η.
Lemma 5 (Follow the Approximate Perturbed Leader). [4] Let d1, . . . , dT be a sequence of decision
made by an η-approximating procedure Mη such that dt = Mη(

∑t−1
i=1 si + pt). Then

E

[
T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st

]
≥ −δ · C1C2T −

2C3

δ
− 2ηT.

The definition of constants C1, C2 and C3 are the same as in Theorem 4. Moreover, for all ξ ≥ 0,
with probability at least 1− ξ, the actual accumulative reward under any adaptive adversary satisfies,

T∑
t=1

dt · st −max
d∈D

T∑
t=1

d · st ≥

− δ · C1C2T −
2C3

δ
− 2C2

√
T ln

1

ξ
− 2ηT.

An astute reader may have noticed that in the analysis above, we used the same separation oracle
SOR as in section 3. However, in the case when the separation oracle for the reward polytope is
implicitly specified by an expert policy, SOR queries the MDP solver in step 1 of algorithm 1. If
we do not have an exact MDP solver ALG, it is not clear how we can define a separation oracle for
polytope PR. We use Algorithm 4 as an proxy to polytope PR.

We call WSOηR a weird separation oracle for for the reward polytope for PR, because the set of w′
that it will accept is not necessarily convex. For example, the following may happen. First, we query

13

Algorithm 4 Weird Separation Oracle WSOηR for the reward polytope PR

1: Let µ(η)
w′ := ÂLG(w′, η). It is the feature vector of the policy computed by the approximate

MDP solver ÂLG with accuracy η, and µ(η)
w′ · w′ ≥ maxµ∈PR µ · w′ − η.

2: if µ(η)
w′ · w′ > µE · w′ + ε then

3: output “NO” , and
(
µE − µ(η)

w′

)
· w + ε ≥ 0 as the separating hyperplane, since for all

w ∈ PR, µE · w ≥ µ(η)
w′ · w − ε.

4: else
5: output “YES”.
6: end if

two points w1 and w2 that are close to each other. Both are accepted by WSOηR, and it happens to
be the case that ÂLG(w1, η) and ALG(w2, η) are both η away from the optimal solutions. Now
we query w3 = (w1 + w2)/2, and run WSOηR. Luckily (or unfortunately) ÂLG(w3, η) is close to
optimal, and w3 is rejected.

Lemma 6. For any linear optimization problem, we can construct a polynomial time algorithm based
on the ellipsoid-method that queries WSOηR, such that it finds a solution that is at least as good
as the best solution in polytope P = {w|w · µE ≥ w · ÂLG(w′, η)− ε,∀w′, ‖w′‖1 ≤ L}, although
our solution does not necessarily lie in P .

Proof of Lemma 6: We only sketch the proof here. Solving a linear optimization can be converted into
solving a sequence of feasibility problems by doing binary search on the objective value. We show
that for any objective value α, as long as there is a solution x ∈ P whose objective value c · x ≥ α,
our algorithm also finds a solution x′ such that c · x′ ≥ α. First, imagine we have a separation oracle
for P , and the ellipsoid method needs to run N iterations to determine whether there is a solution in
P whose objective value is at least α. The correctness of ellipsoid method guarantees that if it hasn’t
found any solution after N iterations, then the intersection of the halfspace c · x ≥ α and P is empty.
The reason is that if the intersection is not empty it must have volume at least r, and the ellipsoid
method maintains an ellipsoid that contains the intersection of the halfspace c · x ≥ α and P and
shrinks the volume of the ellipsoid in every iteration. After N iterations the ellipsoid already has
volume less than r.

Our algorithm also runs the ellipsoid method for N iterations. In each iteration, we first check the
constraint c · x ≥ α, if not satisfied, we output this constraint as the separating hyperplane. If it is
satisfied, instead of querying the real separation oracle for P , we query WSOηR. If the answer is
“YES", we have found a solution x such that c · x ≥ α. If the answer is “NO", clearly this query
point is not in P , and the outputted separating hyperplane contains the intersection of the halfspace
c · x ≥ α and P . Therefore, whenever our algorithm accepts a point, it must have objective value
higher than α. Otherwise, the shrinking ellipsoid still contains the intersection of the halfspace
c · x ≥ α and P . If our algorithm terminates after N iterations without accepting point, we know that
the intersection between the halfspace c · x ≥ α and P is empty as the volume of the ellipsoid after
N iterations is already too small.

2

Consider the following three polytopes:

(i) PR := {w | w · µE ≥ w · µ− ε, ∀µ ∈ PF }

(ii) P = {w|w · µE ≥ w · ÂLG(w′, η)− ε,∀w′, ‖w′‖1 ≤ L}

(iii) P (ε+η)
R := {w | w · µE ≥ w · µ− ε− η,∀µ ∈ PF }.

Fact 1. PR ⊆ P .

Fact 2. WSOηR only accepts points that are in P (ε+η)
R .

14

Proof. Suppose w /∈ P (ε+η)
R , then clearly w · ÂLG(w, η) ≥ maxµ∈PF w · µ − ε − η > w · µE .

Hence, WSOηR will not accept w.

Lemma 7. For all w in P (ε+η)
R , w · ε

ε+η is in PR.

Proof of Lemma 7: From the definition of P (ε+η)
R , multiply both side of the inequality with ε

ε+η , and
let w′ = w · ε

ε+η , w′ is in PR. 2

Theorem 6. For any c > 0 and ξ ∈ (0, 1/2), with probability at least 1− 2ξ, Algorithm 3 finds a
policy π after T rounds of iterations such that its expected reward under any weight from PR is at

least maxµ∈PF minw∈PR µ · w −
k2

(
6+4
√

ln 1/ξ
)

√
T

− 4c. In every iteration, Algorithm 5 makes one
query to ALGη and a polynomial number of queries to Algorithm 4.

Now, we are ready to describe the algorithm using only access to WSOηR.

Algorithm 5 Finding the Maxmin Policy using Follow-the-Perturbed-Leader (FPL)
input T : the number of iterations

1: Set δ := 1
k
√
T

, where ||w||1 ≤ L for all w ∈ PR. Set η1 := c
2T and η2 := cε

2k2T−c .
2: Arbitrarily pick some policy π1 and compute µ1 ∈ PF . Arbitrarily pick some reward weights
w1, and set t = 1.

3: while t ≤ T do
4: Let policy πt and µt = Ψ(πt) be the output of ÂLG

((∑t−1
i=1 wi + pt

)
/T, η1

)
, where pt is

drawn uniformly from [0, 1/δ]k.
5: Use our algorithm in Lemma 6 with WSOη2R to solve minwT (

∑t−1
i=1 µt + qt), where qt is

drawn uniformly from [0, 1/δ]k. Let w′t be the solution and set wt to be w′t · ε
ε+η2

.
6: t := t+ 1.
7: end while
8: Output the randomized policy 1

T ·
∑T
t=1 πt.

Proof of Theorem 6: At each time step t, usingWSOR, Algorithm 5 step 5 outputs awt. By Lemma 6
and Fact 1,

w′t ·

(
t−1∑
i=1

µi + qt

)
≤ min
w∈PR

w ·

(
t−1∑
i=1

µi + qt

)
.

By Lemma 7 and Fact 2,

wt ·

(
t−1∑
i=1

µi + qt

)
=

ε

ε+ η2
· w′t ·

(
t−1∑
i=1

µi + qt

)

≤ min
w∈PR

w ·

(
t−1∑
i=1

µi + qt

)
+

2k2T

ε+ η2
,

where we used the fact that

−wt

(
t−1∑
i=1

µi + qt

)
≤ 2k2T.

Since c = 2η2k
2T

ε+η2
, we can use Lemma 5 and replace the RHS in Equation (2) that was used in the

proof of Theorem 2 to −k2
√
T
(

3 + 2
√

ln 1/ξ
)
− 2cT . The analysis for µt remains the same as in

Thoerem 5. 2

10 Experiment Details

In every iteration of Algorithm 3 and Algorithm 5, step 5 computes a minimizing weight in PR.
Instead of using the ellipsoid method to solve the LP, we use the analytic center cutting-plane method
(see [5] for a brief overview) throughout our experiments. The method combines good practical
performance with reasonable simplicity.

15

10.1 Gridworld

The domain contains five types of terrain. Four terrain types are used in the demonstration gridworld
where we construct the expert policy. We select the rewards for these four terrain types uniformly
from [−0.5, 0], and the target has a reward of 10. The reward of each terrain type is deterministic.
The demonstration MDP is uniformly composed of four terrain types, 25% each type. The fifth terrain
type (red colored as in Figure 3) is not present in the demonstration gridworld. The agent is trained
in a "real-world" MDP that is composed uniformly of all five terrain types, 20% each. We select
maps that are feasible, such that for all rewards in the consistent reward polytope, value iteration
has a solution for the agent to reach the goal. We use feature vectors that indicate the terrain type of
each state, choose a discount factor of 0.95, and use value iteration throughout the experiment. The
consistency between the expert policy and the reward function is defined with ε = 0.5.

Deterministic transition model In an MDP with deterministic transition model, the agent moves
in exactly the direction chosen by the agent. We run FPL for 5000 iterations and use the average of
policies output by the last 2500 iterations as the maxmin policy. Figure 2 shows that our maxmin
policy is much safer than a baseline. The baseline policy is computed in an MDP whose reward
weights are the same as the demonstration MDP for the first four terrain types and the fifth terrain
weight is chosen uniformly at random from [-1,0]. The expert policy for the displayed results is
constructed by computing the optimal policy in an demonstration MDP with rewards for the first four
terrain type set as [−0.5,−0.2,−0.4,−0.1]. The results are accumulated from 100 individual runs
using the same expert policy. Examples of the baseline trajectories are shown in Figure 7.

Figure 7: Trajectories chosen by policies generated using weights randomly assigned to the red-
colored unknown feature. Although this feature may have negative side effects, the random agent
may still go through it.

Stochastic transition model At each state, there is 10% chance that the agent will go in a random
direction regardless of the action chosen by the agent. The agent will receive rewards based on
the state it actually lands in. We show in Figure 8 that to mitigate the higher risk of traversing the
unknown terrain type, our maxmin policy appears to be more conservative than the deterministic
case. Although Figure 9 shows that it cannot absolutely avoid the unknown terrain type due of the
stochastic nature of the model, the percentage is much lower than the baseline. The baseline was
computed with the same reward weights as in the deterministic case.

Computation Performance In our grid world experiment, the worst case running time of ALG
is O(n2), but experiments show a more benign runtime of O(n1.5). For a 50× 50 grid world with

Figure 8: At each state, there is 10% chance that the agent will go in a random direction irrespective
of the action chosen by the agent, our maxmin method is still valid. Comparing to Figure 3 (right),
the maxmin policy also avoids going to the peripheral of the red-colored unknown feature.

16

Figure 9: In the gridworld with stochastic transition model, our maxmin policy has a small chance of
traversing the unknown terrain type disregard of being more conservative than the maxmin policy in
the deterministic case. The percentage is much lower than the baseline.

25 features, Algorithm 3 appears to converge after 325 iterations of FPL with total runtime of 3324
seconds (average of 20 trials, ordinary desktop computer). Instead of using the ellipsoid method,
we used analytic center cutting-plane method, and the running time appears to scale in the order of
O(k2).

10.2 CartPole

We modify the classic CartPole task in the OpenAI Gym environment by adding features that may
incur additional rewards. This is represented by the question blocks in Figure 4. The two question
blocks correspond to feature indicators for the agent’s horizontal position in the range of [−1.2, 0)
and [0.6, 1.8). We keep the same episode termination criterions for the pole angle and cart position as
the original environment. An episode is considered ending without failing if the pole angel and cart
position meet the criterion and the episode length is greater than 500. The agent receives a reward of
+1 for surviving every step.

We use longer episodes than the original problem to allow more diverse movement, while it also
makes the task more challenging. During validation of a policy, we consider the task solved as getting
a target average reward over 100 consecutive episodes with less than five failed episodes. The target
average reward depends on the reward we assign for passing the question blocks. If each step spent
at question block i incurs reward of ri, the target average reward is set to be 450 + 25

∑
ri. For

example, in scenario A, only the blue question block exists and it incurs reward of −2, our expert
policy Expert A passes the validation criterion by getting average reward higher than 400 over 100
consecutive episodes with less than 5 failed episodes. Indeed, our Expert A policy performs quite
well by getting a reward greater than 450 in scenario A. In scenario B, only the yellow question
block is present and it incurs reward of +2. Expert B passes the validation criterion with reward
greater than 1000.

The agent is in an MDP with both blue and yellow question blocks whose reward polytopes are
implicitly defined by the expert policy. We use Q-learning and apply updates using minibatches of
stored samples as the MDP solver. Notice that for this problem, our MDP solver is not necessarily
optimal. We computed maxmin policies when provided with different expert policies. The results in
Figure 6 are from testing the maxmin policy for 2000 episodes.

17

	Introduction
	Related Work

	Preliminary
	Consistent Reward Polytope
	Maxmin Learning using an Exact MDP Solver
	Ellipsoid-Method-Based Solution
	Finding the Maxmin Policy using Follow the Perturbed Leader

	Experiments
	Discussion
	Acknowledgement
	Missing Proofs from Section 4
	Maxmin Learning using an Approximate MDP Solver
	Experiment Details
	Gridworld
	CartPole

