Appendix: Doubly Robust Bayesian Inference for

Non-Stationary Streaming Data with S-Divergences
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Figure 1: Top: Plot of the well-log data between ¢ = 300 and ¢ = 500 with one obvious outlying
period. Middle Top: KLD run length posterior under the Gaussian error model with the MAP of the
run length posterior at each time point overlayed in red. Middle Bottom: KLD run length posterior
under the Student’s ¢ with 5 degrees of freedom error model with the MAP of the run length posterior
at each time point overlayed in red. Bottom: $-D run length posterior under the Gaussian error
model with 8, = 0.25 and Byn= 0.5 with the MAP of the run length posterior at each time point
overlayed in blue.

1 Student-t Experiments

In Section 2.3 (Quantifying Robustness) of the paper we argue that substituting the Gaussian error
model in the BLR setting for a Student’s ¢ error model — a traditional solution for robust parameter
inference — will be insufficient to ensure that standard Bayesian run-length posteriors are robust.
Here, the type of robustness we refer to is defined in Theorem 1. To demonstrate this, we implement
a version of BOCPD using both the Gaussian error model and the Student’s ¢ error model on two
subsets of the well-log data. The Student’s ¢ distribution is no longer an exponential family and thus
cannot be implemented in analytical form or via our structural variational approximation. Hence,
we used stan [|Carpenter et al., [2016]] for MCMC sampling from the parameter posterior under the
Student’s ¢ error model. For comparability, hyperparameters were fixed for both the Gaussian and
Student’s ¢ error models at g = 0, Xo = /5, ag = 0.5, by = 2, h(riy1) = 0.01 Vryy 1, where
N = 1000 values were sampled from the parameter posterior, M = 25 run lengths were stored and
the degrees of freedom of the Student’s ¢ error model were set to be v = 5. Figures[T]and [2] plot the
KLD run-length posteriors of the Gaussian and Student’s-¢ error models as well as the 3-D run-length



posteriors of the Gaussian error models for the two subsets of the well-log data. In both examples, the
KLD run-length posteriors favor declaring a CP under both the Gaussian and Student’s ¢ error model
at the first sign of an outlier. In the second example, the outlier is severe enough to permanently
disrupt the run-length inference for both KLD-based methods, while the 5-D-based method remains
robust. Theorem 1 outlines situations were this desireable behaviour of 53-D-based inference can be
guaranteed to happen when it would not happen under the KLD with any error model.
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Figure 2: Top: Plot of the well-log data between ¢ = 1100 and ¢ = 1300 with one obvious outlying
period. Middle: KLD run length posterior under the Gaussian error model with the MAP of the run
length posterior at each time point overlayed in red. Bottom: KLD run length posterior under the
Student’s ¢ with 5 degrees of freedom error model with the MAP of the run length posterior at each
time point overlayed in red. Bottom: S-D run length posterior under the Gaussian error model with
Bp = 0.5 and Bam= 1 with the MAP of the run length posterior at each time point overlayed in blue.



2 Proof of Theorem 1

Proof. This proof looks at the run length posterior parameterised by S, however to ease notation we
refer to By,=0 throughout. Condition on the event r; = r then after one time step either 74,1 = 7+ 1
or r¢+1 = 0. The odds of these two possibilities are as in Thm. 1. Now substituting the definitions of

I (e | Fe) and £ (yes1lyo) leaves

Fn e | Fy) &P (%p(yﬂ_ﬂyl:t)ﬁ ~ T Sp(zlylzt)”ﬁdz) "
y -
i (Wesalyo) - exp (%p(ymlyo)ﬁ ~ 5 Sp(ZIyo)Hﬂdz)

1 1
= exp (5 (p(yt+1|y1:t)6 —p(ytHIyo)B) 145 p(2|yr4)t p(z|y0)1+ﬁdz) - (2)

This proof first seeks a lower bound for this ratio. A lower bound on %p(ytﬂ ly1.4)? is 0, while the
maximal value of % p(yi11]20)? will occur at the prior mode. For the multivariate ¢-distribution prior
predictive with NIG hyperparameters ag, by, fg, 2o of dimensions p the prior mode has density

T((vo + p)/2 1 _ ~otn)f2
p(Ho|vo, po, Vo, p) = F(u0/2()(y§/27rf/>2/|‘)/01/2 1+ %(No — 1) g (po — No)] (3)
T+ "
T (vo/2) 70/ Vo |2
_ I'(ao +p/2) (5)

T(ao) (2bom)?? |T + X T XT|V?

As a result the only term in the lower bound of f5 (yi11|F:)/f2, (ye+1]yo) that does not solely
depend on the prior parameters is ﬁ § p(z|y1.t) TP dz. This term appears in the negative and thus
to lower bound f5, (Y:+1|F+)/f 1, (Ye+1|y0), an upper bound for 175 § p(z[y1.+)' "’ dz must be
found. The multivariate t-distribution can be integrated as

1 - T((v +p)/2)PHT(By + Bp + v)/2 1 o
57 J MVSt, (z|p, V) Pdz = I(\EV/Q)ﬁ)Jr/l]_Z((ﬁ]/ EE Bp+v +p)%)) (1+ B)(wm) o2 |V 1%
_ D((v +p)/2)°T((v + p)/2)T((Bv + Bp + 1) /2) 1 7
T(v/2)PT(v/2)T((Bv + Bp + v +p)/2) (1 + B)(xv)Be)2 |V |2
I'((v+p)/2)° 1

L(/2)P (1 + B)(rv)Br)2 V|7 (8)

The inequality is derived from the fact that F(lf (J;)E ) is increasing in « and as 5 > 0 and v > 0 then

. . . I'((v+p)/2)T((Bv+Bp+v)/2
(Bv + Bp +v)/2) = v/2 which implies IEEV/;;%/((%V(SFQPJWPJFP)%)) <L

Now employing the well-known result using Stirling’s formula to bound the gamma function

(2m) 22712 exp(—x) < T(z) < (2m)Y22" 2 exp(1/(12z) — ) )

we can therefore rewrite the ratio of gamma functions leaving



1 - 145, _ D(v+p)/2)° 1
" JMVSt ty(z|p, V) TPdz < T027 (14 3) ) o2 [V (10)

 (Var( 4 p)/2) D exp(—(v 4 p)/2 4 1/6(v + )’
( u/2 Y12 exp(—1/2))” (1 + B) (mv) B0)/2 [V

= (1 + Bypwp=1/2) exp(B(1/(6(v + p)) — p/2))

(1)

1
(1+B)(m)om/2 [V |71

12)

AN

Clearly exp (8(1/(6(v + p)) — p/2)) is decreasing in v for all p and to demonstrate when ((1 +
2)B(+p=1)/2) i5 decreasing in v we examine its derivative

w = (1 N £>5(V+P*1)/2 (13)
14

— exp ((B(V +p—1)/2)log ((1 + %))) (14)

% - g <log (1 + %) —(tp—1) 1:[_)25) Pl (15)

P
2

The sign of 2 is dictated by (log (1 + ) (v+p—1)1%7 ) , which can be demonstrated to be
positive always if p = 1 and negative always if p > 1.

Case 1: whenp > 1, ﬁ §p(2|y1..)* P dz is decreasing in v and thus we can upper bound it by
substituting the smallest value of v. Here we bound v above 1 in order to enforce that the mean of
the predictive ¢-distribution exists. Under the KLD posterior it is clear that ag rises as more data is
seen and while we do not have closed forms associated with the variational approximation to the 5-D
posterior we expect this to be the case here. As more data is seen the finite sampling uncertainty,
represented by v in the NIG case, should be decreasing. Therefore provided aq is set such that
2ag > 1, then this lower bound should never be violated.

Case 2: when p = 1, Stirling’s formula has failed to provide a decreasing upper bound for
143 § P(2[y1.4) P dz. However in the univariate case

1 145 L((v+1)/2)° 1
1+BJSty(zI/u,V) Pz < NG (16)
1
amn

<
(1+8) |V x/2

Where p = 1 is substituted into the bound from equation (§)) and the inequality comes from that fact

that % +/x. This bound conveniently does not depend on the degrees of freedom v at all.

We can therefore lower bound f7 (yui11|7:)/f5, (ye1lyo) as

B
1 T'(ap+1/2) B 1
P { p (F(ao)(zboﬂ)l/Q\I+X20XT\]/2) (1+8)| VD 2r®)/2 *
T(ao+1/2)°*'T(Bag+8/2+a0) 1 } ifp =1
D(ao)PH1T(Bao+B/2+ao+1/2) (148)(2mbo)(B)/2| I+ X o X T |P/? p

B
1 I'(ao+p/2) 18
P (F(flo)(Qbo‘ff)p/2\I+X20XT|1/2) + (%)
F(ao+P/2)ﬁ+1r(ﬁao+ﬁp/2+a0) 1

T(ao)?+1T (Bao+Bp/2+a0+p/2) (1+8)(2rbo) BP)/2| T+ X To X T P2

((1+ )72 exp(B(1/(6(1 + 1) = p/2)) gyt | 10> 1

fmt (yt+1|]:t)
fmf (yt+1|yo)

ex

Now fixing p, ag, bo, 10, X0 and |V|_. which values of 8 and H (7, r++1) would leave

min

1-— H(Tt, Tt+1)) fﬁ“ (yt+1|ft) >
H(re,ree1) 5 (yes1|yo)

1? (19)



We demonstrate this for p > 1 but it is straightforward to see that it extends to when p = 1.
Rearranging the inequality in equation gives us that holds providing

b
|V|ﬁ/2 =
[(ag +p/2)” <F(a0 + p/2)I'(Bao + Bp/2 + ao) _ >(20)
T'(ag)? (2bom)"P/? |I + X 2o XT|** \T'(a0)L'(Bao + Bp/2 + a0 +p/2) 1+ 58) B
1— H(re,r41)) (1+ B)(m)PP)/2
s ( H(re,rie) )) (1 + 52 )oCan =17 exp(B(1/(6(2a0 + p)) — /2))

We define the set defined by inequality . as S (p,B,a0,bo, 1o, X0, |Vli) =
{(67 (rtart+1)) (ﬁa (Tt,?“t+1)) Satley@Dforpa/67a0;b0au/07207|V|m1n} As a result
we can see that for fixed of ay, by, 10, £o and |V'| = |V/| . itis always possible to choose values of
B and H (r¢,r¢11) such that this holds. To see this consider fixing [3, the the upper bound is simply
1—H(r¢,re41)
(Tt Tt+1)

the inequality holds. O

increasing in log ( ) which takes values in R and thus can be set large enough so that

We note that in practice this result is likely to be stronger than is necessary. The observation that
is most likely to generate a change-point will have 0 mass under the predictive associated with the
current segment but also appears at the prior mode. While this was necessary to demonstrate this
result for all situations this is incredibly unlikely to occur. The requirement for | Vi, | is a result
of the beta-divergence loss function depending on S p(2|y1.¢) TP dz. In the proof of this result we
demonstrate that f5 (yi+1|7:)/f5, (y1+1|yo) is increasing in |V| and as a result if it is allowed to
get too small the inequality in equation (20) would not hold. This is an undesirable consequence
of the beta-divergence score not being completely local, that is to say not solely depending on the
predictive probability of the observation, thus the score under the prior can be quite a lot bigger than
the score under the continuing run length independent of the observations seen and solely based on
the predictive covariances.

3 Variational Bayes Approximation for 5-divergence based General
Bayesian Inference with the Bayesian Linear Model

For ease of notation, we use 3 = [,. We wish to approximate the posterior belief dis-
tribution 7TDPD([,L, 2|y) which for observations y = (y1,¥2,...,yn)" with y; € RY, prior
NIG (e, 0%|ag, bo, po, o), model likelihood f and density power divergence (DPD) loss

1 1
0% (p, 0?y;) = Bf(yilu, o?)? — 178 L} flyilp, o®) Py 2D
is given by

hpp (14 0 |y) = NIG (1, 0%|ao, bo, o, o) exp{ ZZB w, o |yz}~ (22)

In particular, we want to approximate it with a posterior NIG"® (1, 02|, [ s ﬁn) via Variational
Bayes. This can be done by minimizing the variational parameters in a Kullback-Leibler sense:

(a*,b*, u*, 5%) - arguin ){KL (wgm(u,aﬂy) HNIGVB(M,Ugﬁn,gn,ﬁm f:n)) } .(23)
Qn y0n s hn 240



It is straightforward to rewrite the objective function for the above minimization as the Evidence
Lower Bound (ELBO) induced by the DPD:

ELBOppp = — KL (NIGVB(w%an,EWﬁn, 2,) [NIG® (4, 02|ao, bo, po, Z0)) -

=Q1

—Evs l Z o?|y;) ] : (24)

=Q2

In what follows, closed forms are derived for both ()7 and Q5. Some algebraic tricks will be applied
multiple times, and will be referred to by the following symbols:

B Completion of Squares, i.e. w' Au — 2v'u = (u — A" 'v)A(u — A v) — v A v
I(N) Integrating out the Normal density;
I(ZG) Integrating out the Inverse Gamma density.

Throughout, the dimensionality of p is p € N, N (p|po, o) refers to a normal pdf in p with
expectation pg, variance o and ZG(0?|a, b) to an inverse gamma pdf in o with shape a and scale
b.

31 Q)

First, note that by definition,

Qi = 1o NIG® (4, 0%, b, fin, )
NIG (p, 02|ag, bo, 10, o)

) NIGY® (11, 02|, by, fin, Son)dpdo®. (25)

2
1%

log
At

Writing out %, one obtains a natural sum of three components C1,Cy(0?),C3(02%, ):

S0l 70% iy ()05 Vexp { = oL (1 = ) S0 (= i) + 28 | |

aq
[550/705 (5 (02) 05700 exp { 5L [ (11 — 110)" S5 " (1 — pao) + 2]

1
8 =log

barT ~ 1
= log (’L(ZO) +0510g’20 ‘+(an—a0)log(—2)
g

bo"T'(@n)
b e =Ca(0?)
- % [(u — ) 20 (= n) = (= 10)'S5 ™ (1 — po) + 2(by — bo)] . (26)
=C3(02,1)

Next, note that C5 (o2, p) further decomposes into

1 o _ &1~ _ 11,8 1~ 1 _ A~
9252 [Nl (Enl 2 1) p— 2 <Enlﬂn - X 1N0)] + 52 [21412711/% - 5“620 o + (bn — bo)] .

=C4(0?,p) —Cs

=Cg(0?)

Notice that we have isolated the random variable p inside C’4({2, w) and that by definition,
NIGY (11, 02[Gn, by, fns S) = NVB (| fin, 022,,) - TG VB (02[d,n, by, ), meaning that

Q=0 Jrf {02(0'2) - 06(02)}IQVB(02|an,En)d02

J U 04(02,H)NVB(umn,022,1)@}ngB(a2|an,Bn)d02. Q27)
o? 173

=C7(0?)



The inner integral is available in closed form, and naturally decomposes as

1 o _ 2 Q1A _
Cr(0®) = EENVB [Hl <2n1 -3 1) H] - @E/\/"B [Hl] <2n1/""7l -3 1#0)
1 o _ 1 raz1A _
= e [0 (821 =307 ') | = gl (8570 — 5 o)

1 ol _ 1 ., /a1~ _
= @tr ((Enl -3 1) [ prve [HN/D - ?N‘{n (Enlﬂn -3 1#0)
1 ol _ a ~ ~ 1 ., /a1~ _
= 52 (B = 30") [78 — B ]) = S5l (82— 35" o)
1/\/

1 . 1 Cl et et e
-5 (1— 5 12n) -5 [Qun(Enl — S Y, — i (znlun — 35 1u0)] 28)

=Cyg —Cy

=C10(0?)

We may now rewrite (), so as to integrate out o2 next:

Q1=0C1—Cs+ J {02(0'2) — 06(0'2) — 010(02)}IQVB(02|an,5n)d02.

[od

Using the additivity of integrals, we consider its three components separately and then add them up

together afterwards. For Cy(c?), (I) apply a change of variable with z = g—z and then use (II) that

4= = —a® - log(a) = a® - log(a™') together with Fubini’s Theorem (I1I) to find that

Oy = J Ca(0*)ZGV®(0%[dn, by )do?

. 1Y bén i (%
= (an — CL()) Jz log (0_2> m(o—2) n—1 exp {_0-2} d0'2
O A 1\ ban+tl ( ~ >—a"—1 1
= — 1 — = by ——rd
(@n aO)J; og <an> @0 z exp 4 —— rdz
p— i~ 1

- @ - ao) (T~ toxib)



where W is the digamma function. For C(c?), one obtains the closed form as

Ci2 = J Co(0*)2G ™ (0*[, by )do®

_ 5%" 2N\ —dyp—1-1 gi 2
= C5L2 1_‘(an)(a) exp{ U2}d0

Using the exact same steps for C1o(0?), one finds

Cis = f C1o(0?)ZG "™ (02 i, by )do?

1Z9) I'(a, +1)

—~ , 30)
BT (@)

finally yielding

Q1 =C,—Cg+Ci1 —Ci2—Ci3
o [ B T(ao) o1
= log (bgof(an) + 0510g ‘Eozn

(1 _ Eglf:n) + (@n — ao) (\p( ) — log(b ))

1 ~/ 1A~ 1 12 —1 -~ :| F(an + 1)
SRS iy — By o + (by — bo) | - =
[2 9 F0=0 0 ( O) bnf(an)

1., a_ 1y~ (1A _
- [2u%(znl - 2:0 1)/1% - H’In (Enly’n - Z:0 llu'o

)
— log (l;g((“ ;) +0510g‘20 (1 )Opeb> ) + (@ — a) (q/(an) —1og(8n))

1 e ~ 1 T+ 1)
"’5 [(HO — ) Bo (o — fin) + 2(bg — bn)] : m (3D
(32)

32 O,

Noting that one can write () as
~ Eyg [Z P, 0 2Iyl)l
i=1

$ 1 o~ A
f {Z [ yz|u7 ) Hﬂfy f(y|[l/,0'2)1+6dy] NIGVB(/”'?0—2|an;bna/»l'n72n)}d02d/'1'

n

Z [f { yz|“’7 ) 1 +BJ f y|IL7 )1+ﬂd'y}NIGVB(u’ |an7 naunaz )dO'Qd[B:F

The last equation implies that it is sufficient to concern ourselves with the integral for a single term.

To this end, observe that the likelihood for a single observation y; with regressor matrix X; is given
by

fyilp, 0%) = N(yi| X p, 0°14), (34)



where I, is the identity matrix of dimension d . Looking at the likelihood terms inside ¢, the
[B-exponentiated likelihood term can be rewritten as

1 1, . _ s
= f(yilp,0%) = 2 (2m) 0P (0?) 70 exp § — 5 [(yi — Xin)' (yi — Xip)]
B B 20
=D;(02)
B
= Di(0®) - exp § =55 | yiys + 1 (X X7) = 2y X )
=1
N 1 < G o <
= Di(0%) - exp { —o | Bln— TuXya)E7 (- i) + 8wy — (Wi XDE( Xy |
a —
L = =D>;
2 1 ~ \/y—1 ~
= Di(07) -exp § =55 | Bk = Ba)'S (0 — fi) + Do
L =Ds3,i (1)
1
= Di(0?) - exp {_W [Ds,i(p) + D2,i]} ; (35)
while the integral is available in closed form as
1 IV _ _ —0.5d—
g | Flot) Py " (02) 700 (am) 0301 4 )05 (36)
Yy

=Dy

One can see a neat separation between terms involving o2 and terms involving p again, allowing
us to rewrite the integral in equation (33)) such as to exploit the conditional structure of the normal
inverse-gamma distribution in Egs. (36)), (33). Looking at integrating out o from (33) first, note that

1 oA
L = f {HBJ f(ym,a%”ﬂdy}IQVB<J2|an,bn>da2
o2 v
_— b
) 2\—0.5dB—a,—1 _"“n _“n 2
4J‘2(0 ) Tan) exp e do
I'(a .
"™ p,. L@, +0.5d6) 37)

INGR e

For the S-exponentiated likelihood term, one finds that

1 oo~ A~
LQ,i = J\ Bf(yl“l') Uz)ﬁNIGVB(IJ’v Uzlana b7l7 IJ"VH En)dazdl’l’
o’ u

1G"%(0?|n, by )do?,

1 1 ~ -~
= | Di(0?)-exp{—55Da., exp{ —5—5Dsi(p) e NV (pl i, 0° 3 ) dpe
0_2 20 o 20

=Ds,i(02)

where we have again exploited the conditional structure of our assumed posterior. The inner integral
equals

_ o |70 1 S _
D5 i(0%) = (2m) % |08, exp { —5 75 | Daa(k) + (1 = fin) £ (1 = i) | 139)

—
© =Ds,i (1)

=D7,i(02)

10



indicating that the closed form for the integral is available if one rewrites it as a normal density. To
this end, one can use completion of squares to rewrite

Dgi(p) = Blp — 1) 27 (10— i) + (10— i)', (10— Fim)
—w [E0 8 -2 [0, ST o [, S A + 5 S ]
~—_—
:f};l

=i
A~ ~ A ~ / ~ A ~
S o+ BES  — (B7 i+ A7 ) B (S o+ A5 i)
= (1= i) 57 (= i) + Dsi (39)

which then allows integrating out g from D7 ;(c?) using the density of a normal random variable:

1 1 ~
2 _ ~ 1 ~
D7i(0®) = exp {QUQDS,Z} J exp {202(# — Bi)'57 (e — m)} dp
"
I(N) 1 0.5p| 253 (0.5

=" exp {_MDS,i} (2m)" 7P |o 5[, (40)
so we can finally rewrite the entire integral as

Ds4(0%) = |87 8" exp | — 15 Dy | (41

) n 20—2 ’

which enables rewriting Lo ; as

1, NP _ 11 .
Ly, = B(%) 0-5d52n12i|0‘5f (0?) 0‘5dﬁexp{—a2-2[Dg,i+D8,i]}IQVB(02|an,bn)d02
02
=Dg,;
1z9) Dq; - T(@, + 0.5d83) - bar

](an+0.5dﬁ) ) 42)

T'@G,) - [En +0.5(Dyi + Dr.s)

finally implying that one may write

Q2 = Z LQ,i —nly
i=1

< Dqg; - T(a, + 0.5d83) - bin b D(an + 0.5d8)
o ~ (an+0.5d8) [ 4" T L~ \70.5d8
[T @n) - [bo + 05D, + Ds )] L(@n)bn
A 4105 N
(2m) 050 S [0+ BXGX)| | D@ + 0.5d8) - i

1
" B

=

R = (@ 10.5dP)
] T(a,) - [bn +0.5 (Do + D&i)]

(2m)~9248(1 + B)~0-%4=1. (@, + 0.5dB)
INGI

—n .

11



5,

i=1

We further simplify this expression by observing that
Dy;+Dsg; =0 [y;yz - (sz:)iz(Xzy;)] + ﬁ;flglﬁn + 5ﬁ§i;1ﬁi
(B A+ 55 ) B (iflﬁn + 85 i)
= Byiy; — By XNZ(Xoy)) + 1,2, o + By X)) (X))
(0 B+ BX L)) S (85w + 8(X1w0))
= By S i — (B0 e+ 6(X0)) B0+ X0 (80 e+ 5(X ).
leaving us with

U(@, + 0.5dp) - bir - £, 10

Q= T S s (&)

_1(0.5

’[f]nl + 6(X1-X1-)]

Z — R R A 1, (an+0.5dB)
T [ 05 (swta + A - (850 + w0 (B0 4 60| (80 + w0 ) |

(@, + 0.5d3)

—n- _ .
F(an)b%ﬁdﬁ(%)o.wﬁ(l + 3)0-5d+1

3.3 ELBO

Putting together the results of the two previous sections, the ELBO is obtained as
ELBO = —Q1 + Q2

= —log (ZZZF((;> 0. 5log‘20
=[50 = 0 B 0 = ) + (00— 52|

L(@, +0.5dB) - bir - |£;105
ﬁ(27r)0-5df”1‘(&n)

%tr (I — Ealin> — (@n, — ap) (‘I/(an) - 1og(gn))

'@, +1)
by D(@n)

X

S0+ (XX

N N N PN 1, (arn+0.5dp3)
[bn 05 (Bygyi S i — (S0 + B(X ) [ B2+ 8XIX0) | (B0 + ﬁ(X;yi)))]

I'(a, + 0.5d8)
T T (@b @m0 (1 4 gyt (43)

3.4 Differentiation

In thls sectlon we take derivatives of the ELBO with respect to each variational parameter, 1 e.
Qs bm L, 2 Observing that differentiation with respect to 2 ! is easier than with respect to En,
parametrize the optimization usmg the Cholesky decomposmon ie. E Y = LL', where L is a lower
triangular matrix and is unique if E (equivalently - ~1)is positive deﬁmtl

"Note that L need not be unique if s, is positive semi-definite, but this is of no concern for us here: Since
we implicitly impose that 3,, is non-singular (so that 33,,* is unique and well-defined), all covariance matrices
3%, considered have to be positive definite.
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3.4.1 Derivative with respect to L

In what follows, we differentiate the ELBO term by term with respect to the p(p — 1)% entries in the
lower triangular part of L that can be summarized in the vector vech (L). To this end, define

~ 1 .
E, = —0.51og ’202;1 -5t (I - zglzn) (44)
T(d, + 0.5dB) - b3 o 1 0s
fo S 45
2 ﬂ(27‘(’)05dﬁr(an) | n | ( )
=F

Eoi = |80+ 8 (XiXy)| (46)

Ey = 1,3, fin @7
~ ~ -1 A

Esi =S, [£00 4 8(XIX0)| .0 (48)
~ —1

Bos = —A(yiX) [0+ 8 (X1X) | (X, (49)
~ ~ —1

Eri = =26, 8, [0+ 8 (XIX0) | (Xlwa). (50)

Obtaining the derivative of the ELBO is equivalent to obtaining the derivatives of these newly defined
quantities, as

0 0
——F{FLBO} = ———{F
dvech (L) { O} dvech (L) {En}
0 S E3,1
" avech (L) DI e G, 1058
=1 [bn +0.5(Byjyi + B4+ E5; + Eg i + Em)]
2
¢ E i
+Ey - Z ovech(L) { 3, }

= an10.5d8
i=1 [bn + 0.5 (BYyi + Es + Es; + Eg; + Eh)]

n

| P =% . . ' , —a,—0.5dg
—|—E2 . Z { Eg,l . @VTh(_L) {[bn + 0.5 (ﬁyzyl + E4 + E5,z + Eﬁ,l + E771)] }5}’)

i=1
where the chain and sum rule imply that

0

b 0.5 / B+ E > B —4,—0.5d8
5vech(L){["+ 5 (Byyi + Bat B+ Boi+ Fr) | }

]7a,ﬁo.5d571

= (—an — 0.5d8) - [Bn +0.5 (Byly: + Ea + Es; + B + Br) «

0
c———{Es+ E5; + Fg; + Er 2
5 Jvech (L) { 4+ 5,1 + 6,7 + 7,1} ) (5 )

For convenience and simplified notation when taking the derivatives of the expressions defined in
Eqgs (#4) - (30), also define the following matrices:

R=[S"+5(X/X)| (53)

Define also the following symbols to mark operations used in the derivations:

0 Switching from differential notation ¢ L to the derivative #h(lz);

tr Properties of the trace like invariance under cyclic permutations, invariance under the
transpose, additivity, and the fact that for ¢ a scalar, tr(c) = c.
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Note than when the differential operator 0 is used, its scope is always limited to the next term only,
unless brackets are used. Hence d LL’ uses the differential only with respect to L, while 0 (LL’)™

uses it with respect to the entire expression (LL’)”". It is also worth noting that 9L’ = (L)’ for
any matrix L, as this will be used in conjunction with the transpose invariance of the trace throughout
to simplify terms. Using these symbols and the differential notation, proceed by noting the following:

A(LL') = 0R = OLL' + LOL' = 0LL' + LOL' = LL' + (0LL")’ (55)
oLL) ' =—(LL) " [oLL)](LL)™! (56)
JLL|=|LL| -t ((LL’)—1 [aLL’ + (aLL’)’])
Z2|LL'|-tr (L'(LL')"*0L) (57)
R'=-R YRR '=-R '“LL'R'-[R'OLL'R ] . (58)

With this in place, the derivatives of the quantities defined before are obtained as
1 1 -~
0B =~ {log|Zo| + log|LL'|} — 50 {tr (zglzn)}
1 1 _
— 5 lLD AL - S (zgla (LL) 1)
1 -1 1 —1 —1 —1
= —gtr (L'(LL')~'oL) + 3t (ZgH(LL) ' [o(LL)] (LL')™)
£ —w (L/(LL)'oL) +u (L (LL)
0By = F-0|LL|°®
F 5
-5 |LL'|™%% . 2|LL| -« (L'(LL")"'0L)
=F|LL|*®u (L'(LL)"'0L) (59)
1
0B = 0R™"? = —J|R|70R

= (£L) " or)

— JIRI%w (R0 (LL)

= —|R|"**u (L'R™'0L) (60)
Oy = tr (B, 0(LL ) fin)

=tr (i, [OLL' + LOL'| 1.,
=2.tr (L'BOL) (61)

=3

0Bs; = —tr (1,0 (LL') R~ (LL') i) — tr (@2, (LL") R~ (LL') fin,)
—tr (@1, (LL') R0 (LL') i)
= -2t (@, 0LL'R™ (LL') fi,) + 2t (@, (LL') R"'OLL'R™* (LL') fi,,)
—2-tr (f, (LL’) R'OLL'[i,)
£ -2.w(L’R*(LL)BOL) +2 -t (LR (LL') B (LL') R"'0L)
—2-u (L'B (LL’) ~'oL)
0Es; = —Fu ((4:X:) R (Xiy:))
= 25%r ((y] )R—laLLR (Xly:))
= 28% (L'R™ (X/y;) (y}X;) R7'0L) (62)

0By = 26 - [w (f,0 (LL') R (Xyi)) + u (i, (LL') 0R™ (X))
28 [tr(p,naLLR (X)) +tr (A, LOL'R™ (X,y;))

=
II=

—tr (@1, (LL') R'OLL'R™" (X,y;)) — tr (i, (LL') R™'LOL'R™ (X)) ]

=3

=20 [tr (L/R_1 (Xz’yl) ﬁ;&L) + tr (L/An (’y;Xl) R_laL)
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—tr ('R~ (Xyy:) i, (LL') R'OL) —tr ('R (LL') fi,, (y;X;) R™'OL) ] (63)

This can now be converted into derivative notation and simplified. To this end, first note that for any
p x ¢ matrix A which is not a function of L,

P P P P
tr(AdL) = > AydLiy + Y. AgidLip + -+ = Y {Z AjidLji} , (64)
i=1 =2 j=1 li=j
implying in particular that
J _ T
and use this by defining vech” (A4) = vech(A”) to note that
0 2 T ’ n—1 / N—1 -1 n—1
sveah () B veeh (- [p/@e) ]+ [ (@) =gt (L))
—veeh” (' (L)' =5t (L)'~ 1, )
—veeh” (L7 |55 (L)'~ 1, )
—veeh (| (LD) ' B5! — 1, | L7T) (66)
4 2 . /10.5 | T ! n—1
Avech (L) Ey = F-|LL'|°® - vech’ (L'(LL")™")
=F|LL'|>® -vech (L™7) (67)
J 9 —0.5 | -1
Svech (L) Pei = TIBITYT veeh (RTUL) (68)
0
vech (L) E; =2-vech(BL) (69)
0 0 - . , N - _
MEM =vech” (-2L'R™' (LL')B+2L'R™' (LL')B (LL')R™' —2L'B (LL')R™)
=2-vech” ((L'R™' (LL)B[(LL)R' - 1,]] - [L'B (LL') R'])
=2-vech” (L'[R"' (LL)B[(LL )R -1, - B(LL)R'])
=2-vech ([[R™" (LL) - I, B(LL')R™' — R™' (LL') B| L) (70)
0 0 — / -
avech (L) o = 207 - veeh (R (Xiy) (iX:) RT'L) (71)
0 92 _o9n. T( rrp-1 o\ ’ e /5 -1
Svech )EM = 283 - vech (L R (Xyy) b, + L'y, (4 X)) R

—~L'R™ (Xyy:) i, (LL)R™' = L'R™" (LL') i, (¥} X;) R—1>
= —283 - vech” (L’R1 (X{y;) i, [I, — (LL') R™]
+[I, - L'R'L| L', (¥, X;) Rl)
_ 23 Vech( [1,~ R~ (LL)] fin (X)) R'L
+R (X[y;) p,L[I, - L'R'L] > (72)

3.4.2 Derivative with respect to f,,

Differentiating with respect to fi,, is trivial. One proceeds by the same logic as in the section before,
to which end one additionally needs to define the new term

o o - T, +1)
Es=—3 [(Mo — )" 2g (o — fin) +2(bo — bn)] @ (73)
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allowing us to write

Er {ELBO} EF {Eg}+

n

; —Gn—0.5dB

i=1

where
~ , —a,—0.5dB
ﬁ {[bn + 0.5 (ﬂyzyz + By + E57i + E6,i + E7,i)] }
~ ~ —an,—0.5dB—1
= (—a, — 0.5d3) - [bn + 0.5 (Byiy; + E1+ Es; + Eg i + E?z)] X
0
0.5- —{Es + E5, + Er;}, (75)
Ofbn
so that obtaining the derivative is achieved by finding W%Eél, T Es ;, aA E7 ; and 1A FEs:
0 A
—EBy=2-p, =" (76)
Oftn
‘a,(;Es,i =2 @S, RS 77)
0 ~
S=FEr; =20 (y;X;) RT'E! (78)
pen,
0 1 r(an+1)[a A el ~ 0 i
s=FEs=—5 =——" | 5= (20 Hn) = 25= (Hn2y Ho
Oftr, 2 b,T(@,) Lok (A fin) Ofty, (A" p10)
L T(@n+1) 1o~ a1 1
=—— =2, 35" —2puy%
2 D,I(an) (228, %, 0%’
I'(a, +1 ~ _
B 5(<>) [0 = Fin) 207] (79)

3.4.3 Derivative with respect to d,,

We proceed again by the same logic. Define

_ g [ Do)
Ey = —log <b8°1“(an)) (80)
Bro = —(@n — ao) (¥(@,) — log(5,) ) ®D)
P (@, + 0.5d3) 82)

NG )bO 548 (27)0.5d6 (1 4 B)0-5d+1
Use this to write

0 6
2 (ELBO} = {Eg} o {Eg} + 5 {Em} + o {En} +
Es;
+7 {E2} Z N an+0.5d8
i=1 [bn + 0.5 (ﬂy;yz + B4+ E57IL' + EGVZ‘ + E7,i)]

n 0 ~ , —a,—0.5d3
+Es - Z {Egﬁ' . 87 {[bn + 0.5 (ﬁyzyz + FEy + E5’i + Egyi + E77i)] }(%3)
i=1 n
where for a,,, the inner term equals
—d,—0.5d83

0 ~ R
524 | bn 05 (Byiyi + B+ Bsi + Eoi + Bri) = —log (K) - K~=0540 (84)

n

=K
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so that the differentiation with respect to a,, requires obtaining the following terms:

0 o ISiUPS [ D@, +05d8) B {02} T @, +0.505)
da, 5(2@0-5%[ (an) L(an)
o {P@,)~"} - b T (@, + 0.5dﬁ)]
|2 |O 5panT (@, + 0.5d3) A .
B(27)054PT (a,) [\I/( + 0.5d3) + log(b,) — \I/(an)] (85)
0 1 - ~ s {T(a, + 1)} {L(@n)} I'(an +1)
s [(“0 = Fin)'Bg " (o — fin) +2(bo - b”)] ' l @) T(an)2by,
1 ~ ~ I'(a, +1 ~ ~
=~ [0 = 2025 (10 = ) + 2000~ )] - 2 (g )) (V@ +1) ~¥@)] (86
o o (.. 0 .
P {an log(bn)} + 5 (o (0(@,))}
= —log(by) + ¥ (an) &7
0 o (..~ o . .
a5 B0 = za= {Anloa(bn) | — s ((@n — a0) W(an)
= log(b) — (@n) — (@n — a0) ¥V (@n) (88)
O n ‘8{I‘(an+0.5dﬂ)}
oan T ’5%5dﬁ(27r)0.5d/3(1+5)0.5d+1 04, I'(a,)
n I'(a, + 0.5dp3) N ~
T g T [¥(a, + 0.5dB) — ¥(a,)], (89)

where U'(1) denotes the trigamma function.

3.4.4 Derivative with respect to 3n

As for the other variational parameters, note that

0
——{ELBO FEg}y + — {E9} + — {F10} + Fi1}+
abn{ b= obn{ 5 b, () b, () 8bn{ )
Es;
{EQ} Z ~ @n+0.5d3
i=1 [bn+0-5(6y£yi+E4+E5,i+E6,i+E7,i)]

n

0 ~ —a,—0.5d3
+Es - 2 { E3,i . 57 {[bn + 0.5 (ﬁygyz + FEy + E577; + EGJ + E7’i)] }(}0)

i=1

where the chain rule implies that

—Gy,—0.5dB

by + 0.5 (BYiyi + Es + Es; + Eg; + Er;) = (—ap — 0.5dB) - K~ —0:5d5=1 (97

=K
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Thus one proceeds by the same logic as before.

0 anL(ay + 0.5dB) - [B7105 ~
—Fy = n - pn 2
& 2T e @, .
0 1 S e N '@, +1) 1
—FEg = — - Mn /E ! - Mn 2 + e
by 2 [(bs0 = )5 (b0 = ) + 200] L(@,) 92 o9
gy (94)
bn b
0 Uy — a
—Bjg=—2—"2% (95)
by, .
f By ndp - T'(a, + 0.5dB) p—0-5df—1 (96)

~ 2.T(a,)(2m)0598(1 + B)0Bd+L On

4 Timing and performance comparisons: Markov Chain Monte Carlo vs
Structured Variational Bayes

We ran timing comparisons of SVI with MCMC for several subsets of the well-log data set. We
ran the 3-D BOCPD algorithm implementing an MCMC inference regime using stan [[Carpenter
et al.| 2016] and compared this with our SVI inference regime. The two inference schemes were
then run on 3 datasets of different time-length; the first 200 observations of the well-log, the first
500 observations of the well log and the full well-log, in order to show the impact changing the
number of observations has on the timings for the algorithm. For the SVI used to produce these
timings, we perform full optimization at every step, which is significantly slower than the SGD-variant
that we present in the paper and that can be found in our repository at https://github.com/
alan-turing-institute/rbocpdms. In spite of this, the SVI is still orders of magnitudes faster.

Table 1: Table of times to run the S-D BOCPD algorithm under the MCMC and SVI with full
optimization on the first 200 observations, the first 500 observations and the full well log dataset.

T=200 T=500 T=4050

MCMC 7615.2 20388.7 106073.0
SVI (full optimization) 102.8 328.5 3240.0

Another question of interest is how much the Stochastic Gradient Descent (SGD) inside our inference
procedure provides robustness and how much the 5-D itself is responsile for this. To put this question
to the test, we ran full vs SGD-based optimization on the well-log data. As shown in Fig. [3] the results
are very close to identical: No CPs are declared under one that are not declared in the other, and the
run-length distribution’s maximum coincides throughout.

¢ 125000

C

o

S 100000

("]

(0]

€ 75000

ﬁ 0 T=—. e T ~.__;_

o) i Tl ST——

C 1 rer——

5 1008 : ~—

g T“‘v\\ \}.; —d H '~._---,__\_"

= 1000 ! T
0 500 1000 1500 2000 2500 3000 3500 400

Time

107% 1047 104 1073 1072 1071 10712 10°°

Figure 3: MAP segmentation and run-length distributions of the well-log data. SGD inference
outcomes in blue, outcomes under full optimization in red. The corresponding run-length distributions
for SGD (middle) and full (bottom) optimization are shown in grayscale with dashed maximum.
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S Initialization for 3,

The initialization procedure described in the paper is illustrated in Fig. ] Here, the yellow dashed line
gives a standard normal density corresponding to our model for the data. The gray dotted vertical line
gives the amount of standard deviations from the posterior mean where one wishes to maximize the
influence. We have chosen to maximize the influence at observations with 2.75 standard deviations
away from our posterior mean. In the first picture, 8, = 0 and thus the influence function corresponds
to the Kullback-Leibler Divergence. Concordantly, it has no maximum and observations have more
influence the further in the tail of our model they occur. Thus, one needs to increase 3, slightly. This
is done in the second picture. While observations in the tail get smaller influence now than before, the
influence of observations is still increasing beyond 2.75 standard deviations. So one needs to increase
Bp two more times, until one finally obtains the desired outcome for 5, = 0.25 in the fourth picture.
Notice that the influence does not immediately drop to O for observations further in the tails than 2.75
standard deviations away from the posterior mean, but it does decay. In some sense, we have set 3,
such that we think of observations occuring 2.75 standard deviations away from the posterior mean as
being most informative. This is significantly different from what is implied by the Kullback-Leibler
divergence, where an observation is most informative if it agrees least with the fitted model. It is
intuitive why this produces good inferences if one is in the M-closed world and similarly intuitive
why it does not in the M-open world.

0.6 1 N(O, 1) y N(O, 1) 1 NO,1) | T N(O, 1)
— KLD — B=0.05 — =02 — B=025
>, 0.5 1 1 1
s
2
b 0.4 1
()]
~
@ 0.3 1
(@)
C
Y 0.2
fremy
C
- 0.1
0.0 A
0 2 4 0 2 4 (I) 2 4 0 2 4
SD SD SD SD

Figure 4: Tllustration of the initialization procedure, from left to right.

6 Recursive Optimization for S,

Recall that

gt(/@) = Z E (yt|y1:(t—1)7 Tt—1,Mt_1, Bp) p(""tfl, me—1 |y1:(t—1), ﬁrlm)~ (97)
the issue reduces to finding the partial derivatives Vg, ¥:(3) and Vﬁpgjt (8). Notice that for
V 8., Ut (3), one finds that

V¥t (B) = Z E (Ye|Y1:-1): -1, M1, Bp) VP (re—1, Ma11Y1.t—1), Bam) . (98)

T,y

Observe now that for p(y1:t) = >, ., P(re, M, Yu:¢| Bam),

V 8 P(Tt, M| Y11, Brim)
:Vﬁrlm{ P(re, My, Yi:¢| Bim) }
Dre iy (Tt Mt Y1:¢ | Brim)
_ VPt me, Y14 Bam) — p(re, M, Yase| Boam
P(Y1:) p(Y1:)?

). Z VPt M, Y1:¢|Biam). (99)

T, Mt
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Thus we have reduced the problem to finding Vg, p(r:, M, Y1:¢|Bam). Defining for a predictive
posterior distribution f,,, (yf\]-"f 1) its B-divergence analogue as

P (el Fror) = exp { G e el Fi)™ = @lm f Fme (el Fea) Pmdyy } (100)
and uppressing the conditioning on Sy, for convenience, one can using the recursion
P(Y1:e, e, M) = Z{ B”'“ (ye| Fi-1)a (mt|]:t717mtfl)H(Thrtfl)p(ylz(t—l)ﬂntflamtfl)}gl()la)

me—1,Tt—1

compute Vg, p(r¢, my, y1.) from Vg, p(ri—1,me—1, ylc(t71)|ﬁrlm) forry =r; 1+ 1as
VBrlm (yl't? Tt7 mt)

= {V,Br]m S (ye| Feo1)a (mt|]:t—lamt—l)H(rtart—l)p(ylz(t—l),'rt—l,mt-1)}+
{ SR (Y| Foo1)V g (ma| Fooy, my— 1)H(7‘t7thl)P(y1:(t—1),7“tf1,mt71)}+

{ Flm (4| Fe1)q (mt‘ftfhmtfl)H(TtaTt—l)vﬁrlmp(ylz(t—l)»thlamtfl)} (102)
Similarly, for r, = O the expression becomes
VimP (Y1:t, e, M)
= Vgt “"‘(yflff 1) - q(my) Z H(0, 74— 1)p(Y1:(t—1)s Tt—1, M —1) +

Tt—1,Mt—1
6r1m<yt|]:t 1) ( ) Z H(O7rtfl)vﬂrlmp(ylz(t—l)athhmtfl)- (103)
Tt—1,M¢t—1

This implies that if fﬂ"'"(yt|ft_1) and g(m¢|Fy—1, m¢_1) are differentiable with respect to B,
then the entire expression can be updated recursively. For most exponential famlly likelihoods

(and in particular the normal likelihood of the Bayesian Linear Regression), Vg, fom (y,|F,—1)

is available analytically. In particular, as long as Sy Fme (Y| Fr— 1)”5""' dy; has a closed form,

V o S Pam (4y,| F;_1) can be found in analytic form. In the case of Bayesian Linear Regression where
the d-dimensional posterior predictive takes the shape of a student-¢ distribution with v degrees of
freedom and posterior covariance ~“5 ¥, one finds that

VBrlm ﬁr]m (yt|]:t 1) = V,B,Imgl (ﬁrlm)g2(ﬁrlm)93(ﬁrlm)+
91(Beim) V g1 92 (Brim) 93 (Brim )+

g1 (/Brlm)QQ (Brlm)vﬁrlmg?y (Brlm)a (104)
where for n = vd + dBym + v,

r'(0.5[v +d])\ " "
gl(ﬁrlm) = (F(O5l/))

'(0.5n)
92(Bam) = T(0.5[n + p])

g?)(ﬁrlm) = (1/7'(')_0'51)'/3"““ . |Z‘_Brlm7
so that their derivatives are given by
V 891 (Brim) = —(Beam + 1) - log(g1(Bam)) - 92(Brim)
V ban 91 (Bim) = 0.5(v + p) [,T(0~5n)w(0.5n) _T(05[n)w(05[p + n])]

I'([0.5[n + p]) I'([0.5[n + p])
1
VﬂﬂmQS(/Brlm) = _93(6r1m> . log(gii(Brlm)) : BT
(105)
As for Vg, q(m¢|Fi—1, ms—1), one can again obtain it recursively, since for 7, > 0,
V By @ (M| Fe—1,m1-1)
p(ylz(t71)7 T 1,1 1)
= V/Bl'lm
th,l p(yl:(t—l)vmtfl)
_ vﬁnmp(yh(tq), Te—1,M¢—1) B th,l vﬁrlmp(ylz(t—l), T 1,M¢—1) . (106)

2
th_l p(yl:(t_l)’rtihmtil) (Zm P(y1;(t—1)77“t717mt71))
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7 Proof of Theorem 2

Proof. For ease of notation, we use 3, = (. The model used for the inference is an exponential
family model of the form

f(@:0) = exp (n(0)"T(x)) g(n(6))A(x), (107)

where g(n(0)) := (§exp (n(6)TT(z)) A(:c)dm)_l. Now under our SVI routine the 3-D posterior
originating from this model and its conjugate prior is approximated by a member of the conjugate
prior family. As a result the conjugate prior and variational posterior to the above model have the
form

70(0]v0, Xo)=g(n(6))"° exp (von(6)" Xo) h(Xo, vo) (108)
W B (0lvn, X,)=g(n(0))"™ exp (van(0)" X)) h(Xn,v), (109)

where (1/0, Xp) are the prior hyperparameters, (v, X,,) represent the variational parameters and

h( X, v;) = (S g(n(0))" exp (Vin(t‘))TXi) dé))fl. The resulting ELBO objective function under
GBI has the form

ELBO(vy, X,,) =

Ervs llog (exp (Zn: —€D(x;9)>>] —dgr ( (9|l/n, X)), mo (9|V0,Xo)) (110)

i=1

where for the 5-D posterior

— 0P (:0)= /3( p (n(8)T(2)) g(n(6)A())” —
77 | 0 0O TE) gtate) ) a: (a1
% exp (B1(0)TT(x)) g(1(8))® A(x)? -

1 | e (@ PO TE) gtue) A i a1

Therefore the ELBO (v, X,,) has three integrals that need evaluating

Blii f % exp (Bn(0)" T () g(n(0))” A:) P (0lvn, X,,)dO (113)
Be=5" f Uexp ((1+B)n(O) ' T(2)) g(n(G))”ﬁA(Z))“ﬁdZ} 7VB 0|y, X, )dO(114)

Bs=dkr (7)) " (0|vn, X,) , 70 (0]v0, Xp)) - (115)
Now firstly for the term B; in equation (113)

BlzZl f % exXp (577(9)TT(331)) 9(77(9))614(901‘)59(77(9))”" C€Xp (Vnn(e)TXn) h(Xru Vn)d@16)

—Z L A1) h(Xo, 1) f g(n(0))7 " exp (n(0)" (BT () + v Xy,)) d6 (117)
_Z A (2:)Ph( X, V) ! . (118)
h(PREAT Bt vy)
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Where we know that h(ZLEE0Xn 34y ) = (g(5(0))7+n exp (n(0)T (BT (z;) + vnXn)) dO
is integrable and closed form as it represents the normalising constant of the same exponential family
as the prior and the variational posterior. Next we look at Bs in equation (I14). The whole integral
is the product of two densities which must be positive and in order for the ELBO (v, X,,) to be
defined it must also be integrable. Therefore we can use Fubini’s theorem to switch the order of

integration

RN
=5Z 1h(Xn, Vn) f {fexp (O (1+B)T(2) + v X)) g<n(9))1+ﬁ+und9} A(2)*Pa20)
n A(z)1HP

= h(Xn,Vn)J
B+1 p(UEDTE s g 4 gty

By

| { [ exp (@ + 9900 7) g0(®) 5P Bl Xn>de} A(z)*7dz (119)

dz. azn

once again h( HETE X 14 84y,) = Sexp (n(0)T ((1+ B)T(2) + vaXa)) g(n(6))+7+ = do

is the normalisisng constant of the same exponential family as the prior and the variational posterior
and is thus closed form. Lastly we look at Bj in equation (T15)

( (9))U" €xp (VHU(Q)TXH) h(Xm Vn)
g(n(8))e exp (von(0)T Xo) h(Xo, vo)

<
3

(122)

h ny Un

ZIOg h((X07 ZO)) 7"-7‘L/B(9|Vn7 Xn) {(Vn - VO) IOg 9(77(9)) + (U(G)T (Vn')(n - VOXO))} (123)
h(Xo, vn

:10g h((//’('o’ly/o)) {(l/n — V()) )\XB + ((MZB)T (Van - V()X(]))} 5 (124)

where u¥ = Eys [n(6)] and A} ® = E,ys [log g(1(6))].

As aresult we get that

ELBO(Z/n, Xn):Bl - BQ - B3 (125)
LA | 1
= —A(:z:,;)ﬁh(/'\f'", Vn) RNy
';1 6 h(BT(Iéltnan7ﬁ + V’n,)
n A(2)1H8
— h(X, Vn)f 1 dz (126)
’ BT (2)+vnXn
B+1 p(UEOTE s g 4 gty
WX, vn
—log ]1((9\—/()1/())) {(Vn — 1) )\T‘L/B + ((NXB)T (Vn & — VOXO))} .

8 Complexity Analysis of Inference

Time complexity: Our SVRG method crucially hinges on the complexity of the gradient evaluations.
For BLR, we note that evaluating the complete ELBO gradient derived above for n observations
has complexity O(np?), where p is the number of regressors. We proceed by defining g as the
(generic) complexity of a gradient evaluation, so for BLR ¢ = p>. Clearly, an SGD step using b
observations is of order O(bg). Similarly, the computation of the anchors is O(Bg). Next, let the
optimization routine used for full optimization have complexity O(m(n,dim(8))). Most standard
(quasi-) Newton optimization routines such as BFGS or LBFGSB (used in our implementation) are
polynomial in n and dim(@). For such methods, since it holds that at most W > n observations are
evaluated in the full optimization, and since dim(8) is time-constant, m(n, dim()) is also constant
in time. Thus, though these constants can be substantial, all optimization steps (whether SVRG steps
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or full optimization steps) are O(1) in time. Since one performs 7' of them for T" observations, the
computational complexity (in time) is O(T').

Space complexity: One needs to store observations y; as well as gradient evaluations. Storing
one of them takes O(d) and O(dim(0)) space, respectively. Since we only keep a window W
of the most recent observations (and gradients), this means that the space requirement is of order
O(W(d + dim(0))) and in particular constant in time.

9 Additional Details on Experiments

For all experiment, constrained Limited Memory Broyden—Fletcher—Goldfarb—Shannon is used for the

full optimization step, where the constraints are a,, > 1,b,, > 1. We use Python’s scipy.optimize
wrapper, which calls a Fortran implementation. We also tested whether inference is sensitive to
different initializations of 3, and found that it is fairly stable as long as 3, is chosen reasonably.
For example, for the Air Pollution data, we could recover the same changepoint (£5 days) for
initializations of 3, ranging from 0.005 up to 0.1. All experiments were performed on a 2017
MacBook Pro with 16 GB 2133 MHz LPDDR3 and 3.1 GHz Intel Core i7.

9.1 Well-log data

Hyperparameters: We set the hyperparameters for standard Bayesian On-line Changepoint Detec-
tion slightly differently, the reason being that due to the robustness guarantee of Theorem 1, we can
use much less informative priors with the robust version than we can with the standard version: If
priors are too flat, the standard version declares far too many changepoints. Thus, for the standard
version, we use a constant CP prior (hazard) H(r; = 7,_1 + 1|r;_1) = 0.01, ap = 1, by = 10%,
Yo =0.25, up = 1.15- 10%, while for the robust version we can use a less informative prior by instead
setting by = 107. By virtue of our initialization procedure for f3,, this implies setting 3,0 ~ 0.05.
To start out close to the KLD, we initialize 34,0 = 0.0001.

Inferential procedure: For the robust version, we set W = 360, B = 25, b = 10, m = 20,
K = 1. For both versions, only the 50 most likely run-lengths are kept. For the robust version, the
average processing time was (0.487 per observation.

9.2 Air Pollution data

Preprocessing & Model Setup: The air pollution data is observed every 15 minutes across 29
stations for 365 days. We average the 96 observations made over 24 hours. This is done to move the
observed data closer to a normal distribution, as the measurements have significant daily volatility
variations. To account for weekly cycles, we also calculate for each station the mean for each weekday
and subtract it from the raw data.. Yearly seasonality is not accounted for. Afterwards, the data is
normalized station-wise. This is done only for numerical stability, because the internal mechanisms
of the used VAR models perform matrix operations (QR-decompositions and matrix multiplications
in particular) that can adversely affect numerical stability for observations with large absolute value.
Fig. 5| shows some of the station’s data after these preprocessing steps have been taken.

The autoregressive models and spatially structured vector autoregressive models (VARs) are chosen
to have lag lengths 1, 2, 3. These short lag lengths are chosen to explicitly disadvantage the robust
model universe: The non-robust run we compare against uses more than 20 models, with lag lengths
1,5, 6,7, meaning that it is much more expressive and should be able to cope with outliers better. In
spite of this, it not only declares more CPs, but also does worse than the robust version in terms of
predictive performance. For both the robust and non-robust model, two spatially structured VARs are
included as in [Knoblauch and Damoulas| [2018]].

Hyperparameters: Weset H(r; = r;_1+1|r;—1) = 0.001, a0 = 1, b9 = 25, pg = 0, 3o = I-20,
which yields initialization 3, ~ 0.005, By, = 0.1. The non-robust results are directly taken
from [Knoblauch and Damoulas| [2018]] and can be replicated running the code available from
https://github.com/alan-turing-institute/bocpdms/
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Figure 5: Some of the stations after preprocessing steps. x-axis gives NOX level, y-axis the day.

Inferential procedure: We set W = 300, m = 50, B = 20 and b = 10, K = 25 and retain
the 50 most likely run-lengths. Processing times are more volatile than for the well-log because
the full optimization procedure is significantly more expensive to perform. Most observations take
significantly less than 20 seconds to process, but some take over a minute (depending on how many
of the retained run-lengths are divisible by m at each time point).

9.3 Optimizing 3

Lastly, we investigate the trajectories for 3 as it is being optimized. For all trajectories, a bounded
predictive absolute loss was used with threshold 7, i.e. L(z) = max{|x|,7}. For B4, 7 = 5/T
(where 7' is the length of the time series) while for ,, 7 = 0.1. The results are not sensitive
to these thresholds, and they are picked with the intent that (1) a single observation should not
affect 3, by more than 0.1 and (2) that overall, 344 should not change by more than 5 in absolute
magnitude. As the initialization procedure for 3, works very well for predictive performance, the
on-line optimization never even comes close to making a step with size 7. The picture is rather
different for 3,14, which reaches 7 rather often. We note that this is because the estimated gradients
for Buq can be very extreme, which is why the implementation averages 50 consecutive gradients
before performing a step. Overall, we note that for the well log data whose trajectories are depicted
in Fig. 6] the degrees of robustness do not change much relative to their starting points at 5, = 0.05
and g = 0.001. In particular, the absolute change over more than 4, 000 observations is < 0.002
for /3, and < 0.015 for SByq. Step sizes are 1/t at time .

For the Air Pollution Data, the story is slightly different: Here, 3, does not change after the first
iteration, where it jumps from 0.005 directly to 1010, While this seems odd, it is mainly due to the
fact that for numerical stability reasonsEl, one needs to ensure that 3, > ¢ for some € > 0; and in
our implementation, e = 10710, The interpretation of the trace graph is thus that the optimization
continuously suggests less robust values for 3, but that we cannot admit them due to numerical
stability. The downward trend also holds for (.4, which is big enough to not endanger numerical
stability and hence can drift downwards.

Fig. [] also shows that the optimization technique used for 3 needs further investigation and research.
For starters, the outcomes suggest that a second order method could yield better results than using
a first-order SGD technique. In the future, we would like to explore this in greater detail and also

. . . L . o B
’In particular, working with the 5-D implies that one takes the exponential of a density, i.e. ¢/ . So even
working on a log scale now means working with the densities £ directly. It should be clear that these quantities
become numerically unstable for 3 too large or too small.
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Figure 6: § trajectories for the well-log data. For Sy4, steps are only taken every 50 observations to
average gradient noise

explore more advanced optimization methods like line search or trust region optimization methods
for this problem.
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