Mallows Models for Top-k Lists (Supplementary material)

Flavio Chierichetti Sapienza University, Rome, Italy flavio@di.uniroma1.it

Anirban Dasgupta IIT, Gandhinagar, India anirban.dasgupta@gmail.com

Shahrzad Haddadan Sapienza University, Rome, Italy shahrzad.haddadan@uniroma1.it

Ravi Kumar Google, Mountain View, CA Google, Zurich, Switzerland ravi.k53@gmail.com

Silvio Lattanzi silviolat@gmail.com

Proofs for Section 3.1 Α

Proof of Lemma 1 A.1

Proof. We partition the set $\{(i, j) \subseteq [k] \cup \tau, i > j\}$ of pairs into the following nine disjoint subsets of the form $S_{A,B} = \{(i,j) \mid i > j, i \in A, j \in B\}$, where $A, B \in \{[k] \setminus \tau, P, \tau \setminus [k]\}$. Let $\kappa(S_{A,B})$ be the contribution of $S_{A,B}$ to $K^{(p)}$.

Since i > j, it is easy to see that $S_{\tau \setminus [k], [k] \setminus \tau} = S_{\tau \setminus [k], P} = \emptyset$ and $\kappa(S_{P, [k] \setminus \tau}) = 0$. Furthermore, by calculations, we obtain $\kappa(S_{[k]\setminus\tau,[k]\setminus\tau}) = \kappa(S_{\tau\setminus[k],\tau\setminus[k]}) = p\binom{k-\ell}{2}, \kappa(S_{[k]\setminus\tau,\tau\setminus[k]}) = (k-\ell)^2$, and $\kappa(S_{PP}) = m$, the number of inversions in P.

Finally, $\kappa(S_{[k]\setminus\tau,P})$ can be calculated by summing for each $j \in P$, the number of i > j such that $i \notin P$. Similarly, $\kappa(S_{P,\tau \setminus [k]})$ can be calculated by summing for each position $x \in Q \subseteq \tau$, the count of non-Q positions above it. Note that both these numbers can be calculated since the sets P and Q have been fixed. This proves the claim.

A.2 Proof of Theorem 2

Proof. Note that the number of partitions, $T_{k,n}(P,Q,m)$, is bounded by

$$\sum_{\ell=0}^{k} \binom{k}{2} \binom{k}{\ell} \binom{k}{k-\ell} = \binom{k}{2} \sum_{\ell=0}^{k} \binom{k}{\ell}^{2} \le O(k^{2}4^{k}).$$

The algorithm first starts by counting the number of top-k lists in each of the $T_{k,n}(P,Q,m)$ for all legitimate values of P, Q, and m. For a particular $T_{k,n}(P,Q,m)$, the total number of top-k lists can be counted in the following manner. There are exactly $\binom{n}{k-\ell}$ ways to fill up the positions in Q. The total number of top-k lists in this partition is a product of $\binom{n}{k-\ell}$ with the number of ways of ordering the elements of P such that they have exactly m inversions. Counting the number of lists of size ℓ that have exactly m inversions can be done using the following standard dynamic program. Indeed, wlog, we can consider P to be the set $\{1, \ldots, \ell\}$. Let M be a table of size $\ell \times {\ell \choose 2}$, where M[x, y]indicate the number of lists of size x that have y inversions. Initialize $M[1,0] = \overline{1}$ and M[1,z] = 0for all z > 0. Since the list of size x can be obtained by placing the last element in $0, 1, \dots, x - 1$, define $M[x, y] = \sum_{z=\max(0, y-x+1)}^{y} M[x-1, z].$

The sampling algorithm proceeds by first choosing one of the $T_{k,n}(P,Q,m)$ partitions proportional to its count. We then sample a top-k list τ in the chosen partition uniformly at random. To do so, we first sample the |Q| elements in τ from $\{k + 1, \ldots, n\}$ in time $O(\log \binom{n}{k})$. Next, we need to sample

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

a random ordering of the elements of P with exactly m inversions. To do it we use the matrix M defined above. We start by placing the last element in position z' with probability proportional to $M[\ell - 1, \ell - z']$, then the second last element in position z'' between the available positions (i.e., not considering the position already taken by element ℓ) with probability $M[\ell - 2, \ell - 1 - z'']$, and so on. By a simple induction we can see that the permutation constructed in this way is uniform at random (u.a.r.) among the set of permutations of P with m inversions, as in each step we restrict to a subset of permutations with probability proportional to the size of the subset.

Thus overall we can sample a random top-k list in time $O(k^2 4^k + k \log n)$. The correctness of the sampling procedure follows from Lemma 1 as well as from the above claim of sampling u.a.r. from each of the partitions.

B Proofs for Section 3.2

B.1 Proof of Lemma 3

Proof. We show for any two $\tau_1, \tau_2 \in T_{k,n}$ the detailed balanced equation holds, i.e., $\Pi(\tau_1)\mathcal{C}(\tau_1, \tau_2) = \Pi(\tau_2)\mathcal{C}(\tau_2, \tau_1)$. We verify the condition when τ_1 and τ_2 are reachable from each other by S_1 ; the other cases of T_0, T_1, T_2, S_0 are similar (omitted). Consider τ_1, τ_2 such that $\tau_1(j) = \tau_2(j)$ for $j < k, \tau_1(k) = c \in \tau^*$, and $\tau_2(k) = c' \notin \tau^*$ and $c' \in \bar{\tau}_1$. By swapping c and c', the following inversions will be added to τ_1 : for any $x \notin \tau^*$ in $\tau_1[1, k-1]$, we have $x \parallel_{\tau_2} c'$ and $x >_{\tau^*} c'$; furthermore, $c <_{\tau_2} c'$ and $c >_{\tau^*} c'$. Thus, $K^{(p)}(\tau_2) - K^{(p)}(\tau_1) = i \cdot p + 1$ where i is $|\tau_1[1, k-1] \cap \bar{\tau^*}|$, and $\Pi(\tau_1)/\Pi(\tau_2) = e^{\beta(i \cdot p + 1)}$. Hence we have $\Pi(\tau_1)/\Pi(\tau_2) = \mathcal{C}(\tau_2, \tau_1)/\mathcal{C}(\tau_1, \tau_2)$.

B.2 Proof of Lemma 4

Proof. The key observation is that $C^{(i)}$ is the product of the following Markov chains, one corresponding to each option in Definition 1 and each of whose relaxation times are known or can be easily analyzed. C_{T_0} is a biased *i*-adjacent transposition Markov chain on the symmetric group S_i ; C_{T_1} is an unbiased (k - i)-adjacent transposition Markov chain on S_{k-i} ; C_{T_2} is a $(k, k - i, 1/(1 + e^{\beta p}))$ -exclusion process; and $C_{S_{01}}$ is an instance of the coupon collector problem.

Appealing to the relaxation time bounds for biased and unbiased adjacent transposition Markov chains, and exclusion processes, the proof follows from a result [1] that relates the relaxation time of several Markov chains to their product. $\hfill \Box$

B.3 Proof of Lemma 5

Proof. In this proof we bound the conductances of C. Recall that for a Markov chain on Ω with transition probability P and stationary distribution Π , and for a subset $S \subseteq \Omega$ the conductance of set S is defined by $\Phi_S = \Pi(S)^{-1} \sum_{x \in S, y \notin S} \Pi(x) P(x, y)$. The conductance of the Markov chain C is defined as $\Phi_C = \min_{S; \Phi(S) \le 1/2} \Phi_S$, and the relaxation time is related to it by the Cheeger inequality: $t_{\text{rel}} \le 1/\Phi^2$. We prove a more general statement (Lemma B.1 below) from which we conclude $\Phi_C > 1/2k$, which completes the proof.

Lemma B.1. Consider a lazy Markov chain defined on a path of length k where the vertices are indexed by $V = \{0, 1, ..., k - 1\}$, and with the following transition probabilities: for any $0 \le i \le k - 1$, $P(i, i + 1) = r_i$ and for any $1 \le i \le k$, $P(i, i - 1) = \ell_i$. If these probabilities satisfy: for all $1 \le i \le k - 1$, $r_i/\ell_{i+1} \ge 1$, and $r_i > p$ then the conductance of this Markov chain is at least p/k.

Proof. Let Π be the stationary distribution of this chain. Since $r_i/\ell_{i+1} \ge 1$ for all i, we have $\Pi(j) \ge \Pi(i)$ for any j > i. Now consider a subset $S \subseteq V$ and let j be the vertex with the largest index in S. If $j \ne k$, then we can get out of S w.p. $r_j > p$, since size of S is less than k, and for all $i \in S, \Pi(j) \ge \Pi(i)$ and hence the conductance of S is greater than p/k.

If the maximum index element in S is k, then take j to be the element in S with maximum index such that $j - 1 \notin S$. Since $\Pi(S) \leq 1/2$, the conductance can be bounded from below: $\Phi_S \geq 0$

 $\begin{array}{l} \frac{\Pi(j)\ell_j}{\Pi(S)} \geq \frac{\Pi(j)\ell_j}{\Pi(\bar{S})} = \frac{\Pi(j)\ell_j}{\sum_{i\in\bar{S}}\Pi(i)}, \text{ where } \bar{S} \text{ is the complement of } S. \text{ Note that for any } i < j, \text{ we have } \\ \Pi(i)/\Pi(j) = (\Pi(i)/\Pi(j-1))(\Pi(j-1)/\Pi(j)) \leq (\Pi(j-1)/\Pi(j)) = \ell_j/r_{j-1} \text{ where the last inequality follows from the detailed balanced equation. Thus, } \\ \Pi_S^{-1} \leq \frac{\sum_{i\in S^C}\Pi(i)}{\Pi(j)\ell_j} \leq kr_{j-1}^{-1} \leq kp^{-1}. \\ \text{Taking the reciprocals we get the result.} \\ \end{array}$

B.4 Proof of Lemma 4

Proof. Note that C can be broken into the the product of the following chains:

 C_{T_0} : A biased *i*-adjacent transposition Markov chain on the symmetric group S_i , denoting the relative positions of the elements in π . Hence, $t_{rel}(C_{T_0}) = i^2$.

 C_{T_1} : An unbiased (k-i)-adjacent transposition Markov chain on S_{k-i} , denoting the relative positions of elements in $[n] \setminus \pi$. Hence, $t_{rel}(C_{T_1}) = (k-i)^3 \log(k-i)$.

 C_{T_2} : A $(k, k - i, 1/(1 + e^{\beta}))$ -exclusion process, where the *i* zeros correspond to the positions of elements in $\tau \cap \pi$ and the k - i ones correspond to the positions of elements in $\tau \cap ([n] \setminus [k])$. Hence, $t_{rel}(C_{T_2}) = k^2$.

 $C_{S_{00}}$: A $(k, i, 1/(1 + e^{\beta p}))$ -exclusion process where the *i* ones correspond those elements in π that are present in τ . Hence, $t_{rel}(C_{S_{00}}) = k^2$.

 $C_{S_{01}}$: An instance of the coupon collector problem. Hence, when all the *i* elements in $\tau \cap \pi$ are switched, this will yield a random subset and therefore $t_{rel}(C_{S_{01}}) = n/(n-k) \cdot k \log k$.

At this point, we appeal to a result of Diaconis and Saloff-Coste [1] that relates the relaxation time of several Markov chains to their product. Let $k \ll n$ and p_R be the probability of selecting the Markov chain R. We have

$$t_{\rm rel}(\mathcal{C}^{(i)}) = \max_{R \in \{T_0, T_1, T_2, S_{00}, S_{01}\}} \{(2/p_R) \cdot t_{\rm rel}(\mathcal{C}_R)\}$$

= $O\left(\left(\frac{n}{n-k}\right) k \log k + k^3 \log k\right)$
= $O(k^3 \log k).$ \Box

B.5 A lower bound for C

Let τ^* be the center of the distribution. We introduce a set $S \subset T_{k,n}$; with $\mathcal{M}_{\beta,k,n}^{(p)}(S) \ge 1/2$ such that the maximum expected time required for \mathcal{C} to reach this set from an arbitrary point in $T_{k,n}$ is at least $k^3/16$.

Define $S \subset T_{k,n}$ as follows: $S = \{x \in T_{k,n}; |x \cap \tau^*| \ge k/2\}$. Clearly $\mathcal{M}^{(p)}_{\beta,k,n}(S) \ge 1/2$.

Lemma B.2. Let $S = \{\tau \in T_{k,n}; |\tau \cap \tau^*| \ge k/2\}$, the expected time required for C to reach S from τ^* is at least $k^3/16$.

Proof. To reach any element in S from τ^* we need to replace at least k/2 elements of τ^* with elements of $\bar{\tau}^*$. Let $\tau \in S$ be the first element we reach from τ^* , and $\tau \cap \tau^* = \{x_1, x_2, \ldots, x_{k/2}\}$. Assume without loss of generality that the indexing is such that $x_i >_{\tau} x_j$ iff i > j. We define X_i be the random variable that indicates the number of steps C requires until x_i reaches its place in τ . By linearity of expectation, the expected time to reach τ would be at least $\sum_{i=1}^{k/2} \mathbf{E}(X_i)$. Note that for $i < k/4, x_i$ has to pass $x_{k/4+1}, x_{k/4+2}, \ldots, x_{k/2}$, and each transposition moving x_i takes place with probability 1/k. Thus, $\mathbf{E}(X_i) \ge k^2/4$. Taking the sum over all k/4 elements, we get the result. \Box

C Proofs for Section 4.1

C.1 Proof of Lemma 7

Proof. Let $S_{\leq} = \{\tau \in T_{k,n} \mid i <_{\tau} j\}, S_{>} = \{\tau \in T_{k,n} \mid j <_{\tau} i\}$. Notice that $S_{\leq} \cup S_{>}$ is the set of top-k lists such that $\{i, j\} \cap \tau \neq \emptyset$. Define a bijection $h : S_{\leq} \to S_{>}$ that swaps the positions of

i and *j* in $\tau \in S_{<}$ to obtain $h(\tau) \in S_{>}$. Clearly for $\tau \in S_{<}$, we have $K^{(p)}(h(\tau)) \leq K^{(p)}(\tau) - 1$ and hence $\Pr[\tau] \geq \exp(\beta) \cdot \Pr[h(\tau)]$. Since *h* is a bijection, it then follows that $\Pr[\tau \in S_{<}] \geq \exp(\beta) \cdot \Pr[\tau \in S_{>}]$.

C.2 Proof of Lemma 8

Proof. Fix $i \in [k]$, we partition $T_{k,n}$ based on the presence of $i: T_{k,n,i} = \{\tau | i \in \tau\}$. Consider the following mapping $h_i: T_{k,n,i} \to T_{k,n,i}$, let j be the last element in τ such that $j \notin [k]$; now, define $h(\tau)$ to be the top-k list that is the same as τ but in which i is replaced with j. For example for n = 7, k = 3, and $i = 2, h_2(145) = 142$. Hence $\Pr[h(\tau)] \ge \exp(\beta) \cdot \Pr[\tau]$. Furthermore, by construction, for each $\tau \in T_{k,n,i}, |h_i^{-1}(\tau)| \le n - k$. Thus, for $\tau' \in T_{k,n,i}$,

$$\sum_{\tau \in h_i^{-1}(\tau')} \Pr[\tau] \leq e^{-\beta} \sum_{\tau \in h_i^{-1}(\tau')} \Pr[h(\tau)] = e^{-\beta} \sum_{\tau \in h_i^{-1}(\tau')} \Pr[\tau'] \leq e^{-\beta} (n-k) \cdot \Pr[\tau'].$$

Applying this, we complete the proof as

$$1 = \sum_{\tau} \Pr[\tau] = \sum_{\tau' \in T_{k,n,i}} \left(\Pr[\tau'] + \sum_{\tau \in h^{-1}[\tau']} \Pr[\tau] \right) \leq (1 + e^{-\beta}(n-k)) \sum_{\tau' \in T_{k,n,i}} \Pr[\tau'].$$

Since $Pr_{\tau}[i \in \tau] = \sum_{\tau' \in T_{k,n,i}} \Pr[\tau']$, the proof is complete.

C.3 Proof of Theorem 9

Proof. Suppose the algorithm samples m top-k lists. For every pair of elements i and j, the algorithm decides on one of the following cases: $\{i < j, j < i, i \parallel j\}$. In order to do so, we create the count $X_{ij} = \sum_{\ell=1}^{m} X_{ij}^{\tau_{\ell}}$, where for each sample τ , we define X_{ij}^{τ} to be 1 if $i <_{\tau} j$, -1 if $j <_{\tau} i$, and 0 otherwise. Then, for some K > 0, if $X_{ij} > K$, we say that i < j; if $X_{ij} < -K$, we say that j < i; and if none of the cases holds, we claim $i \parallel j$.

We show that there exists some K > 0, such that for each pair i, j, such that i < j, the correct decision is output. It is clear to see that this is enough to identify the original [k] items as well as their correct ordering. In order to analyze the probability of correctness we define the following biased coin. Let $p = \Omega(\exp(\beta)/(n-k))$. Define Y_1, \ldots, Y_m to be i.i.d random variables such that

$$Y_{\ell} = +1 \text{ w.p. } \frac{e^{\beta}p}{1+e^{\beta}}; \quad -1 \text{ w.p. } \frac{p}{1+e^{\beta}}; \quad 0 \text{ w.p. } 1-p.$$

Using Lemma 7 and Lemma 8, it is clear that if i < j, $\Pr[X_{ij}^{\tau} < 1] \le \Pr[Y_{\ell} < 1]$. Hence, applying Bernstein's inequality [2], for $K = (1 - \epsilon)mE[Y]$ and for $0 < \epsilon < 1$, we can obtain

$$\Pr[X_{ij} < K] \le e^{-\epsilon^2 m E[Y]/2}.$$

Since $E[Y] = \frac{e^{\beta}-1}{e^{\beta}+1}p = \Omega\left(\frac{e^{\beta}-1}{e^{\beta}+1}\left(\frac{e^{\beta}}{n-k}\right)\right)$, by choosing $\epsilon = 0.5$, and using $m = \Theta\left(\frac{e^{\beta}+1}{e^{\beta}-1}\left(\frac{n-k}{e^{\beta}}\right)\log n\right)$ samples, the probability that the correct decision is output is at least $1 - o(n^{-3})$. By taking a union bound over all pairs, we get the stated claim.

D Proofs for Section 4.2

D.1 Proof of Lemma 10

Proof. If τ is such that $|\tau \cap \tau^*| \leq k - \sqrt{\beta^{-1}3k \ln n}$, then $K^{(p)}(\tau, \tau^*) > 3\beta^{-1}k \ln n$, since, for each $i \in \tau^* \setminus \tau$ and for each $j \in \tau \setminus \tau^*$, we will have that $i >_{\tau^*} j$ and $i <_{\tau} j$, and $|\tau^* \setminus \tau| = |\tau \setminus \tau^*| \geq \sqrt{\beta^{-1}3k \ln n}$. For each such τ , we will have $\Pr[\mathcal{M}_{\beta,\tau^*} = \tau] \leq e^{-3\beta^{-1}k \ln n} = n^{-3k}$. Since the number of τ 's such that $|\tau \cap \tau^*| \leq k - \sqrt{\beta^{-1}3k \ln n}$ is upper bounded by the number of top-k lists, i.e., by n^k , the proof follows from a union bound.

D.2 Proof of Lemma 11

Proof. We run the following version of single-linkage clustering: start from a singleton cluster for each sample and greedily merge a pair of clusters if we find a sample τ' in one, and a sample τ' in another such that $|\tau \setminus \tau'| \le 2\sqrt{\beta^{-1}3k \ln n}$. This algorithm runs in polynomial time.

By Lemma 10, and by a union bound, the probability that at least one of the $o(n^k)$ samples τ contains in its first k positions more than $\sqrt{\beta^{-1}3k \ln n}$ elements that are not in its center's first k positions, is at most o(1). Then, any two samples τ, τ' generated from the same center have to satisfy $|\tau \setminus \tau'| = |\tau' \setminus \tau| \le 2\sqrt{\beta^{-1}3k \ln n}$. Therefore, w.p. 1 - o(1), for each center τ_i^* , the samples produced by $\mathcal{M}_{\beta,\tau_i^*}$ will end up in the same cluster.

By a similar argument, w.p. 1 - o(1), any two samples τ, τ' generated, respectively, by $\mathcal{M}_{\beta,\tau_i^*}$ and $\mathcal{M}_{\beta,\tau_j^*}$ for $i \neq j$ will guarantee that $|\tau \setminus \tau'| = |\tau' \setminus \tau| > 2\sqrt{\beta^{-1}3k \ln n}$. Therefore, their clusters will never be merged.

It follows that, for each center τ_i^* , the final clustering will contain one cluster containing all and only the samples generated by $\mathcal{M}_{\beta,\tau_i^*}$.

D.3 Proof of Theorem 12

Proof. After clustering the samples according to the Algorithm of Lemma 11, we can apply the Algorithm of Theorem 9 to compute the center of each of the t clusters.

References

- P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. *The Annals of Applied Probability*, 3(3):696–730, 1993.
- [2] D. P. Dubhashi and A. Panconesi. *Concentration of Measure for the Analysis of Randomized Algorithms*. Cambridge University Press, 2009.