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A Proofs for Section 3.1

A.1 Proof of Lemma 1

Proof. We partition the set {(i, j) ⊆ [k] ∪ τ, i > j} of pairs into the following nine disjoint subsets
of the form SA,B = {(i, j) | i > j, i ∈ A, j ∈ B}, where A,B ∈ {[k] \ τ, P, τ \ [k]}. Let κ(SA,B)

be the contribution of SA,B to K(p).

Since i > j, it is easy to see that Sτ\[k],[k]\τ = Sτ\[k],P = ∅ and κ(SP,[k]\τ ) = 0. Furthermore, by
calculations, we obtain κ(S[k]\τ,[k]\τ ) = κ(Sτ\[k],τ\[k]) = p

(
k−`

2

)
, κ(S[k]\τ,τ\[k]) = (k − `)2, and

κ(SP,P ) = m, the number of inversions in P .

Finally, κ(S[k]\τ,P ) can be calculated by summing for each j ∈ P , the number of i > j such that
i 6∈ P . Similarly, κ(SP,τ\[k]) can be calculated by summing for each position x ∈ Q ⊆ τ , the count
of non-Q positions above it. Note that both these numbers can be calculated since the sets P and Q
have been fixed. This proves the claim.

A.2 Proof of Theorem 2

Proof. Note that the number of partitions, Tk,n(P,Q,m), is bounded by
k∑
`=0

(
k

2

)(
k

`

)(
k

k − `

)
=

(
k

2

) k∑
`=0

(
k

`

)2

≤ O(k24k).

The algorithm first starts by counting the number of top-k lists in each of the Tk,n(P,Q,m) for all
legitimate values of P , Q, and m. For a particular Tk,n(P,Q,m), the total number of top-k lists can
be counted in the following manner. There are exactly

(
n
k−`
)

ways to fill up the positions in Q. The
total number of top-k lists in this partition is a product of

(
n
k−`
)

with the number of ways of ordering
the elements of P such that they have exactly m inversions. Counting the number of lists of size `
that have exactly m inversions can be done using the following standard dynamic program. Indeed,
wlog, we can consider P to be the set {1, . . . , `}. Let M be a table of size `×

(
`
2

)
, where M [x, y]

indicate the number of lists of size x that have y inversions. Initialize M [1, 0] = 1 and M [1, z] = 0
for all z > 0. Since the list of size x can be obtained by placing the last element in 0, 1, . . . x− 1,
define M [x, y] =

∑y
z=max(0,y−x+1)M [x− 1, z].

The sampling algorithm proceeds by first choosing one of the Tk,n(P,Q,m) partitions proportional
to its count. We then sample a top-k list τ in the chosen partition uniformly at random. To do so, we
first sample the |Q̄| elements in τ from {k + 1, . . . , n} in time O(log

(
n
k

)
). Next, we need to sample
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a random ordering of the elements of P with exactly m inversions. To do it we use the matrix M
defined above. We start by placing the last element in position z′ with probability proportional to
M [` − 1, ` − z′], then the second last element in position z′′ between the available positions (i.e.,
not considering the position already taken by element `) with probability M [`− 2, `− 1− z′′], and
so on. By a simple induction we can see that the permutation constructed in this way is uniform at
random (u.a.r.) among the set of permutations of P with m inversions, as in each step we restrict to a
subset of permutations with probability proportional to the size of the subset.

Thus overall we can sample a random top-k list in time O(k24k + k log n). The correctness of the
sampling procedure follows from Lemma 1 as well as from the above claim of sampling u.a.r. from
each of the partitions.

B Proofs for Section 3.2

B.1 Proof of Lemma 3

Proof. We show for any two τ1, τ2 ∈ Tk,n the detailed balanced equation holds, i.e.,
Π(τ1)C(τ1, τ2) = Π(τ2)C(τ2, τ1). We verify the condition when τ1 and τ2 are reachable from
each other by S1; the other cases of T0, T1, T2, S0 are similar (omitted). Consider τ1, τ2 such that
τ1(j) = τ2(j) for j < k, τ1(k) = c ∈ τ∗, and τ2(k) = c′ /∈ τ∗ and c′ ∈ τ̄1. By swapping c and c′, the
following inversions will be added to τ1: for any x /∈ τ∗ in τ1[1, k−1], we have x ‖τ2 c′ and x >τ∗ c′;
furthermore, c <τ2 c

′ and c >τ∗ c′. Thus,K(p)(τ2)−K(p)(τ1) = i·p+1 where i is |τ1[1, k−1]∩τ̄∗|,
and Π(τ1)/Π(τ2) = eβ(i·p+1). Hence we have Π(τ1)/Π(τ2) = C(τ2, τ1)/C(τ1, τ2).

B.2 Proof of Lemma 4

Proof. The key observation is that C(i) is the product of the following Markov chains, one corre-
sponding to each option in Definition 1 and each of whose relaxation times are known or can be easily
analyzed. CT0

is a biased i-adjacent transposition Markov chain on the symmetric group Si; CT1
is

an unbiased (k − i)-adjacent transposition Markov chain on Sk−i; CT2 is a
(
k, k − i, 1/(1 + eβ)

)
-

exclusion process; CS00
is a

(
k, i, 1/(1 + eβp)

)
-exclusion process; and CS01

is an instance of the
coupon collector problem.

Appealing to the relaxation time bounds for biased and unbiased adjacent transposition Markov
chains, and exclusion processes, the proof follows from a result [1] that relates the relaxation time of
several Markov chains to their product.

B.3 Proof of Lemma 5

Proof. In this proof we bound the conductances of C. Recall that for a Markov chain on Ω with
transition probability P and stationary distribution Π, and for a subset S ⊆ Ω the conductance of
set S is defined by ΦS = Π(S)

−1∑
x∈S,y/∈S Π(x)P (x, y). The conductance of the Markov chain

C is defined as ΦC = minS;Φ(S)≤1/2 ΦS , and the relaxation time is related to it by the Cheeger
inequality: trel ≤ 1/Φ2. We prove a more general statement (Lemma B.1 below) from which we
conclude ΦC > 1/2k, which completes the proof.

Lemma B.1. Consider a lazy Markov chain defined on a path of length k where the vertices
are indexed by V = {0, 1, . . . , k − 1}, and with the following transition probabilities: for any
0 ≤ i ≤ k − 1, P (i, i + 1) = ri and for any 1 ≤ i ≤ k , P (i, i − 1) = `i. If these probabilities
satisfy: for all 1 ≤ i ≤ k − 1, ri/`i+1 ≥ 1, and ri > p then the conductance of this Markov chain is
at least p/k.

Proof. Let Π be the stationary distribution of this chain. Since ri/`i+1 ≥ 1 for all i, we have
Π(j) ≥ Π(i) for any j > i. Now consider a subset S ⊆ V and let j be the vertex with the largest
index in S. If j 6= k, then we can get out of S w.p. rj > p, since size of S is less than k, and for all
i ∈ S,Π(j) ≥ Π(i) and hence the conductance of S is greater than p/k.

If the maximum index element in S is k, then take j to be the element in S with maximum index
such that j − 1 /∈ S. Since Π(S) ≤ 1/2, the conductance can be bounded from below: ΦS ≥

2



Π(j)`j
Π(S) ≥

Π(j)`j
Π(S̄)

=
Π(j)`j∑
i∈S̄ Π(i) , where S̄ is the complement of S. Note that for any i < j, we have

Π(i)/Π(j) = (Π(i)/Π(j − 1))(Π(j − 1)/Π(j)) ≤ (Π(j − 1)/Π(j)) = `j/rj−1 where the last

inequality follows from the detailed balanced equation. Thus, Π−1
S ≤

∑
i∈SC Π(i)

Π(j)`j
≤ kr−1

j−1 ≤ kp−1.
Taking the reciprocals we get the result.

B.4 Proof of Lemma 4

Proof. Note that C can be broken into the the product of the following chains:

CT0 : A biased i-adjacent transposition Markov chain on the symmetric group Si, denoting the relative
positions of the elements in π. Hence, trel(CT0) = i2.

CT1
: An unbiased (k−i)-adjacent transposition Markov chain on Sk−i, denoting the relative positions

of elements in [n] \ π. Hence, trel(CT1
) = (k − i)3 log(k − i).

CT2
: A

(
k, k − i, 1/(1 + eβ)

)
-exclusion process, where the i zeros correspond to the positions of

elements in τ ∩ π and the k− i ones correspond to the positions of elements in τ ∩ ([n] \ [k]). Hence,
trel(CT2

) = k2.

CS00
: A
(
k, i, 1/(1 + eβp)

)
-exclusion process where the i ones correspond those elements in π that

are present in τ . Hence, trel(CS00) = k2.

CS01
: An instance of the coupon collector problem. Hence, when all the i elements in τ ∩ π are

switched, this will yield a random subset and therefore trel(CS01
) = n/(n− k) · k log k.

At this point, we appeal to a result of Diaconis and Saloff-Coste [1] that relates the relaxation time of
several Markov chains to their product. Let k � n and pR be the probability of selecting the Markov
chain R. We have

trel(C(i)) = max
R∈{T0,T1,T2,S00,S01}

{(2/pR) · trel(CR)}

= O

((
n

n− k

)
k log k + k3 log k

)
= O(k3 log k).

B.5 A lower bound for C

Let τ∗ be the center of the distribution. We introduce a set S ⊂ Tk,n; withM(p)
β,k,n(S) ≥ 1/2 such

that the maximum expected time required for C to reach this set from an arbitrary point in Tk,n is at
least k3/16.

Define S ⊂ Tk,n as follows: S = {x ∈ Tk,n; |x ∩ τ∗| ≥ k/2}. ClearlyM(p)
β,k,n(S) ≥ 1/2.

Lemma B.2. Let S = {τ ∈ Tk,n; |τ ∩ τ∗| ≥ k/2}, the expected time required for C to reach S from
τ∗ is at least k3/16.

Proof. To reach any element in S from τ∗ we need to replace at least k/2 elements of τ∗ with
elements of τ̄∗. Let τ ∈ S be the first element we reach from τ∗, and τ ∩ τ∗ = {x1, x2, . . . , xk/2}.
Assume without loss of generality that the indexing is such that xi >τ xj iff i > j. We define Xi be
the random variable that indicates the number of steps C requires until xi reaches its place in τ . By
linearity of expectation, the expected time to reach τ would be at least

∑k/2
i=1 E(Xi). Note that for

i < k/4, xi has to pass xk/4+1, xk/4+2, . . . , xk/2, and each transposition moving xi takes place with
probability 1/k. Thus, E(Xi) ≥ k2/4. Taking the sum over all k/4 elements, we get the result.

C Proofs for Section 4.1

C.1 Proof of Lemma 7

Proof. Let S< = {τ ∈ Tk,n | i <τ j}, S> = {τ ∈ Tk,n | j <τ i}. Notice that S< ∪ S> is the set
of top-k lists such that {i, j} ∩ τ 6= ∅. Define a bijection h : S< → S> that swaps the positions of
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i and j in τ ∈ S< to obtain h(τ) ∈ S>. Clearly for τ ∈ S<, we have K(p)(h(τ)) ≤ K(p)(τ) − 1
and hence Pr[τ ] ≥ exp(β) · Pr[h(τ)]. Since h is a bijection, it then follows that Pr[τ ∈ S<] ≥
exp(β) · Pr[τ ∈ S>].

C.2 Proof of Lemma 8

Proof. Fix i ∈ [k], we partition Tk,n based on the presence of i: Tk,n,i = {τ |i ∈ τ}. Consider the
following mapping hi : Tk,n \ Tk,n,i → Tk,n,i, let j be the last element in τ such that j 6∈ [k]; now,
define h(τ) to be the top-k list that is the same as τ but in which i is replaced with j. For example
for n = 7, k = 3, and i = 2, h2(145) = 142. Hence Pr[h(τ)] ≥ exp(β) · Pr[τ ]. Furthermore, by
construction, for each τ ∈ Tk,n,i, |h−1

i (τ)| ≤ n− k. Thus, for τ ′ ∈ Tk,n,i,∑
τ∈h−1

i (τ ′)

Pr[τ ] ≤ e−β
∑

τ∈h−1
i (τ ′)

Pr[h(τ)] = e−β
∑

τ∈h−1
i (τ ′)

Pr[τ ′] ≤ e−β(n− k) · Pr[τ ′].

Applying this, we complete the proof as

1 =
∑
τ

Pr[τ ] =
∑

τ ′∈Tk,n,i

Pr[τ ′] +
∑

τ∈h−1[τ ′]

Pr[τ ]

 ≤ (1 + e−β(n− k))
∑

τ ′∈Tk,n,i

Pr[τ ′].

Since Prτ [i ∈ τ ] =
∑
τ ′∈Tk,n,i Pr[τ ′], the proof is complete.

C.3 Proof of Theorem 9

Proof. Suppose the algorithm samplesm top-k lists. For every pair of elements i and j, the algorithm
decides on one of the following cases: {i < j, j < i, i ‖ j}. In order to do so, we create the count
Xij =

∑m
`=1X

τ`
ij , where for each sample τ , we define Xτ

ij to be 1 if i <τ j, −1 if j <τ i, and 0
otherwise. Then, for some K > 0, if Xij > K, we say that i < j; if Xij < −K, we say that j < i;
and if none of the cases holds, we claim i ‖ j.
We show that there exists some K > 0, such that for each pair i, j, such that i < j, the correct
decision is output. It is clear to see that this is enough to identify the original [k] items as well as their
correct ordering. In order to analyze the probability of correctness we define the following biased
coin. Let p = Ω(exp(β)/(n− k)). Define Y1, . . . , Ym to be i.i.d random variables such that

Y` = +1 w.p.
eβp

1 + eβ
; −1 w.p.

p

1 + eβ
; 0 w.p. 1− p.

Using Lemma 7 and Lemma 8, it is clear that if i < j, Pr[Xτ
ij < 1] ≤ Pr[Y` < 1]. Hence, applying

Bernstein’s inequality [2], for K = (1− ε)mE[Y ] and for 0 < ε < 1, we can obtain
Pr[Xij < K] ≤ e−ε

2mE[Y ]/2.

Since E[Y ] = eβ−1
eβ+1

p = Ω
(
eβ−1
eβ+1

(
eβ

n−k

))
, by choosing ε = 0.5, and using m =

Θ
(
eβ+1
eβ−1

(
n−k
eβ

)
log n

)
samples, the probability that the correct decision is output is at least

1− o(n−3). By taking a union bound over all pairs, we get the stated claim.

D Proofs for Section 4.2

D.1 Proof of Lemma 10

Proof. If τ is such that |τ ∩ τ∗| ≤ k −
√
β−13k lnn, then K(p)(τ, τ∗) > 3β−1k lnn, since, for

each i ∈ τ∗ \ τ and for each j ∈ τ \ τ∗, we will have that i >τ∗ j and i <τ j, and |τ∗ \ τ | =

|τ \ τ∗| ≥
√
β−13k lnn. For each such τ , we will have Pr [Mβ,τ∗ = τ ] ≤ e−3β−1k lnn = n−3k.

Since the number of τ ’s such that |τ ∩ τ∗| ≤ k −
√
β−13k lnn is upper bounded by the number of

top-k lists, i.e., by nk, the proof follows from a union bound.
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D.2 Proof of Lemma 11

Proof. We run the following version of single-linkage clustering: start from a singleton cluster for
each sample and greedily merge a pair of clusters if we find a sample τ ′ in one, and a sample τ ′ in
another such that |τ \ τ ′| ≤ 2

√
β−13k lnn. This algorithm runs in polynomial time.

By Lemma 10, and by a union bound, the probability that at least one of the o(nk) samples τ
contains in its first k positions more than

√
β−13k lnn elements that are not in its center’s first k

positions, is at most o(1). Then, any two samples τ, τ ′ generated from the same center have to satisfy
|τ \ τ ′| = |τ ′ \ τ | ≤ 2

√
β−13k lnn. Therefore, w.p. 1 − o(1), for each center τ∗i , the samples

produced byMβ,τ∗i
will end up in the same cluster.

By a similar argument, w.p. 1− o(1), any two samples τ, τ ′ generated, respectively, byMβ,τ∗i
and

Mβ,τ∗j
for i 6= j will guarantee that |τ \ τ ′| = |τ ′ \ τ | > 2

√
β−13k lnn. Therefore, their clusters

will never be merged.

It follows that, for each center τ∗i , the final clustering will contain one cluster containing all and only
the samples generated byMβ,τ∗i

.

D.3 Proof of Theorem 12

Proof. After clustering the samples according to the Algorithm of Lemma 11, we can apply the
Algorithm of Theorem 9 to compute the center of each of the t clusters.
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