
0 2500 5000 7500 10000 12500 15000 17500 20000
Different Iterations T

0

200

400

600

800

1000

1200

1400

Cl
ip

pe
d 

Co
ns

tr
ai

nt
 R

eg
re

t

Clipped − OGD (β = 0.5)
Clipped − OGD (β = 2/3)
A − OGD (β = 0.5)
A − OGD (β = 2/3)
OGD

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000
Different Iterations T

−500

−250

0

250

500

750

1000

1250

1500

Co
ns

tr
ai

nt
 R

eg
re

t

Clipped − OGD (β = 0.5)
Clipped − OGD (β = 2/3)
A − OGD (β = 0.5)
A − OGD (β = 2/3)
OGD

(b)

0 2500 5000 7500 10000 12500 15000 17500 20000
Different Iterations T

−800

−600

−400

−200

0

200

400

600

Ob
je

ct
iv

e 
Re

gr
et

Clipped − OGD (β = 0.5)
Clipped − OGD (β = 2/3)
A − OGD (β = 0.5)
A − OGD (β = 2/3)
OGD

(c)

Figure 4: Toy Example Results: Fig.4(a): Clipped Long-term Constraint Violation. Fig.4(b): Long-
term Constraint Violation. Fig.4(c): Cumulative Regret of the Loss function

Supplemental Materials

The supplemental material contains proofs of the main results of the paper along with supporting
results.

A Toy Example Results

The results including different T up to 20000 are shown in Fig.4, whose results are averaged over 10
random sequences of {ct}Tt=1. Since the standard deviations are small, we only plot the mean results.

From Fig.1 we can see that the trajectories generated by Clipped − OGD follows the boundary
very tightly until reaching the optimal point. which is also reflected by the Fig.4(a) of the clipped
long-term constraint violation. For the OGD, its trajectory oscillates a lot around the boundary of the
actual constraint. And if we examine the clipped and non-clipped constraint violation in Fig.4, we
find that although the clipped constraint violation is very high, its non-clipped one is very small. This
verifies the statement we make in the beginning that the big constraint violation at one time step is
canceled out by the strictly feasible constraint at the other time step. For the A−OGD, its trajectory
in Fig.1 violates the constraint most of the time, and this violation actually contributes to the lower
objective regret shown in Fig.4.

B Proof of Theorem 1

Before proving Theorem 1, we need the following preliminary result.

Lemma 2. For the sequence of xt, λt obtained from Algorithm 1 and ∀x ∈ B, we can prove the
following inequality:

T∑
t=1

[Lt(xt, λt)− Lt(x, λt)] ≤ R2

2η + ηT
2 (m+ 1)G2

+η
2 (m+ 1)G2

T∑
t=1
‖λt‖2

(13)

Proof. First, Lt(x, λ) is convex in x. Then for any x ∈ B, we have the following inequality:

Lt(xt, λt)− Lt(x, λt) ≤ (xt − x)T∂xLt(xt, λt) (14)

Using the non-expansive property of the projection operator and the update rule for xt+1 in Algorithm
1, we have

‖x− xt+1‖2 ≤ ‖x− (xt − η∂xLt(xt, λt))‖2

= ‖x− xt‖2 − 2η(xt − x)T∂xLt(xt, λt)
+η2 ‖∂xLt(xt, λt)‖2

(15)
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Then we have
Lt(xt, λt)− Lt(x, λt) ≤ 1

2η

(
‖x− xt‖2 − ‖x− xt+1‖2

)
+ η

2
‖∂xLt(xt, λt)‖2

(16)

Furthermore, for ‖∂xLt(xt, λt)‖2, we have

‖∂xLt(xt, λt)‖2 =

∥∥∥∥∂xft(xt) +
m∑
i=1

λit∂x([gi(xt)]+)

∥∥∥∥2
≤ (m+ 1)G2(1 + ‖λt‖2)

(17)

where the last inequality is from the inequality that (y1 + y2 + ...+ yn)2 ≤ n(y21 + y22 + ...+ y2n),
and both ‖∂xft(xt)| and ‖∂x([gi(xt)]+)‖ are less than or equal to G by the definition.

Then we have
Lt(xt, λt)− Lt(x, λt) ≤ 1

2η

(
‖x− xt‖2 − ‖x− xt+1‖2

)
+ η

2
(m+ 1)G2(1 + ‖λt‖2)

(18)

Since x1 is in the center of B, we can assume x1 = 0 without loss of generality. If we sum the
Lt(xt, λt)− Lt(x, λt) from 1 to T , we have

T∑
t=1

[Lt(xt, λt)− Lt(x, λt)] ≤ 1
2η

(
‖x− x1‖2 − ‖x− xT+1‖2

)
+ ηT

2 (m+ 1)G2

+ η
2 (m+ 1)G2

T∑
t=1
‖λt‖2

≤ R2

2η + ηT
2 (m+ 1)G2

+ η
2 (m+ 1)G2

T∑
t=1
‖λt‖2

(19)

where the last inequality follows from the fact that x1 = 0 and ‖x‖2 ≤ R2.

Now we are ready to prove the main theorem.

Proof of Theorem 1. From Lemma 2, we have

T∑
t=1

[Lt(xt, λt)− Lt(x, λt)] ≤ R2

2η + ηT
2 (m+ 1)G2

+η
2 (m+ 1)G2

T∑
t=1
‖λt‖2

(20)

If we expand the terms in the left-hand side and move the last term in right-hand side to the left, we
have

T∑
t=1

(
ft(xt)− ft(x)

)
+

T∑
t=1

m∑
i=1

(
λit[gi(xt)]+ − λit[gi(x)]+

)
− η

2
(m+ 1)G2

T∑
t=1

‖λt‖2 ≤ R2

2η
+ ηT

2
(m+ 1)G2

(21)

If we set x = x∗ to have [gi(x
∗)]+ = 0 and plug in the expression λt = [g(xt)]+

ση , we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
+

m∑
i=1

T∑
t=1

([gi(xt)]+)2

ση

(
1− (m+1)G2

2σ

)
≤ R2

2η
+ ηT

2
(m+ 1)G2

(22)

If we plug in the expression for σ and η, we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
+

m∑
i=1

T∑
t=1

([gi(xt)]+)2

ση
α

≤ O(
√
T )

(23)
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Because ([gi(xt)]+)2

ση α ≥ 0, we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(

√
T ) (24)

Furthermore, we have
T∑
t=1

(
ft(xt)− ft(x∗)

)
≥ −FT according to the assumption. Then we have

m∑
i=1

T∑
t=1

(
[gi(xt)]+

)2
≤ ση

α (O(
√
T ) + FT )

= σ
α (O(

√
T ) + FT )O( 1√

T
) = O(

√
T )

(25)

Because
(

[gi(xt)]+

)2
≥ 0, we have

T∑
t=1

(
[gi(xt)]+

)2
≤ O(

√
T ),∀i ∈ {1, 2, ...,m} (26)

C Proof of Lemma 1

Proof. Recall that the update for xt+1 is

xt+1 = ΠB

(
xt − η∂xft(xt)−

[g(xt)]+
σ

∂x([g(xt)]+)
)

(27)

Let yt = xt − η∂xft(xt)− [g(xt)]+
σ ∂x([g(xt)]+).

We first need to show that g(xt+1) ≤ g(yt). Without loss of generality, let us assume that yt is
not in the set B. From convexity we have g(yt) ≥ g(xt+1) +∇xg(xt+1)T (yt − xt+1). From non-
expansiveness of the projection operator, we have that (yt−xt+1)T (x−xt+1) ≤ 0 for x ∈ B. Let x =
xt+1−ε0∇xg(xt+1) with ε0 small enough to make x ∈ B. We have−ε0(yt−xt+1)T∇xg(xt+1) ≤ 0.
Then we have g(xt+1) ≤ g(yt).

As a result, if g(yt) is upper bounded, then so is g(xt+1), where xt+1 = ΠB(yt). If T is large enough,
η ‖∂xft(xt)‖ would be very small. Thus, we can use 0-order Taylor expansion for differentiable g(x)
as below:

g(yt) = g
(
xt − η∂xft(xt)− [g(xt)]+

σ ∂x([g(xt)]+)
)

≤ g
(
xt − [g(xt)]+

σ ∂x([g(xt)]+)
)

+ Cη
(28)

where C is a constant determined by the Taylor expansion remainder, as well as the bound
‖∂x[g(xt)]+‖‖∂Xf(xt)‖ ≤ G2.

Set ε = (2CσR2η)1/3 = O( 1
T 1/6 ). We will show that if g(xt) < ε, then g(xt+1) ≤ ε+O(1/

√
T ) =

O( 1
T 1/6 ). We will also show that if g(xt) ≥ ε, then g(xt+1) ≤ g(xt). It follows then by induction

that if g(x1) < ε, then g(xt) = O( 1
T 1/6 ) for all t. We prove these inequalities in three cases. Since

g(xt+1) ≤ g(yt), it suffices to bound g(yt).

Case 1: g(xt) ≤ 0. In this case, the inequality for g(yt), (28), becomes

g(yt) ≤ g(xt) + Cη ≤ Cη = O(
1√
T

) (29)

Case 2: 0 < g(xt) < ε. Since [g(xt)]+ = g(xt), the bound on g(yt) becomes

g(yt) ≤ g
(
xt −

g(xt)

σ
∇xg(xt)

)
+ Cη (30)
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We will bound the right using standard methods from gradient descent proofs. Since g is convex and
∇xg(x) has Lipschitz constant, L, we have the inequality:

g(y) ≤ g(x) +∇xg(x)T (y − x) +
L

2
‖y − x‖2 (31)

for all x and y [17].

Recall that ε = O( 1
T 1/6 ). Assume that T is sufficiently large so that Lg(xt)2σ < Lε

2σ < 1. Applying
(31) with x = xt and y = xt − g(xt)

σ ∇xg(xt) gives

g(yt) ≤ g
(
xt −

[g(xt)]+
σ

∂x(g(xt))
)

+ Cη (32)

≤ g(xt)−
g(xt)

σ
(1− Lg(xt)

2σ
) ‖∇xg(xt)‖2 + Cη (33)

≤ g(xt) + Cη = O(
1

T 1/6
). (34)

where the third bound follows since 1− Lg(xt)
2σ > 0.

Case 3: g(xt) ≥ ε. A case can arise such that g(xt−1) < ε but an additive term of order O( 1
T 1/2 )

leads to ε ≤ g(xt) ≤ ε+ Cη = O( 1
T 1/6 ). We will now show that no further increases are possible

by bounding the final two terms of (33) as

−g(xt)

σ
(1− Lg(xt)

2σ
) ‖∇xg(xt)‖2 +Cη ≤ 0 ⇐⇒ Cη ≤ g(xt)

σ
(1− Lg(xt)

2σ
) ‖∇xg(xt)‖2 . (35)

Now, we lower-bound the terms on the right of (35). Since ε + Cη = O( 1
T 1/6 ), we have that for

sufficiently large T , 1 − Lg(xt)
2σ ≥ 1 − L(ε+Cη)

2σ ≥ 1
2 . Further note that by convexity, g(0) ≥

g(xt)−∇xg(xt)
Txt. Since we assume that 0 is feasible, we have that

ε ≤ g(xt) ≤ ∇xg(xt)
Txt ≤ ‖∇xg(xt)‖‖xt‖ ≤ ‖∇xg(xt)‖R.

The final inequality follows since xt ∈ B. Thus, we have the following bound for the right of (35):

g(xt)

σ
(1− Lg(xt)

2σ
) ‖∇xg(xt)‖2 ≥

ε3

2σR2
= Cη.

The final equality follows by the definition of ε.

D Proof of Theorem 2

Proof. For the strongly convex case of ft(x) with strong convexity parameter equal to H1, we can
also conclude that the modified augmented Lagrangian function in Eq.(8) is also strongly convex
w.r.t. x with the strong convexity parameter H ≥ H1. Then we have

Lt(x∗, λt)− Lt(xt, λt) ≥ ∂xLt(xt)T (x∗ − xt)
+H1

2 ‖x
∗ − xt‖2

(36)

From concavity of L in terms of λ, we can have

Lt(xt, λ)− Lt(xt, λt) ≤ (λ− λt)T∇λLt(xt, λt) (37)

Since λt maximizes the augmented Lagrangian, we can see that the right hand side is 0.

From Eq.(15), we have

∂xLt(xt)T (xt − x∗) ≤ 1
2ηt

(
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

)
+ηt

2 (m+ 1)G2(1 + ‖λt‖2)
(38)

Multiply Eq.(36) by −1 and add Eq.(37) together with Eq.(38) plugging in:

Lt(xt, λ)− Lt(x∗, λt) ≤ 1
2ηt

(
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

)
+ηt

2 (m+ 1)G2(1 + ‖λt‖2)− H1

2 ‖x
∗ − xt‖2

(39)
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Let bt = ‖x∗ − xt‖2, and plug in the expression for Lt, we can get:

ft(xt)− ft(x∗) + λT [g(xt)]+ − θt
2 ‖λ‖

2 ≤ 1
2ηt

(bt − bt+1)

−H1

2 bt + (m+1)G2

2 ηt + (m+1)G2

2 ‖λt‖2 (ηt − θt
(m+1)G2 )

(40)

Plug in the expressions ηt = H1

t+1 , θt = (m+ 1)G2ηt, and sum over t = 1 to T :

T∑
t=1

(
ft(xt)− ft(x∗)

)
+ λT

( T∑
t=1

[g(xt)]+

)
− ‖λ‖

2

2

T∑
t=1

θt

≤ 1

2

T∑
t=1

(bt − bt+1

ηt
− H1

2
bt

)
︸ ︷︷ ︸

A

+
(m+ 1)G2

2

T∑
t=1

ηt︸ ︷︷ ︸
B

(41)

For the expression of A, we have:

A = 1
2

[
b1
η1

+
T∑
t=2

bt(
1
ηt
− 1

ηt−1
−H1)− bT+1

ηT
−H1b1

]
≤ b1

H1

(42)

For the expression of B, with the expression of ηt and the inequality relation between sum and
integral, we have:

B ≤ (m+ 1)G2H1

2
log(T ) (43)

Thus, we have:

T∑
t=1

(
ft(xt)− ft(x∗)

)
+ λT

( T∑
t=1

[g(xt)]+

)
− ‖λ‖

2

2

T∑
t=1

θt

≤ O(log(T ))
(44)

If we set λ =

T∑
t=1

[g(xt)]+

T∑
t=1

θt

, and due to non-negativity of

∥∥∥ T∑
t=1

[g(xt)]+

∥∥∥2

2
T∑
t=1

θt

, we can have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ O(log(T )) (45)

Furthermore, we have
T∑
t=1

(
ft(xt)− ft(x∗)

)
≥ −FT according to the assumption. Then we have

∥∥∥ T∑
t=1

[g(xt)]+

∥∥∥2
2
T∑
t=1

θt

≤ O(log(T )) + FT (46)

Because
T∑
t=1

θt ≤ (m+ 1)G2H1 log(T ), we have:

∥∥ T∑
t=1

[g(xt)]+
∥∥ ≤ O(

√
log(T )T ) (47)
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E Proof of the Propositions

Now we give the proofs for all the remaining Propositions.

Proof of the Proposition 1. From the construction of ḡ(x), we have the ḡ(x) ≥ max
i
gi(x). Thus, if

we can upper bound the ḡ(x), gi(x) will automatically be upper bounded. In order to use Lemma 1,
we need to make sure the following conditions are satisfied:

• ḡ(x) is convex and differentiable.

• ‖∇xḡ(x)‖ is upper bounded.

• ‖∇′′xḡ(x)‖2 is upper bounded.

The first condition is satisfied due to the formula of ḡ(x). To examine the second one, we have

∇xḡ(x) =
1

m∑
i=1

exp gi(x)

[
m∑
i=1

exp gi(x)∇xgi(x)

]
(48)

‖∇xḡ(x)‖2 = 1( m∑
i=1

exp gi(x)
)2 ∥∥∥∥ m∑

i=1

exp gi(x)∇xgi(x)

∥∥∥∥2

≤
m

m∑
i=1

(exp gi(x))
2‖∇xgi(x)‖2( m∑

i=1
exp gi(x)

)2
≤ mG2

(49)

Thus, ‖∇xḡ(x)‖ ≤
√
mG and the second condition is satisfied.

For ‖∇′′xḡ(x)‖2, we have

∇′′xḡ(x) =
1

m∑
i=1

exp gi(x)

[
m∑
i=1

exp gi(x)∇′′xgi(x) + exp gi(x)∇xgi(x)∇xgi(x)T

]
︸ ︷︷ ︸

A

− 1
m∑
i=1

exp gi(x)

( m∑
i=1

exp gi(x)∇xgi(x)
)( m∑

i=1

exp gi(x)∇xgi(x)T
)

︸ ︷︷ ︸
B

(50)

To upper bound ‖∇′′xḡ(x)‖2, which is

max
uTu=1

uT∇′′xḡ(x)u = max
uTu=1

uTAu− uTBu ≤ max
uTu=1

uTAu (51)

where the inequality is due to the fact that B � 0.

Thus, we have ‖∇′′xḡ(x)‖2 ≤ ‖A‖2. For the ‖A‖2, we have

‖A‖2 = max
uTu=1

uTAu ≤ 1
m∑
i=1

exp gi(x)

( m∑
i=1

max
uTu=1

exp gi(x)uT∇′′xgi(x)u
)

+ 1
m∑
i=1

exp gi(x)

( m∑
i=1

max
uTu=1

exp gi(x)
∥∥∇xgi(x)Tu

∥∥2 )
≤ 1

m∑
i=1

exp gi(x)

( m∑
i=1

exp gi(x)(Li + ‖∇xgi(x)‖2)
)

≤ 1
m∑
i=1

exp gi(x)

( m∑
i=1

exp gi(x)
)

(L̄+G2) = L̄+G2

(52)
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where the first inequality comes from the optimality definition, the second inequality comes from
the upper bound for each ‖∇′′xgi(x)‖2 and the Cauchy - Schwartz inequality, and the last inequality
comes from the fact that L̄ = maxLi and ‖∇xgi(x)‖ is upper bounded byG. Thus, the last condition
is also satisfied.

Proof of the Proposition 2. From Theorem 1, we know that
T∑
t=1

(
[gi(xt)]+

)2
≤ O(

√
T ). By using

the inequality (y1 + y2 + ... + yn)2 ≤ n(y21 + y22 + ... + y2n), setting yi being equal to [gi(xt)]+,

and n = T , we have
( T∑
t=1

[gi(xt)]+

)2
≤ T

T∑
t=1

(
[gi(xt)]+

)2
≤ O(T 3/2). Then we obtain that

T∑
t=1

[gi(xt)]+ ≤ O(T 3/4). Because gi(xt) ≤ [gi(xt)]+, we also have gi(xt) ≤ O(T 3/4).

Proof of the Proposition 3. Since we only change the stepsize for Algorithm 1, the previous result in
Lemma 2 and part of the proof up to Eq.(22) in Theorem 1 can be used without any changes.

First, let us rewrite the Eq.(22):
T∑
t=1

(
ft(xt)− ft(x∗)

)
+

m∑
i=1

T∑
t=1

([gi(xt)]+)2

ση

(
1− (m+1)G2

2σ

)
≤ R2

2η
+ ηT

2
(m+ 1)G2

(53)

By plugging in the definition of α, η, and that ([gi(xt)]+)2

ση α ≥ 0, we have

T∑
t=1

(
ft(xt)− ft(x∗)

)
≤ R2

2 T
β + (m+1)G2

2 T 1−β

= O(Tmax{β,1−β})

(54)

As argued in the proof of Theorem 1, we have the following inequality with the help of
T∑
t=1

(
ft(xt)−

ft(x
∗)
)
≥ −FT :

m∑
i=1

T∑
t=1

([gi(xt)]+)2

ση α ≤ R2

2 T
β + (m+1)G2

2 T 1−β + FT

T∑
t=1

([gi(xt)]+)2 ≤ σ
α (R

2

2 + (m+1)G2

2 T 1−2β + FT 1−β)

(55)

Then we have
T∑
t=1

[gi(xt)]+ ≤

√
T

T∑
t=1

(
[gi(xt)]+

)2
≤
√

Tσ
α

(
R2

2 + (m+1)G2

2 T 1−2β + FT 1−β
)

= O(T 1−β/2)

(56)

It is also interesting to figure out why [13] cannot have this user-defined trade-off benefit. From [13],
the key inequality in obtaining their conclusions is:

T∑
t=1

(
ft(xt)− ft(x∗)

)
+

m∑
i=1

[
T∑
t=1

gi(xt)

]2
+

2(σηT+m/η)

≤ R2

2η + ηT
2

(
(m+ 1)G2 + 2mD2

) (57)

The main difference between Eq.(57) and Eq.(53) is in the denominator of

[
T∑
t=1

gi(xt)

]2
+

2(σηT+m/η) . Eq.(57) has
the form (σηT +m/η), while Eq.(53) has the form (ση). The coupled η and 1/η prevents Eq.(57)
from arriving this user-defined trade-off.
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The next proofs of the Proposition 4 and 5 show how we can use our proposed Lagrangian function
in Eq.(7) to make the algorithms in [13] and [10] to have the clipped long-term constraint violation
bounds.

Proof of the Proposition 4. If we look into the proof of Lemma 2 and Proposition 3 in [13], the new
Lagrangian formula does not lead to any difference, which means that the Lt(x, λ) defined in Eq.(7)
is also valid for the drawn conclusions. Then in the proof of Theorem 4 in [13], we can change
gi(xt) to [gi(xt)]+. The maximization for λ over the range [0,+∞) is also valid, since [gi(xt)]+
automatically satisfies this requirement. Thus, the claimed bounds hold.

Proof of the Proposition 5. The previous augmented Lagrangian formula Lt(x, λ) used in [10] is:

Lt(x, λ) = ft(x) + λg(x)− θt
2
λ2 (58)

The Lemma 1 in [10] is the upper bound of Lt(xt, λ) − Lt(xt, λt). The proof does not make any
difference between formula (58) and (9). So we can still have the same conclusion of Lemma 1.
The Lemma 2 in [10] is the lower bound of Lt(xt, λ)− Lt(x∗, λt). Since it only uses the fact that
g(x∗) ≤ 0, which is also true for [g(x∗)]+, we can have the same result with g(xt) being replaced
with [g(xt)]+. The Lemma 3 in [10] is free of Lt(x, λ) formula, so it is also true for the new formula.
The Lemma 4 in [10] is the result of Lemma 1-3, so it is also valid if we change g(xt) to [g(xt)]+.
Then the conclusion of Theorem 1 in [10] is valid for [g(xt)]+ as well.
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