
A dHSIC

The definition of the cross-covariance operator can be extended to the case of d random variables,
simply by adhering to the formal language of tensor spaces. Let X = (X1, ...,Xd) be a random
vector with each component of dimension p. The components X1, ...,Xd are mutually independent if
the joint distribution is equal to the tensor product of the marginal distribution. [18] derives functional
formulation, population statistics and V-statistics for the Hilbert-Schmidt norm of the corresponding
generalized cross-covariance operator called dHSIC. Notably, under the hypothesis that the canonical
kernel from the tensor product⊗kHk is universal, the dHSIC is null if and only if the components
of the random vector are mutually independent. We write here the retained V-statistics that we will
use for the experiments and can compute in time O(dn2p):
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The question that naturally follows is when is the canonical kernel from the tensor product⊗kHk
universal. [19] showed that the characteristic property of the individual kernels is not enough in
general. However, in the case of continuous, bounded and translation invariant kernels this is a
sufficient condition. In subsequent work, we plan to consider the dHSIC in this setting.

B Proof of independence in representation

Proof. Without loss of generality, we can write I as independence between two variables Zi á Zj
for some (i, j). Under infinite data, the empirical distribution pdata(X,S) is close to p(X,S), the
real distribution:

q̂φ(Zi, Zj) = ∫ qφ(Zi, Zj ∣X,S)pdata(X,S)

= ∫ pθ(Zi, Zj ∣X,S)pdata(X,S)

= ∫ pθ(Zi, Zj ∣X,S)p(X,S)

= p(Zi, Zj)
= p(Zi)(Zj)

.

C Linear Gaussian system for independence

Let (n,m,k, d) ∈ N4,A = [A1, ...,An],B = [B1, ...,Bm],C = [C1, ...,Ck], λ ∈ R+. We choose our
linear system with random matrices:

∀j ≤ n,Aj ∼ Normal(0, Id
n

)

∀j ≤m,Bj ∼ Normal(0, Id
m

)

∀j ≤ k,Cj ∼ Normal(0, Id
k
).

(12)

Having drawn these parameters, the generative model is:

v ∼ Normal(0, In)
u ∼ Normal(0, Im)

x∣u, v ∼ Normal(Av +Bu,λId +CCT ).
(13)
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The marginal log-likelihood p(x) is tractable:

x ∼ Normal(0, λId +CCT +AAT +BBT ). (14)

The complete posterior p(u, v ∣ x) is tractable:

Σ−1 = In+m + [A,B]T (λId +CCT )−1[A,B]
Hµ = Σ[A,B]T (λId +CCT )−1

u, v ∣ x ∼ Normal(Hµx,Σ).
(15)

D Proof of equivalence between HSIC and MMD

Proof. The proof relies on sum manipulations. First, we carefully write the case where s is binary
without loss of generality. Let us assume M samples from the joint (x, s) and let us reorder them
such that s0 = ... = sN = 0 and sN+1 = ... = sM = 1. In that case,
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Above, the term inside the parenthesis is the V-statistic for the MMD between q(z ∣ s = 0) and
q(z ∣ s = 1). In the general case of s discrete, we then have a sum of MMD weighted by the values of
the empirical p(s).

E Nuisance factors presentation for scRNA-seq

• s1: proportion of transcripts which confidently mapped to a gene;
• s2: proportion of transcripts mapping to the genome, but not to a gene;
• s3: proportion of transcripts which did not align;
• s4: proportion of transcripts whose UMI sequence was corrected by the alignment procedure;
• s5: proportion of transcripts whose barcode sequence was corrected by the alignment

procedure.

F Graphical model for scRNA-seq

Our probabilistic graphical model is a modification of the single-cell Variational Inference model [33].
The main difference is the addition of latent variable u and the node for the sequencing errors s.
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Figure 5: Our proposed modification of the scVI graphical model. Shaded vertices represent observed
random variables. Empty vertices represent latent random variables. Shaded diamonds represent
constants, set a priori. Empty diamonds represent global variables shared across all genes and cells.
Edges signify conditional dependency. Rectangles (“plates”) represent independent replication.

Generative model Let `µ, `σ ∈ RB+ and θ ∈ RG
+

. Let fw (resp. fh, fµs and fσs ) be a neural network
with exponential (resp. sigmoid, sigmoid and exponential) link function. Each datapoint (xn, sn) is
generated according to the following model. First, we draw the latent variables we wish to perform
inference over:

zn ∼ Normal(0, I) (16)
un ∼ Normal(0, I) (17)

`n ∼ LogNormal(`µ, `2σ) (18)
(19)

z will encode the biological information, u the technical information from the alignment process and
l the sampling intensity. Then, we have some intermediate hidden variables useful for testing and
model interpretation that we will integrate out for inference:

wng ∼ Gamma(fgw(zn, un), θ) (20)
yng ∼ Poisson(`nwng) (21)

hng ∼ Bernoulli(fgh(un)) (22)
(23)

Physically, wng represents the average proportion of transcripts aligned with gene g in cell n. yng
represents one outcome of the sampling process. hng represents some additional control for the zeros
that come from alignment. Finally, the observations fall from:

xng = {yng if hng = 0,

0 otherwise.
(24)

snj ∼ Normal(f jµs(un), f
j
σs(un)) (25)

where we constrained the mean f jµs(un) to be in the 0-1 range since s is a vector of individual
proportions. This model is a very competitive solution for representing single-cell RNA sequencing
data.

Variational approximation to the posterior Applying AEVB with X = {x, s}, Z =
{z, l, u,w, y, h} seems doomed to fail since some of the variables are discrete. Fortunately, variables
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{w,y, h} can be integrated out analytically: p(x ∣ l, z, u) is a Zero-Inflated Negative Binomial
distribution. We then apply AEVB with X = {x, s}, Z = {z, l, u} with the mean-field variational
posterior:

q(z, l, u ∣ x, s) = q(z ∣ x)q(l ∣ x)q(u ∣ x, s).

The evidence lower bound is

log pθ(x, s) ≥Eqφ(z∣x)qφ(l∣x)qφ(u∣x,s) log pθ(x ∣ l, z, u) +Eqφ(u∣x,s) log pθ(s ∣ u)
−DKL(qφ(z ∣ x) ∣∣ p(z)) −DKL(qφ(l ∣ x) ∣∣ p(l)) −DKL(qφ(u ∣ x, s) ∣∣ p(u))

(26)

When using the reparametrization trick [1], all the resulting quantities can be analytically derived and
differentiated. Parameters `µ, `2σ are set to the mean and average of the number of molecules in all
cells of the data (in log-scale). Parameters θ are learned with variational Bayes, and treated as global
variables in the training procedure.

Bayesian hypothesis testing We can capitalize on our careful modeling to query the Bayesian
model. One particular flavor of Bayesian Hypothesis Testing is called Differential Expression in the
biostatistics literature. Given two sets of samples {xa ∣ a ∈ A} and {xb ∣ b ∈ B}, we would like to
test whether a particular gene g is more expressed in population A or in population B.

More formally, for each gene g and a pair of cells (za, ua), (zb, ub) with observed gene expression
(xa, xb) and quality control metrics (sa, sb), we can formulate two models of the world under which
one of the following hypotheses is true:

Hg1 ∶= Efgw(za, u) > Efgw(zb, u) vs. Hg2 ∶= Efgw(za, u) ≤ Efgw(zb, u)

Where the expectation is taken over u to integrate out the technical variation. Evaluating the likelihood
ratio test for whether our datapoints (xa, xb), (sa, sb) are more probable under the first hypothesis is
equivalent to writing a Bayes factor:

K = loge
p(Hg1 ∣ xa, xb)
p(Hg2 ∣ xa, xb)

where the posterior of these models can be approximated via the variational distribution:

p(Hg1 ∣ xa, xb) ≈∬
za,zb,ua,ub

p(fgw(za, ua) ≤ fgw(zb, ub))dq(za ∣ xa)dq(zb ∣ xb)dp(ua)dp(ub).

We can use Monte Carlo integration to compute these integrals because all the measures have low
dimension.
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