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A Basic Differential Privacy

See (Dwork, 2006; Dwork and Roth, 2014) for more details.

Let U,U1,U2, . . . be independent uniform (0,1) random variables, independent also of any other ran-
dom variables unless stated otherwise, and let p : N⇥ [0,1]! [0,1] satisfy (p(1,U), . . . ,p(k,U)) d=
(U1, . . . ,Uk) for all k 2 N. Write pk for p(k, ·).
Definition A.1. Let R,T be measurable spaces. A randomized algorithm A from R to T , denoted
A : R T , is a measurable map A : [0,1]⇥R ! T . Associated to A is a (measurable) collection
of random variables {Ar : r 2 R} that satisfy Ar = A (U,r). When there is no risk of confusion, we
write A (r) for Ar.

For our purposes, we rely only on the fact that privacy is preserved under post-processing, which we
now define.3

Definition A.2. Let A : R T and A 0 : T  T
0. The composition A 0 �A : R T

0 is given by
(A 0 �A )(u,r) = A 0(p2(u),A (p1(u),r)).
Lemma A.3 (post-processing). Let A : Z

m T be (e,d )-differentially private and let F : T  T
0

be arbitrary. Then F �A is (e,d )-differentially private.

B Proof of Theorem 4.2

We prove a slightly more general result.
Theorem B.1. Fix a bounded loss `2 [0,1]. Let m2N, let P : Z

m M1(Rp) be an e-differentially

private data-dependent prior, let D 2M1(Z), and let S⇠Dm
. Then, for all d 2 (0,1) and b 2 (0,d ),

with probability at least 1�d ,

8Q 2 M1(Rp), kl(L̂S(Q)||LD (Q))
KL(Q||P(S))+ ln 2

p
m

d�b
m

+ e2/2+ e
r

ln(2/b )
2m

. (B.1)

Proof. For every distribution P on Rp, let

R(P) =
n

S 2 Z
m : (9Q) kl(L̂S(Q)||LD (Q))� m

�1�KL(Q||P)+ ln
2
p

m

d 0
�o

. (B.2)

It follows from Theorem 4.1 that PS⇠Dm{S 2 R(P)}  d 0. Let b > 0. Then, by the definition of
approximate max-information, we have

PS⇠Dm{S 2 R(P(S))} eI
b
•(P;m) P

(S,S0)⇠D2m

{S 2 R(P(S0))}+b (B.3)

 eI
b
•(P;m)d 0+b def

= d . (B.4)

We have d 0 = e�I
b
•(P;m)(d �b ). Therefore, with probability no more than d over S ⇠ Dm,

9Q 2 M1(Rp), kl(L̂S(Q)||LD (Q))�
KL(Q||P(S))+ ln 2

p
m

d�b + I
b
•(P;m)

m
. (B.5)

The result follows from replacing the approximate max-information I
b
•(P;m) with the bound pro-

vided by Theorem 3.3.
3It is sometimes more natural to refer to the differential privacy of probability kernels, i.e., measurable maps

from Z
m to M1(T ), and to S-measurable random probability measures Q, i.e., probability kernels defined on

the basic probability space satisfying Q = g(S) for some probability kernel g : Z
m !M1(T ), where S ⇠Dm. In

both cases, the connection to the above definition is the same: for every probability kernel k : R !M1(T ) there
exists A : [0,1]⇥R ! T such that A (U,r) ⇠ k(r) for every r 2 R. In the other direction, clearly k(r)(A) =
P{A (U,r) 2 A} for every measurable A ✓ T .
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The theorem leaves open the choice of b < d . For any fixed values for e , m, and d , it is easy to
optimize b to obtain the tighest possible bound. In practice, however, the optimal bound is almost
indistinguishable from that obtained by taking b = d/2. For the remainder of the paper, we take this
value for b , in which case, the r.h.s. of Eq. (4.2) is

KL(Q||P(S))+ ln 4
p

m

d
m

+ e2/2+ e
r

ln(4/d )
2m

. (B.6)

Note that the bound holds for all posteriors Q. In general the bounds are interesting only when Q

is data dependent, otherwise one can obtain tighter bounds via concentration of measure results for
empirical means of bounded i.i.d. random variables.

When one is choosing the privacy parameter, e , there is a balance between minimizing the direct
contributions of e to the bound (forcing e smaller) and minimizing the indirect contribution of e
through the KL term for posteriors Q that have low empirical risk (forcing e larger). One approach
is to compute the value of e that achieves a certain bound on the excess generalization error. In
particular, choosing e2/2 = a contributes an additional gap of a to the KL-generalization error.
Choosing a is complicated by the fact that there is a non-linear relationship between the general-
ization error and the KL-generalization error, depending on the empirical risk. A better approach
is often to attempt to balance the direct contribution with the indirect one. Regardless, the optimal
value for e is much less than one, which can be challenging to obtain. We discuss strategies for
achieving the required privacy in later sections.

C Proofs for Section 5.1

These results connect approximations to differential privacy with bounds on the KL term in a PAC-
Bayesian bound, yielding PAC-Bayes bounds that hold even if the prior is chosen via a nonprivate
mechanism. In independent work, subsequent to our original arXiv preprint, Rivasplata et al. (2018)
combined PAC-Bayesian bounds and stability to leverage distribution dependent priors. Their ap-
proach is distinct, though complimentary. See also work by London, 2017, who combines stability
and PAC-Bayesian bounds in yet another way.

Proof of Lemma 5.3. Assume Q ⌧ P
0, for otherwise the bound is trivial as KL(Q||P0) = •. Then

Q ⌧ P, because P
0 ⌧ P, and so dQ

dP
= dQ

dP0
dP

0
dP

and

KL(Q||P)�KL(Q||P0) = Q

h
ln

dQ

dP

i
�KL(Q||P0) (C.1)

= Q

h
ln

dQ

dP0 + ln
dP

0

dP

i
�KL(Q||P0) (C.2)

= KL(Q||P0)+Q

h
ln

dP
0

dP

i
�KL(Q||P0) (C.3)

= Q

h
ln

dP
0

dP

i
. (C.4)

Proof of Lemma 5.4. Let P
⇤(S) satisfy the conditions in the statement of the theorem. Then P

⇤(S) is
e-differentially private. By Theorem 4.2, the bound in Eq. (4.2) holds with probability at least 1�d
for the data-dependent prior P

⇤(S) and all posteriors Q. By hypothesis, with probability 1�d �d 0,
P

S ⌧ P
⇤(S), and so, by Lemma 5.3, KL(Q||P⇤(S)) = KL(Q||PS)+Q[ln dP

S

dP⇤(S) ].
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Proof of Lemma 5.5. Expanding the log ratio of Gaussian densities and then applying Cauchy–
Schwarz, we obtain

ln
dN(w0)

dN(w)
(v) =

1
2
�
kw� vk2

S�1 �kw
0 � vk2

S�1

�
(C.5)

= hw0 �w,viS�1 +
1
2
�
kwk2

S�1 �kw
0k2

S�1

�
(C.6)

=
1
2
hw0 �w,2viS�1 �

1
2
hw0 �w,w+w

0iS�1 (C.7)

=
1
2
hw0 �w,2v�w�2w

0+w
0iS�1 (C.8)

=
1
2
hw0 �w,2(v�w

0)+w
0 �wiS�1 (C.9)

 1
2
kw

0 �wk2
S�1 +kw

0 �wkS�1 kv�w
0kS�1 . (C.10)

The result follows by taking the expectation with respect to v ⇠ Q.

Proof of Lemma 5.6. Let g = dQ

dP

def
= eh

P[eh]
. Then kgk

L1(P) = 1 and kgkL•(P)  ekhkL•(P) . Let f (v) =

kv�wkS�1 . Then E
v⇠Q

kv�wkS�1 = k fk
L1(Q) = k f gk

L1(P). Finally, let c be the indicator function

for the ellipsoid {v : kv�wkS�1  R}, and let c̄ = 1�c . Then k f ckL•(P)  R and

k f gk
L1(P) = k f gck

L1(P) +k f gc̄k
L1(P) (C.11)

 k f ckL•(P) kgk
L1(P) +k f c̄k

L1(P) kgkL•(P) = R+
q

2
p e�

R
2

2 ekhkL•(P) , (C.12)

where the inequalities follow from two applications of Hölder’s inequality. Choosing R =q
2khkL•(P) gives k fk

L1(Q) 
q

2khkL•(P) +
p

2/p.

Proof of Corollary 5.7. Let P
S = N(w(S)) and P

⇤(S) = N(w⇤(S)). By the closure of e-differential
privacy under composition, P

⇤(S) is e-differentially private and is absolutely continuous with respect
to N(w) for all w, and so satisfies the conditions of Lemma 5.4. In particular, with probability 1�d ,
Eq. (4.2) holds with KL(Q||P⇤(S)) replaced by KL(Q||PS)+Q[ln dP

S

dP⇤(S) ].

By hypothesis, with probability at least 1�d �d 0, it also holds that kw(S)�w
⇤(S)k2

2 C. Then, by
Lemma 5.5,

Q


ln

dP
S

dP⇤(S)

�
 1

2
kw(S)�w

⇤(S)k2
2/smin +kw(S)�w

⇤(S)k2/
p

smin E
v⇠Q

kv�w(S)kS�1 (C.13)

 1
2

C/smin +
p

C/smin E
v⇠Q

kv�w(S)kS�1 . (C.14)

By Lemma 5.6 E
v⇠Q

kv�w(S)kS�1 is bounded for Gibbs measures based on a surrogate risk taking

values in a length-D interval by
p

2tD+
p

2/p .

D Bounded cross entropy

In order to achieve differential privacy, we work with a bounded version of the cross entropy loss.
The problem is associated with extreme probabilities near zero and one. Our solution is to remap
the probabilities p 7! y(p), where

y(p) = e�`max +(1�2e�`max)p (D.1)

is an affine transformation that maps [0,1] to [e�`max ,1� e�`max ], removing extreme probability val-
ues. Cross entropy loss is then replaced by g((p1, . . . , pK),y)=� lny(py). As a result, cross entropy
loss is contained in the interval [0,`max]. We take `max = 4 in our experiments.
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E Computing PAC-Bayes bounds for Gibbs posteriors

For a given PAC-Bayes prior P and dataset S, it is natural to ask which posterior Q=Q(S) minimizes
the PAC-Bayes bounds. In general, some Gibbs posterior (with respect to P) is the minimizer. We
now introduce the Gibbs posterior and discuss how we can compute the term KL(Q||P) in the case
of Gibbs posteriors.

For a s -finite measure P over Rp and function g : Rp ! R, let P[g] denote the expectationR
g(h)P(dh) and, provided P[g] < •, let Pg denote the probability measure on Rp, absolutely con-

tinuous with respect to P, with Radon–Nikodym derivative dPg

dP
(h) = g(h)

P[g] . A distribution of the form
Pexp(�tg) is generally referred to as a Gibbs distribution. A Gibbs posterior is a probability measure
of the form Pexp(�tL̂S)

for some constant t > 0.

The challenge of evaluating PAC-Bayes bounds for Gibbs posteriors is computing the KL term.
We now describe a classical estimate and show that it is going to be an upper bound with high
probability. Fix a prior P and t � 0, let Qt = Pexp(�tL̂S)

, and let Zt = P[exp(�tL̂S)]. Then

KL(Qt ||P) = Qt
h

ln
dQt
dP

i
(E.1)

= Qt
h

ln
exp(�tL̂S)

Zt

i
(E.2)

=�tQt [L̂S]� lnZt . (E.3)

Letting W1, . . . ,Wn ⇠ Qt , we have

Qt [L̂S] =
n

Â
i=1

Qt [L̂S] = E
h1

n

n

Â
i=1

L̂S(Wi)
i
. (E.4)

(The quantity within the expectation on the r.h.s. thus defines an unbiased estimator of Qt .) In the
ideal case, the samples are independent, and then the variance decays at an n

�1 rate. In practice, it is
often difficult to even sample from Qt for high values of t . Indeed, using this approach, we would
generally overestimate the risk, which means that we do not obtain an upper bound on the KL term.
So instead, we approximate �tQt [L̂S] ⇡ 0. Despite this, we obtain nonvacuous bounds. (For an
alternative approach to this problem, see (Thiemann et al., 2017).)

The second term is challenging to estimate accurately, even assuming that P and Qt can be efficiently
simulated. One tack is to consider i.i.d. samples V1, . . . ,Vn ⇠ P, and note that

� lnZt =� lnP[exp(�tL̂S)] =� lnE
h1

n

n

Â
i=1

exp(�tL̂S(Vi))
i

(E.5)

 E
h
� ln

1
n

n

Â
i=1

exp(�tL̂S(Vi))
i
, (E.6)

where the inequality follows from an application of Jensen’s inequality. The quantity within the ex-
pectation on the r.h.s. thus forms an upper bound, and indeed, it is possible to show that it does not
fall below the l.h.s. by e with probability exponentially small in e . Thus we have a high-probability
(near) upper bound on the term in the KL. One might be inclined to compute a normalized impor-
tance sampler, but since Q cannot be effectively sampled, one does not obtain an upper bound with
high probability.

The term lnZt is a generalized log marginal likelihood, which, in our experiments, we approximate
by sampling from a Gaussian distribution P. Numerical integration techniques rapidly diminish in
accuracy with increasing dimensionality of the parameter space.

Note, that due to the convexity of the exponential, samples Wi ⇠ P, for which L̂S(Wi) is close to
zero, will dominate Zt . Due to high dimensionality of the neural network parameter space, with
high probability a random sample Wi from P will not be far from minima of the empirical loss
surface and therefore L̂S(Wi) will be high. As a results, in our experiments we obtain a very loose
upper bound on the KL.
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F Experimental setup

Bounded loss While it is typical to train neural networks by minimizing cross entropy, this loss is
unbounded and our theory is developed only for bounded loss. We therefore work with a bounded
version of cross-entropy loss, which we obtain by preventing the network from producing extreme
probabilities near zero and one. We describe our modification of the cross entropy in Appendix D.

Datasets We use two datasets. The first is MNIST, which consists of handwritten digit images
with labels in {0, ...,9}. The dataset contains 50,000 training images and 10,000 validation images.

We also use a small synthetically generated dataset, which we refer to as SYNTH. The SYNTH
dataset consists of 50 training data and 100 heldout data. Each input is a 4-dimensional vector
sampled independently from a zero-mean Gaussian distribution with an identity covariance matrix.
The true classifier is linear. The norm of the separating hyperplane is sampled from a standard
normal.

The random label experiments are performed on a dataset where the labels are independently and
uniformly generated and thus the risk is 0.5 under 0–1 loss.

Architectures We use SGLD without any standard modifications (such as momentum and batch
norm) to ensure that the stationary distribution is that of SGLD. For MNIST, we use a fully connected
neural network architecture. The network has 3 layers and 600 units in each hidden layer. The input
is a 784 dimensional vector and the output layer has 10 units. For the SYNTH dataset, we use a
fully connected neural network with 1 hidden layer consisting of 100 units. The input layer has 4
units, and the output layer is a single unit.

Learning rate At epoch t, the learning rate is at = a0 ⇤ t
�b, where a0 is the initial learning rate

and b is the decay rate. We set b = 0.5 and use a0 = 10�5 for MNIST experiments and a0 = 10�3

for SYNTH experiments.

Minibatches An epoch refers to the full pass through the data in mini batches of size 128 for
MNIST data, and 10 for SYNTH data.
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