
Supplemental Material

This supplementary material contains additional tables, figures, and a proof.

A Additional Tables and Figures

Units Description

Init-conv [ 3× 3 conv, 16 ]

Resunit:1-0

[

3× 3 conv, 64
3× 3 conv, 64

]

(Resunit:1-x)× 4

[

3× 3 conv, 64
3× 3 conv, 64

]

× 4

(Resunit:2-0)

[

3× 3 conv, 128
3× 3 conv, 128

]

(Resunit:2-x)× 4

[

3× 3 conv, 128
3× 3 conv, 128

]

× 4

(Resunit:3-0)

[

3× 3 conv, 256
3× 3 conv, 256

]

(Resunit:3-x)× 4

[

3× 3 conv, 256
3× 3 conv, 256

]

× 4

Average Pool

Fully Connected - 10 logits

Table 2: 18 unit Complex Model with 15 ResNet units used on CIFAR-10 experiments in Section 3.1

Simple Model IDs Additional Resunits Rel. Size

SM-3 None ≈ 1/5

SM-5 (Resunit:1-x)×1 ≈ 1/3
(Resunit:2-x)×1

SM-7 (Resunit:1-x)×2
(Resunit:2-x)×1 ≈ 1/2
(Resunit:3-x)×1

SM-9 (Resunit:1-x)×2
(Resunit:2-x)×2 ≈ 2/3
(Resunit:3-x)×2

Table 3: Additional Resnet units in the Simple Models apart from the commonly shared ones. The
last column shows the approximate size of the simple models relative to the complex neural network
model in the previous table.

Probes 1 2 3 4 5 6 7 8 9

Training Set 2 Accuracy 0.298 0.439 0.4955 0.53855 0.5515 0.5632 0.597 0.6173 0.6418

Probes 10 11 12 13 14 15 16 17 18

Training Set 2 Accuracy 0.66104 0.6788 0.70855 0.7614 0.7963 0.82015 0.8259 0.84214 0.845

Table 4: Probes at various units and their accuracies on the training set 2 for the CIFAR-10 experiment.

This is used in the ProfWeightAUC algorithm to choose the unit above which confidence scores
needs to be averaged.
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B Additional Training Details

CIFAR-10 Experiments in Section 3.1

Complex Model Training: We trained with an ℓ-2 weight decay rate of 0.0002, sgd optimizer with
Nesterov momentum (whose parameter is set to 0.9), 600 epochs and batch size 128. Learning rates
are according to the following schedule: 0.1 till 40k training steps, 0.01 between 40k-60k training
steps, 0.001 between 60k − 80k training steps and 0.0001 for > 80k training steps. This is the
standard schedule followed in the code by the Tensorflow authors (code is taken from:
https://github.com/tensorflow/models/tree/master/research/resnet). We keep the learning rate schedule
invariant across all our results.

Simple Models Training:

1. Standard: We train a simple model as is on the training set 2.

2. ConfWeight: We weight each sample in training set 2 by the confidence score of the last
layer of the complex model on the true label. As mentioned before, this is a special case of
our method, ProfWeight.

3. Distillation: We train the simple model using a cross entropy loss with soft targets. Soft
targets are obtained from the softmax ouputs of the last layer of the complex model (or
equivalently the last linear probe) rescaled by temperature t as in distillation of [14]. By
using cross validation, we picked the temperature that performed best on the validation set
in terms of validation accuracy for the simple models. We cross-validated over temperatures
from the set {0.5, 3, 10.5, 20.5, 30.5, 40.5, 50}. See Figures 3 and 4 for validation and test
accuracies for SM-9 model with distillation at different temperatures.

4. ProfWeight: Implementation of our ProfWeight algorithm where the weight of every
sample in training set 2 is set to a function (depending on the choice of ReLu or AUC) of
the probe confidence scores of the true label corresponding to units above the 14-th unit. The
rationale is that the probe precision at layer 14 onwards are above the unweighted test scores
of all the simple models in Table 4. The unweighted (i.e. Standard model) test accuracies
from Table 1 can be checked against the accuracies of different probes on training set 2
given in Table 4 in the supplementary material.

Figure 3: Plot of validation set accuracy as a function of training steps for
SM-9 simple model. The training is done using distillation. Validation
accuracies for different temperatures used in distillation are plotted.
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Distillation Temperatures Test Accuracy of SM-9

0.5 0.7719999990965191
3.0 0.709789470622414
5.0 0.7148421093037254

10.5 0.6798947390757109
20.5 0.7237894786031622
30.5 0.7505263184246264
40.5 0.7513684191201863
50 0.7268421022515548

Figure 4: Test Set accuracies of various versions of simple model SM-9
trained using distilled final layer confidence scores at various temperatures.
The top two are for temperatures 0.5 and 40.5.

C Proof of Theorem 2.1

It is enough to show that, for two fixed distributions P (x|y)and PM (x|y) with density functions

f(x|y) and fM (x|y):
∫

f(x|y)fM (x|y)
r(x) d(x) = 1,

∫

r(x) = 1, r(x) > 0‘∀x means that r(x) =

f(x|y) or fM (x|y). We show this for discrete distributions below.

Lemma C.1. If p, q and r are three n dimensional distributions then,
∑

x
p(x)r(x)

q(x) = 1 only if either

q = p or q = r pointwise.

Proof. We first describe proofs for specific cases so as to provide some intuition about the general
result.

If p, r and q are two dimensional distributions then if
∑

i=1,2
piri
qi

= 1 we have,

∑

i=1,2

piri

qi
= 1

(q1 + q2)
∑

i=1,2

piri =
∏

i=1,2

qi(p1 + p2)(r1 + r2)

(r1q2 − r2q1)(p1q2 − p2r1) = 0

This implies either q1
q2

= p1

p2

or q1
q2

= r1
r2

. Without loss of generality (w.l.o.g.) assume q1
q2

= p1

p2

. Then
q1
q2

+ q2
q2

= p1

p2

+ p2

p2

⇒ 1
q2

= 1
p2

or p2 = q2 which proves our result.

If p = r, then for n dimensional distributions we have,

n
∑

i=1

p2i
qi

= 1

n
∑

i=1



p2i

∏

j 6=i

qj



 =

n
∏

i=1

qi

(

n
∑

i=1

qi

)

n
∑

i=1



p2i

∏

j 6=i

qj



 =

n
∏

i=1

qi

(

n
∑

i=1

pi

)2

n
∑

i=1

n
∑

j=1,j 6=i

∏

k 6=i,j

qk(piqj − pjqi)
2 = 0

This implies that the polynomial is pointwise zero only if pi

pj
= qi

qj
∀i, j. This again gives our result

of p = q.

For the general case analogous to previous results we get polynomials (piqj − pjqi)
2(riqj − rjqi)

2

multiplied by positive constants that must be pointwise 0. Thus, pi

pj
= qi

qj
or ri

rj
= qi

qj
. W.l.o.g. we can
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assume that for half or more of the cases the ratio of pi, pjs are equal to the ratio of qi, qjs. In this
case, only these equations can be considered along with constraints ensuring p and q are distributions
and must sum to 1. Since the number of equations with ratios grow quadratically in the number of
variables the hardest cases to show are when we have 4 (or fewer) variables. Using tools such as
mathematica one can show that the other ratios also have to be equal or that p = q.
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