
An Efficient Pruning Algorithm for Robust Isotonic
Regression

Cong Han Lim ∗

School of Industrial Systems and Engineering
Georgia Tech

Altanta, GA 30332
clim31@gatech.edu

Abstract

We study a generalization of the classic isotonic regression problem where we allow
separable nonconvex objective functions, focusing on the case where the functions
are estimators used in robust regression. One can solve this problem to within
ε-accuracy (of the global minimum) in O(n/ε) using a simple dynamic program,
and the complexity of this approach is independent of the underlying functions. We
introduce an algorithm that combines techniques from the convex case with branch-
and-bound ideas that is able to exploit the shape of the functions. Our algorithm
achieves the best known bounds for both the convex case (O(n log(1/ε))) and the
general nonconvex case. Experiments show that this algorithm can perform much
faster than the dynamic programming approach on robust estimators, especially as
the desired accuracy increases.

1 Introduction

In this paper we study the following optimization problem with monotonicity constraints:

minx∈[0,1]n
∑

i∈[n]
fi(xi) where xi ≤ xi+1 for i ∈ [n− 1] (1)

where the functions f1, f2, . . . , fn : [0, 1]→ R may be nonconvex and the notation [n] denotes the
set {1, 2, . . . , n}. Our goal is to develop an algorithm that achieves an objective ε-close to the global
optimal value for any ε > 0 with a complexity that scales along with the properties of f . In particular,
we present an algorithm that simultaneously achieves the best known bounds when fi are convex and
also for general fi, while scaling much better in practice than the straightforward approach when
considering f used in robust estimation such as Huber Loss, Tukey’s biweight function, and MCP.

Problem (1) is a generalization of the classic isotonic regression problem (Brunk, 1955; Ayer et al.,
1955). The goal there to find the best isotonic fit in terms of Euclidean distance to a given set of points
y1, y2, . . . , yn. This corresponds to setting each fi(x) to ‖xi − yi‖22. Besides having applications
in domains where such a monotonicity assumption is reasonable, isotonic regression also appears
as a key step in other statistical and optimization problems such as learning generalized linear and
single index models (Kalai and Sastry, 2009), submodular optimization (Bach, 2013), sparse recovery
(Bogdan et al., 2013; Zeng and Figueiredo, 2014), and ranking problems (Gunasekar et al., 2016).

There are several reasons to go beyond Euclidean distance and to consider more general fi functions.
For example, using the appropriate Bregman divergence can lead to better regret bounds for certain
online learning problems over the convex hull of all rankings (Yasutake et al., 2011; Suehiro et al.,
2012), and allowing general fi functions has applications in computer vision (Hochbaum, 2001;

∗Work done while at Wisconsin Institute for Discovery, University of Wisconsin-Madison.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Kolmogorov et al., 2016). In this paper we will focus on the use of quasiconvex distance functions,
the use of which is much more robust to outliers (Bach, 2018)2. Figure 1 describes this in more detail.

Figure 1: Isotonic regression in the presence of outliers. The left image shows the value of the Euclidean
distance and Tukey’s biweight function (a canonical function for robust estimation) from x = −1 to 1, the
middle image demonstrates isotonic regression on a simple linear and noiseless example, and the right image
shows how outliers can adversely affect isotonic regression under Euclidean distance.

For general fi functions we cannot solve Problem (1) exactly (without some strong additional
assumptions), and instead we focus on the problem

minx∈Gn
k

∑
i∈[n]

fi(xi) where xi ≤ xi+1 for i ∈ [n− 1] (2)

where instead of allowing the xi values to lie anywhere in the interval [0, 1], we restrict them to
Gk := {0, 1/k, 2/k, . . . , 1}, a equally-spaced grid of k + 1 points. This discretized version of the
problem will give a feasible solution to the original problem that is close to optimal. The relation
between the granularity of the grid and approximation quality for any optimization problem over a
bounded domain can be described in terms of the Lipschitz constants of the objective function, and
for this particular problem has been described in Bach (2015, 2018) — if functions fi are Lipschitz
continuous with constant L, then to obtain a precision of ε in terms of the objective value, it suffices to
choose k ≥ 2nL/ε. One can achieve better bounds using higher-order Lipschitz constants. The main
approach for solving Problem (2) for general nonconvex functions is to use dynamic programming
(see for example Felzenszwalb and Huttenlocher (2012)) that runs in O(nk). When all the fi are
convex, one can instead use the faster O(n log k)) scaling algorithm by Ahuja and Orlin (2001).

Our main contribution is an algorithm that also achieves O(nk) in the general case and O(n log k) in
the convex case by exploiting the following key fact — the dynamic programming method always runs
in time linear in the sum of possible xi values over all xi. Thus, our goal is to limit the range of values
by using properties of the fi functions. This is done by combining ideas from branch-and-bound and
the scaling algorithm by Ahuja and Orlin (2001) with the dynamic programming approach. When
restricted to convex fi functions, our algorithm is very similar to the scaling algorithm.

Our algorithm works by solving the problem over increasingly finer domains, choosing not to include
points that will not get us closer to the global optimum. We use two ways to exclude points, the
first of which uses lower bounds over intervals for each fi, and the second requires us to be able to
compute a linear underestimate of fi over an interval efficiently. This information is readily available
for a variety of quasiconvex distance functions, and we provide an example of how to compute this
for Tukey’s biweight function. In practice, this leads to an algorithm that can require far less function
evaluations to achieve the same accuracy as dynamic programming, which in turn translates into a
faster running time even considering the additional work needed to process each point.

The paper is organized as follows. For the rest of the introduction, we will survey other methods
for isotonic regression for specific classes of sets of fi functions and also mention related problems.
Section 2 describes the standard dynamic programming approach. In Section 3, we describe our main
pruning algorithm and the key pruning rules for removing xi values that we need to consider. Section
4 demonstrates the performance of the algorithm on a series of experiments. The longer version of
this paper (provided as supplementary material) includes proofs for the linear underestimation rule
and also briefly discusses a heuristic variant of our main algorithm.

2 Our focus in this paper is on developing algorithms for global optimization. For more on robust estimators,
we refer the reader to textbooks by Huber (2004); Hampel et al. (2011).

2

Existing methods for isotonic regression. We will first discuss the main methods for exactly
solving Problem (1) and the classes of functions the methods can handle. For convex fi functions,
the pool-adjacent-violators (PAV) algorithm (Ayer et al., 1955; Brunk, 1955) has been the de facto
method for solving the problem. The algorithm was originally developed for the Euclidean distance
case but in fact works for any set of convex fi, provided that one can exactly solve intermediate
subproblems of the form argminz∈[0,1]

∑
i∈S fi(z) (Best et al., 2000) over subsets S of [n]. PAV

requires solving up to n such subproblems, and the total cost of solving can be just O(n) for a wide
range of functions, including for many Bregman divergences (Lim and Wright, 2016).

There are algorithms for nonconvex functions that are piecewise convex. Let q denote the total number
of pieces over all the fi functions. In the case where the overall functions are convex, piecewise-
linear and -quadratic functions can be handled in O(q log log n) and O(q log n) time respectively
(Kolmogorov et al., 2016; Hochbaum and Lu, 2017), while in the nonconvex case it is O(nq).

In some cases, we cannot solve the problem exactly and instead deal with the discretized problem (2).
For example, this is the case when our knowledge to the functions fi can only be obtained through
function evaluation queries (i.e. xi → fi(xi)). In the convex case, PAV can be used to obtain an
algorithm with O(n2 log k) time to solve the problem over a grid of k points, but a clever recursive
algorithm by Ahuja and Orlin (2001) takes only O(n log k). A general approach that works for
arbitrary functions is dynamic programming, which has a complexity of O(nk).

Bach (2015) recently proposed a framework for optimizing continuous submodular functions that
can be applied to solving such functions over monotonicity constraints. This includes separable
nonconvex functions as a special case. Although the method is a lot more versatile, when specialized
to our setting it results in an algorithm with a complexity ofO(n2k2). This and dynamic programming
are the main known methods for general nonconvex functions.

Related Problems. There have been many extensions and variants of the classic isotonic regression
problem, and we will briefly describe two of them. One common extension is to use a partial ordering
instead of a full ordering. This significantly increases the difficulty of the problem, and this problem
can be solved by recursively solving network flow problems. For a detailed survey of this area, which
considers different types of partial orderings and `p functions, we refer the reader to Stout (2014).
One can also replace the ordering constraints with the pairwise terms

∑
i∈[n−1] gi(xi+1 − xi) where

gi : R → R ∪ {∞}. By choosing gi appropriately, we recover many known variants of isotonic
regression, including nearly-isotonic regression (Tibshirani et al., 2011), smoothed isotonic regression
(Sysoev and Burdakov, 2016; Burdakov and Sysoev, 2017), and a variety of problems from computer
vision. The most general recent work (involving piecewise linear functions) is by Hochbaum and Lu
(2017). We note that the works by Bach (2015, 2018) also applies in many of these settings.

2 Dynamic Programming

We now provide a DP reformulation of Problem (2). Let AGkn (xn) := fn(xn). For any i ∈ [n− 1],
we can define the following functions:

AGki (xi) := fi(xi) + CGki (xi), (aggregate)

CGki (xi) := minxi+1∈Gk A
Gk
i+1(xi+1) where xi ≤ xi+1. (min-convolution)

The AGki functions aggregate the accumulated information from the indices i+ 1, i+ 2, . . . , n with
the information at the current index i, where the CGki functions represent the minimum-convolution of
the AGki+1 function with the indicator function g where g(z) = 0 if z ≤ 0, and g =∞ otherwise. With
this notation, the problem minx1∈Gk A

Gk
1 (x1) has the same objective and x1 value as Problem (2).

We can use the above recursion to solve the problem, which we formally describe in Algorithm 1.
This dynamic programming algorithm can be viewed an application of the Viterbi algorithm. The
algorithm does a backward pass, building up all the AGki , CGki values from i = n to i = 1. Once AGk1
has been computed, we know the minimizer x1. We then work our way forwards, each time picking
an xi that minimizes AGki on the grid Gk subject to the condition that xi ≥ xi−1. The total running
time of this algorithm is O(nk), on the order of the number of points in the grid.

3

Algorithm 1 Dynamic Program for fixed grid Gk
input: Functions {fi}, Parameter k
AGkn (z)← fn(z) for z ∈ Gk
for i = n− 1, . . . , 1 do . Backwards Pass

CGki (1)← AGki+1(1)

AGki (1)← fi(1) + CGki (1)
for z = k−1/k, k−2/k, . . . , 0 do

CGki (z)← min(AGki+1(z), C
Gk
i (z + 1/k))

AGki (z)← fi(z) + CGki (z)

x0 ← 0
for i = 1, 2 . . . , n do . Forward Pass

xi ← argminz∈Gk,z≥xi−1
AGki (z)

return (x1, x2, . . . , xn)

The main drawback of the dynamic programming approach is that it requires us to pick the desired
accuracy a priori via choosing an appropriate k value and then overall running time is then O(nk),
no matter the properties of the fi functions.

3 A Pruning Algorithm for Robust Isotonic Regression

Instead of solving the full discretized problem (2) directly, we can work over a much smaller set of
points. Let xGk denote an optimal solution to the problem, and for each i ∈ [n] let Si ⊆ Gk denote a
set of points such that xGki ∈ Si. Then

minx∈S1×...Sn
∑

i∈[n]
fi(xi) where xi ≤ xi+1 for i ∈ [n− 1],

has the same solution xGk and it is easy to modify the DP algorithm to work for this problem. All
that is needed is to perform the following replacements:

• z = . . . and z ∈ . . . with the appropriate series of points in Si,

• CGki (zmax)← minz≥zmax A
Gk
i+1(z) for zmax = argmax(Si), and

• CGki (z)← min(AGki+1(z
′)) where z′ ≥ z.

The values of the CGki , AGki functions are the same for both problem formulations on xGk .

The modified operations can be performed efficiently by maintaining the appropriate minimum values,
and this results in an algorithm with a complexity of just O(|S1| + . . . |Sn|). Our goal is thus to
restrict the size of Si sets. We perform this by starting from a coarse set of intervals Ii for each
index i that initially contains just [0, 1]. This contains all points in Gk. We repeatedly subdivide each
interval into two and keep only the intervals that may contain certain better solutions, which in turn
reduces the number of points in Gk that are contained in some interval.

From here on we assume that k is a power of 2. Algorithm 2 describes the basic framework which
we build on throughout this section.

Algorithm 2 Algorithmic Framework for Faster Robust Isotonic Regression
input: Functions {fi}, Parameter k
k′ ← 1
Ii ← {[0, 1]} for i ∈ [n]
while k′ < k do{

I
G2k′
i

}
← Refine

{
IGk′1

}
using {fi}

k′ ← 2k′

x← run modified DP on endpoints of
{
IGki

}
return x

4

At the end of each round of the loop, we want xGk be contained in I1 × . . .× In where Ii is some
interval from Ii. This ensures that we find the optimal point in the final grid Gk. We also want IGki to
consist only of intervals of width 1/k′ with endpoints contained in Gk′ . This ensures that the overall
number of points processed over all iterations is at most O(nk), and by bounding the number of
intervals in each Ii in each iteration we can achieve significantly better performance. In particular,
the scaling algorithm for convex functions by Ahuja and Orlin (2001) can be seen as a particular
realization of this framework where the refinement process keeps the size of each Ii to exactly one.

In the rest of this section, we will describe two efficient rules for refining the sets of intervals {Ii}
and analyze the complexity of the overall algorithm. The first rule uses lower and upper bounds (akin
to standard branch-and-bound), while the second requires one to be able to efficiently construct good
linear underestimators of the fi functions within intervals.

3.1 Pruning via lower/upper bounds

This pruning rule constructs lower bounds over the current active intervals, then uses upper bounds
(that can be obtained via the aforementioned DP) to decide which intervals can be removed from
consideration in subsequent iterations of the algorithm.

We again modify the dynamic program, this time to compute lower bounds over intervals. Let
ALB,Gk

n (a) := minxn∈[a,a+1/2k] fn(xn) and recursively define the following:

ALB,Gk
i (a) := min

xi∈[a,a+1/2k]
fi(xi) + CLB,Gk

i (a), (aggregate for lower bound)

CLB,Gk
i (a) := mina′∈Gk A

LB,Gk
i+1 (a′) where a ≤ a′. (min-convolution for lower bound)

It is straightforward to see that ALB,Gk
i (a) is a lower bound for

∑n
j=i fj(xj) when xi is contained in

the interval [a, a+ 1/2k]. This dynamic program can be computed in O(|I1|+ . . . |In|) time using the
same ideas as before, provided that terms of the form minxi∈[a,b] fi(xi) can be efficiently calculated.

As for which intervals to keep, we remove an interval [a, b] from Ii if there is another interval in Ii
which can be used in place of [a, b] and the upper bound from using the other interval is smaller than
the lower bound corresponding to [a, b]. This concept is formalized in Algorithm 3.

Algorithm 3 Pruning I via Lower/Upper Bounds

input: Interval Sets {IGk′i }, functions {fi}, Parameter k′

Compute
{
A
Gk′
i

}
and

{
A

LB,Gk′
i

}
using {fi}

Z ← 0
for i = 1, . . . , n do

z ← first element in Z sequence
z′ ← next element (1 if there are none)
J ← ∅
while z 6= 1 do

u← min
{
A
Gk′
i (xi)

∣∣ xi ∈ Gk′ ∩ [z, z′]
}

J ← J ∪
{
[a, b] ∈ IGk′i

∣∣ ALB,Gk′
i (a) ≤ u, [a, b] ⊆ [z, z′]

}
z ← z′

z′ ← next element in sequence Z (1 if there are none)
IGk′i ← J
Z ← all endpoints in J

return {IGk′i }

We can show that this procedure does not remove certain solutions, including the optimal solutions to
Problems (1) and (2). Definition 3.1 and Proposition 3.2 describes this more precisely.

Definition 3.1. Given a nondecreasing vector x ∈ Rn, x is S-improvable for some S ⊆ [0, 1] if there
is a different nondecreasing vector y ∈ Rn such that

∑
i∈[n] fi(yi) <

∑
i∈[n] fi(xi) and if yi /∈ S it

must be the case that yi = xi.

5

Note that the optimal solution xGk is not Gk′ -improvable for any k′ that is a factor of k.
Proposition 3.2. Let x∗ be a nondecreasing vector which is not Gk′ -improvable. Suppose x∗ is in∏

i∈[n]

(⋃ {
[a, b] ∈ IGk′i

})
.

This remains true after applying Algorithm 3 to the sets {IGk′i }.

3.2 Pruning via linear underestimators

We now describe a rule that uses linear underestimators on intervals in Ii. In the convex case, one
can think of this as using subgradient information. This is what the scaling algorithm of Ahuja and
Orlin (2001) uses to obtain a complexity of O(n log k). We will rely on the following assumption.
Assumption 3.3. Given a, b, c ∈ [0, 1] where a < b < c, we can compute in constant time gLi , g

R
i ∈

R such that fi(b)+gLi · (a−b) ≤ fi(z) for a ≤ z < b and fi(b)+gRi · (c−b) ≤ fi(z) for b < z ≤ c.

This pruning rule works with any gLi , g
R
i that satisfies the condition, but the tighter the underestimator,

the better our algorithm will perform. In particular, it is ideal to minimize gLi and maximize gRi . For
convex functions, the best possible gRi is a subgradient of the function.

Suppose we have the interval [u, v] ∈ IGk′i for i ∈ {s, s+ 1, . . . , t}. Our goal is to decide for each i
if we should include the intervals [u, (u+v)/2] and [(u+v)/2, v] in IG2k′i . We can do this by taking into
account linear underestimators for fi in each of these two intervals and also by considering which xi
may lie outside of [u, v]. Algorithm 4 describes how this can be done.

Algorithm 4 Pruning Subroutine
input: {fi}, {s, s+ 1, . . . , t}, a, b, c ∈ [0, 1] where a < b < c, indices l, r
Compute gLi , gRi (from Assumption 3.3) for i ∈ [n]
SL
t ← gLt
SL
i ← gLi +max(SL

i+1, 0) for i ∈ {s, s+ 1, . . . , t− 1}
IL ← {i | i ≤ l, SL

i > 0} ∪ {i | l + 1 ≤ i < k, k is first index after l where SL
k ≤ 0}

SR
s ← gRs
SR
i ← gRi +min(SR

i−1, 0) for i ∈ {s+ 1, . . . , t}
IR ← {i | i ≥ r, SR

i ≤ 0} ∪ {i | k > i ≥ r + 1, k is last index before r where SR
k > 0}

for i = s, s+ 1, . . . , t do
Ii ← ∅
if i ∈ IL, add [a, b] to Ii
if i ∈ IR or Ii is empty, add [b, c] to Ii

return {Ii}

Theorem 3.4. Consider Algorithm 4 and its inputs. Suppose that there is some nondecreasing vector
x∗ ∈ [0, 1]n such that x∗ is not {b}-improvable. Let s, t denote the indices where x∗s and x∗t are the
first and terms of x∗ contained in [a, c] respectively. Suppose l ≥ s − 1 and r ≤ t + 1. For any
i ∈ {s, s+ 1, . . . , t}, the term x∗i is contained in one of the intervals in Ii returned by the algorithm.

We use Algorithm 4 as part of a larger procedure over the entire collection of interval sets I1, . . . , In.
This procedure is detailed in Algorithm 5, and refines the set of intervals by splitting each interval
into two and running Algorithm 4 on the pair of adjacent intervals.

Proposition 3.5. Suppose the intervals used as inputs to Algorithm 5 are {IGk′i } (i.e. all the
endpoints are in Gk′). Let x∗ ∈ [0, 1]n be a nondecreasing vector that is not G2k′-improvable and

is contained in
∏

i∈[n]

(⋃ {
[a, b] ∈ IGk′i

})
. Then, x∗ is contained in

∏
i∈[n]

(⋃ {
[a, b] ∈ IG2k′i

})
where

{
IG2k′

}
are the intervals returned by the algorithm.

3.3 Computing Lower Bounds and Linear Underestimators for Quasiconvex Estimators

For quasiconvex functions, we can compute the lower bound over an interval [a, b] by just evaluating
the function on the endpoints a and b (and by knowing what the minimizer and minimum value are).

6

Algorithm 5 Main Algorithm for Refining via Linear Underestimators

input: Interval Sets {IGk′i }, functions {fi}
I ′i ← ∅ for i ∈ [n]

for [u, v] ∈
⋃

i I
Gk′
i do

for each contiguous block of indices s, s+ 1, . . . , t in {i | Ii contains [u, v]} do
l← max{i | ∃ an interval to the left of [u, v] contained in IGk′i }
r ← min{i | ∃ an interval to the right of [u, v] contained in IGk′i }
Update {I ′i} with Alg. 4 with inputs {fi}, {s, . . . , t}, (a, b, c) = (u, u+v/2, v), indices l, r

return {I ′i}

It is straightforward to compute good linear underestimators for many quasiconvex distance functions
used in robust statistics. We will discuss how this can be done for the Tukey biweight function, and
similar steps can be taken for other popular functions such as the Huber Loss, SCAD, and MCP.

Example: Tukey’s biweight function and how to efficiently compute good m values. Tukey’s
biweight function is a classic function used in robust regression. The function is zero at the origin
and the derivative is x(1− (x/c)2)2 for |x| < c and 0 otherwise for some fixed c.

Figure 2: Tukey’s biweight function with c = 1. In the plot of the derivative, we mark the region in which the
function is convex in red (−1/

√
5 ≤ x ≤ 1/

√
5), while in the other regions at the sides the function is concave.

We will describe how to choose gL and gR for x < 0, and by symmetry we can use similar methods
for x > 0. We obtain gL from connecting f(x) to the largest value of the function. If x is in the
convex region, we can simply set gR to the gradient. We now add a line with slope −L (where L is
the largest gradient of the function) to the transition point between the concave and convex regions,
and for x in the concave region we obtain gR by connecting f(x) to this line.

3.4 Putting it all together

After stating the pruning and refinement rules for our nonconvex distance functions, we can formally
describe in detail the full process in Algorithm 6. The worse case running time is O(nk), since the
number of points and intervals processed is on that order and the complexity of the subroutines are
linear in those numbers. On the other hand, when the functions fi are convex,

Theorem 3.6. Algorithm 6 solves Problem (2) in O(nk) time in general, and O(n log k) time for
convex functions if we use subgradient information.

There are two things to note about Algorithm 6. First, it only presents one possible combination of
the pruning rules. Another combination would be to not apply the lower/upper bound pruning rule at
every iteration. We stick to this particular description in our experiments and theorems for simplicity.
Second, we only require the linear underestimator rule for the O(n log k) convex bound, since that
suffices to ensure that sets Si have at most a few points.

7

Algorithm 6 A Pruning Algorithm for Robust Isotonic Regression
input: Functions {fi}, Parameter k
k′ ← 1
Si ← {0, 1} for i ∈ [n]
Ii ← {[0, 1]} for i ∈ [n]
while k′ < k do{

I
G2k′
i

}
← Algorithm 5 to refine and prune

{
I
Gk′
i

}{
I
G2k′
i

}
← Algorithm 3 to prune

{
I
G2k′
i

}
k′ ← 2k′

x← run modified DP on endpoints of
{
IGki

}
return x

4 Empirical Observations

We evaluate the efficiency of the DP approach and our algorithm on a simple isotonic regression task.
We adopt an experiment setup similar to the one used by Bach (2018). We generate a series of n
points y1, . . . , yn from 0.2 to 0.8 equally spaced out and added Gaussian random noise with standard
deviation of 0.03. We then randomly flipped between 5% to 50% of the points around 0.5, and these
points act as the outliers. Our goal now is to test the computational effort required to solve Problem
(2). where f is the Tukey’s biweight function with c = 0.3. We set n to 1000 and varied k from
27 = 128 to 216 = 65536.

Figure 3: The yi points (pluses) and results of using Euclidean distance (blue, dashed) vs. Tukey’s biweight
function (orange, solid).

We used two metrics to evaluate the computational efficiency. The first measure we use is the total
number of points in all Si across all iterations, an implementation-independent measure. The second
is the wall-clock time taken. The algorithms were implemented in Python 3.6.7, and the experiments
were ran on an Intel 7th generation core i5-7200U dual-core processor with 8GB of RAM.

The results are summarized in Figure 4, where the results are averaged over 10 independent trials. In
the first figure on the left, we see how the error decreases with an increase in k, reflecting the equation
that k ≥ O(1/ε) is needed to achieve an error of ε in the objective.

In the second and third figures, we compare the performance of the dynamic program against our
method, with different percentages of points flipped/corrupted. Instead of presenting three DP lines
for each percentage, we simply use one line since the number of points evaluated is always the same
and the variation in the timing across all runs is significantly less than 5 percent for all values of
k. The fact that our method performs differently for different levels of corruption indicates that the
performance of our method varies with the difficulty of the problem, a key design goal.

The difference between the second and third figures for our method is approximately a constant factor,
indicating that the computational effort for each point is roughly the same. We also see that our
method takes significantly more effort per point. Nonetheless our method is significantly faster than
the DP across all tested levels of corruption, and the difference gets more significant as we increase k.

To more closely investigate how the difficulty of the problem can affect the running time performance,
we compare how the speedup is affected by the percent of flipped/corrupted points in Figure 5 at

8

Figure 4: Summary of empirical results. The graph on the left shows how increasing the granularity of the grid
decreases the error, and the next two graphs compare the performance of DP against our method (under different
percent of flipped/corrupted points) in terms of points processed and running time.

k = 216. For low levels of noise, the speedup is extremely high. There is a rapid decrease in
performance between 20 and 30 percent, and at higher levels of noise the performance begins to
stabilize again at about 9-10×.

Figure 5: Speedup as a function of the amount of points that were flipped/corrupted at k = 216.

In addition to the above experiments, we also ran preliminary experiments varying the value of n. As
predicted by the theory, the complexity of both methods scale roughly linearly with n. Tests on a
range of quasiconvex robust estimators shows similar results.

5 Conclusions and Future Work

We propose a pruning algorithm that builds upon the standard DP algorithm for solving the separable
nonconvex isotonic regression problem (1) to any arbitrary accuracy (to the global optimal value). On
the theoretical front, we demonstrate that the pruning rules developed retain the correct points and
intervals required to reach the global optimal value, and in the convex case our algorithm becomes a
variant of the O(n log k) scaling algorithm. In terms of empirical performance, our initial synthetic
experiments show that our algorithm scales significantly better as the desired accuracy increases.

Besides developing more pruning rules that can work on a larger range of nonconvex fi functions,
there are two main directions for extensions to this work, mirroring the line of developments for
the classic isotonic regression problem. The first is go beyond monotonicity constraints and instead
consider chain functions gi(xi − xi+1) that link together adjacent indices. A particularly interesting
case is the one where gi(xi) incorporates a `2-penalty in addition to the monotonicity constraints
in order to promote smoothness. The second is to go from the full ordering we consider here to
general partial orders. Dynamic programming approaches fail in that setting and we would require a
significantly different approach. It may be possible to adapt the general submodular-based approach
developed by Bach (2018), which works in both the above mentioned extensions.

9

Acknowledgements

The author would like to thank Alberto Del Pia and Silvia Di Gregorio for initial discussion that
lead to this work. The author was partially supported by NSF Award CMMI-1634597, NSF Award
IIS-1447449 at UW-Madison. Part of the work was completed while visiting the Simons Institute for
the Theory of Computing (partially supported by the DIMACS/Simons Collaboration on Bridging
Continuous and Discrete Optimization through NSF Award CCF-1740425).

References
Ahuja, R. K. and Orlin, J. B. (2001). A Fast Scaling Algorithm for Minimizing Separable Convex

Functions Subject to Chain Constraints. Operations Research, 49(5):784–789.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955). An Empirical
Distribution Function for Sampling with Incomplete Information. The Annals of Mathematical
Statistics, 26(4):641–647.

Bach, F. (2013). Learning with submodular functions: A convex optimization perspective. Founda-
tions and Trends R© in Machine Learning, 6(2-3):145–373.

Bach, F. (2015). Submodular Functions: from Discrete to Continous Domains. arXiv:1511.00394
[cs, math]. arXiv: 1511.00394.

Bach, F. (2018). Efficient algorithms for non-convex isotonic regression through submodular opti-
mization. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Processing Systems 31, pages 1–10. Curran Associates,
Inc.

Best, M. J., Chakravarti, N., and Ubhaya, V. A. (2000). Minimizing Separable Convex Functions
Subject to Simple Chain Constraints. SIAM Journal on Optimization, 10(3):658–672.

Bogdan, M., van den Berg, E., Su, W., and Candes, E. (2013). Statistical estimation and testing via
the sorted L1 norm. arXiv:1310.1969.

Brunk, H. D. (1955). Maximum Likelihood Estimates of Monotone Parameters. The Annals of
Mathematical Statistics, 26(4):607–616.

Burdakov, O. and Sysoev, O. (2017). A Dual Active-Set Algorithm for Regularized Monotonic
Regression. Journal of Optimization Theory and Applications, 172(3):929–949.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2012). Distance Transforms of Sampled Functions.
Theory of Computing, 8:415–428.

Gunasekar, S., Koyejo, O. O., and Ghosh, J. (2016). Preference Completion from Partial Rankings.
In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in
Neural Information Processing Systems 29, pages 1370–1378. Curran Associates, Inc.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (2011). Robust statistics: the
approach based on influence functions, volume 196. John Wiley & Sons.

Hochbaum, D. and Lu, C. (2017). A Faster Algorithm Solving a Generalization of Isotonic Median
Regression and a Class of Fused Lasso Problems. SIAM Journal on Optimization, 27(4):2563–
2596.

Hochbaum, D. S. (2001). An Efficient Algorithm for Image Segmentation, Markov Random Fields
and Related Problems. J. ACM, 48(4):686–701.

Huber, P. (2004). Robust Statistics. Wiley Series in Probability and Statistics - Applied Probability
and Statistics Section Series. Wiley.

Kalai, A. and Sastry, R. (2009). The Isotron Algorithm: High-Dimensional Isotonic Regression. In
Conference on Learning Theory.

10

Kolmogorov, V., Pock, T., and Rolinek, M. (2016). Total Variation on a Tree. SIAM Journal on
Imaging Sciences, 9(2):605–636.

Lim, C. H. and Wright, S. J. (2016). Efficient bregman projections onto the permutahedron and
related polytopes. In Gretton, A. and Robert, C. C., editors, Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (AISTATS 2016), page 1205–1213.

Stout, Q. F. (2014). Fastest isotonic regression algorithms.

Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., and Nagano, K. (2012). Online prediction
under submodular constraints. In Bshouty, N., Stoltz, G., Vayatis, N., and Zeugmann, T., editors,
Algorithmic Learning Theory, volume 7568 of Lecture Notes in Computer Science, pages 260–274.
Springer Berlin Heidelberg.

Sysoev, O. and Burdakov, O. (2016). A Smoothed Monotonic Regression via L2 Regularization.
Linköping University Electronic Press.

Tibshirani, R. J., Hoefling, H., and Tibshirani, R. (2011). Nearly-Isotonic Regression. Technometrics,
53(1):54–61.

Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., and Takeda, M. (2011). Online linear optimization
over permutations. In Asano, T., Nakano, S.-i., Okamoto, Y., and Watanabe, O., editors, Algorithms
and Computation, volume 7074 of Lecture Notes in Computer Science, pages 534–543. Springer
Berlin Heidelberg.

Zeng, X. and Figueiredo, M. A. T. (2014). The Ordered Weighted `1 Norm: Atomic Formulation,
Projections, and Algorithms. arXiv:1409.4271.

11

A Proofs for the Linear Underestimator Pruning Rule

A.1 Elementary facts on sequences on numbers

The following simple results on sequences of numbers will be useful in analyzing the correctness of
the algorithm. These facts are elementary and we include the proofs for completeness.
Lemma A.1. Let x1, x2, . . . , xn be a sequence of real numbers, and let k be the largest number that
maximizes

∑
i∈[k] xi, where k is allowed to be zero.

1. For any subsequence T = t+ 1, t+ 2, . . . , k for some t ≥ 0,
∑

i∈T xi is greater than zero.

2. If we extend the sequence, the new maximizer k′′ is greater than or equal to k.

3. Let y1, y2, . . . , yn denote a sequence of positive real numbers. Then the largest number k′
that maximizes

∑
i∈[k′](xi + yi) satisfies k′ ≥ k.

4. Let λ1, λ2, . . . , λn be an increasing positive sequence. Then the largest number k′′ that
maximizes

∑
i∈[k′′] λixi satisfies k′′ ≥ k.

Proof. The first claim is true since if there is some t where the corresponding sum is less than zero,
then

∑
i∈[t] xi >

∑
i∈[k] xi, contradicting the maximality of using k.

The second and third claims hold since any shorter sequence is dominated by the original sequence.

To prove the fourth claim, we suppose for contradiction that some s < k maximizes the sum∑
i∈[s] λixi. Our first claim implies xs has to be greater or equal to zero, or that s = 0. It also

implies
∑

i∈{s+1,s+2,...,k} xi ≥ 0.

If
∑

i∈{s+1,s+2,...,k′} λixi where k′ ≤ k is positive, this will contradict the maximality of using the
index s. It now suffices to prove the following claim:

Suppose
∑

i∈[n] xi ≥ 0 and
∑

i∈[m] xi < 0 for allm ∈ [n−1]. Let λ1, λ2, . . . , λn
be an increasing positive sequence. Then there exists k′ ∈ [n] such that∑

i∈[k′] λixi ≥ 0.

We will prove this by induction. The n = 1 case is trivial. Now suppose the claim is true up to some
n′. Let m′ denote the first index where xm′ ≥ 0. If m′ = 1, we are done since we can set k′ to m′.

Now suppose m′ > 1. Consider the sequence y1, y2, . . . , yn′−m′+2, where

y1 =
1

λm′

∑
i∈[m′]

λixi,

y2 = xm′+1, . . . , yn′−m′+2 = xn′+1. Note that y1 ≥
∑

i∈[m′] xi from the fact that xm′ ≥ 0 while all
earlier terms are negative and have been scaled by a smaller amount. This means that

∑
i∈[n′−m′+2] yi

is greater than equal to zero. Hence, we can pick some smallest index n′′ ≤ n′ −m′ + 2 ≤ n′ where∑
i∈[n′′] yi ≥ 0.

Consider the increasing sequence of coefficients µ where µi = λm′+i−1. By the inductive hypothesis,
we can find some index p where

∑
i∈[p] λiyi ≥ 0. Note that∑
i∈[p]

λiyi =
∑

i∈[p−m′+1]

λixi

which concludes the proof.

We will now describe how to compute the maximizing index k in Algorithm 7. Note that Di indicates
the best possible sum you can get when starting from index i (insead of index 1). The correctness
proof follows from elementary dynamic programming arguments.
Lemma A.2. Algorithm 7 returns the index k such that

∑
i∈[k] xi is maximized.

12

Algorithm 7 Computing the most positive sequence.
input: x1, x2, . . . , xn
Dn ← xn
Di ← xi +max(Di + 1, 0) for i ∈ [n− 1]
return i− 1 where i is the index of the smallest negative Ai

Building on the previous algorithm, we have the following algorithm (Algorithm 8) that will be used
as a subroutine in our main linear underestimator-based pruning algorithm. The proof for Proposition
A.3 is very similar to the earlier lemma.

Algorithm 8 All most positive sequences starting before or at m+ 1.
input: x1, x2, . . . , xn, index m
Dn ← xn
Di ← xi +max(Di+1, 0) for i ∈ [n− 1]
I ← {i | i ≤ m,Di ≥ 0}
return I ∪ {i |m+ 1 ≤ i < k, k is the first index after m where Ak < 0}

Proposition A.3. Let x1, . . . , xn and index m be the input to Algorithm 8. Consider an index
m′ ≤ m, and let k′ be the index that maximizes the sum

∑
i∈{m′+1,...,k′} xi. Then all indices

m′ + 1, . . . , k′ are returned by the algorithm.

As a direct consequence of Lemma A.1 and Proposition A.3, we have that adding positive terms to x
or scaling x by a positive monotonically-increasing vector (à la Lemma A.1 third and fourth claims)
only increases the set of indices returned.

A.2 Main proof

We first study a variant of Algorithm 5 that only uses linear underestimation information to the left
(i.e. gL). Consider 0 < a < b < 1.

Algorithm 9 Linear Underestimate Pruning (Left)
input: {fi}, a, b ∈ (0, 1) where a < b, index m
Compute gLi (defined in Assumption 3.3) for i ∈ [n]
return Algorithm 8 on gL1 , . . . , g

L
n and index m

Definition A.4. Given a nondecreasing vector x ∈ Rn, we say x is S-improvable for some set
S ⊆ [0, 1] if there is a nondecreasing vector y ∈ Rn such that if yi /∈ S ⇒ yi = xi and∑

i∈[n] fi(yi) <
∑

i∈[n] fi(xi).

Proposition A.5. Suppose that there is some nondecreasing vector x∗ ∈ [0, 1]n such that x∗ is not
{b}-improvable. Let s, t denote the indices where x∗s and x∗t are the first and terms of x∗ contained
in [a, b] respectively. Let T = s, s+ 1 . . . , t.

Then, the output of Algorithm 9 initialized with index m ≥ s− 1 includes all indices s, s+ 1 . . . , t.

Proof. Let yi := fi(b)− fi(x∗i).
We focus our attention on the indices T for now. We claim that having k = t maximizes the sum∑

i∈{s,s+1,...,k} yi (when k is allowed to be anything from s− 1 to t). This is because if k < t, then
it must be the case that

∑
i∈{k+1,...,t} yi < 0, and this violates the fact that the vector x∗ is assumed

to be not {b}-improvable.

Let λi := (b− x∗i)−1 for i ∈ T . This is an nondecreasing sequence on T , so by claim 4 of Lemma
A.1,

∑
i∈{s,s+1,...,k} λiyi is maximized again by setting k = t. Furthermore, since gLi are linear

underestimators, we must have

gLi ≥
fi(b)− fi(x∗i)

b− x∗i

13

which by claim 3 of Lemma A.1 means that again the sum
∑

i∈{s,s+1,...,k} g
L
i is maximized by

setting k = t.

We now consider the entire range [n]. By claim 2 of Lemma A.1, the index k that maximizes the sum∑
i∈{s,s+1,...,k} yi must satisfy k ≥ t. Using Proposition A.3, we know that Algorithm 8 will return

all indices s, s+ 1, . . . , t, . . . , k.

We note that the main subroutine for linear underestimators (Algorithm 4) is Algorithm 9 combined
with a variant of itself that works on the right. The variant now uses gRi terms, and performs Algorithm
8 on the sequence h1, h2, . . . , hn where hi = −gRn−i+1. This exploits the fact that if x1, . . . , xn is
nondecreasing, then so is −xn,−xn−1, . . . ,−x1. Hence, this implies Theorem 3.4.

B A Fast Heuristic Pruning Rule

Instead of using Algorithm 8 as a subroutine in Algorithm 9, we can instead use Algorithm 7. The
result is no longer guaranteed to be optimal, but we often recover a solution that is close or equal to
the true solution. In all our experiments, the total `1 difference is always less than 1. The amount of
difference is extremely dependent on the instance, and in the majority of instances at lower noise
levels there is no difference.

Figure 6: Summary of empirical results for the heuristic, averaged over 10 instances. The graphs compare the
number of points processed and running time against the other methods. Note that the amount of work needed
per point is less than the amount needed for our exact method.

14

	Introduction
	Dynamic Programming
	A Pruning Algorithm for Robust Isotonic Regression
	Pruning via lower/upper bounds
	Pruning via linear underestimators
	Computing Lower Bounds and Linear Underestimators for Quasiconvex Estimators
	Putting it all together

	Empirical Observations
	Conclusions and Future Work
	Proofs for the Linear Underestimator Pruning Rule
	Elementary facts on sequences on numbers
	Main proof

	A Fast Heuristic Pruning Rule

