
Appendix

Computing and learning gradients for the generative model parameters

The variational free energy for a hierarchical generative model over observations x with latent
variables z1 . . . zL can be written:

F(q, θ) = 〈log p(x|z1)〉q(z1) +

L−1∑
l=1

〈log p(zl|zl+1)〉q(zl,zl+1)
+ 〈log p(zL)〉q(zL) +H[q(z1 . . . zL)]

(1)
where the distributions q represent components of the approximate posterior and H[·] is the Shannon
entropy. We take each conditional distribution to have exponential family form. Thus (for example)

log p(zl|zl+1) = gl(zl+1, θl)
TSl(zl)− Φl(gl(zl+1, θl)) (2)

from which it follows that:

∇θl log p(zl|zl+1) = Sl(zl)
T∇θlgl(zl+1, θl)− Φ′l(gl(zl+1, θl))∇θlgl(zl+1, θl) (3)

= Sl(zl)
T∇θlgl(zl+1, θl)− µz1|zl+1

∇θlgl(zl+1, θl) (4)

where we have used the standard result that the derivative of the log normaliser of an exponential
family distribution with respect to the natural parameter is the mean parameter

µzl|zl+1
= 〈Sl(zl)〉pθl (zl|zl+1)

. (5)

Thus, it follows that:

∇θ0F = ∇θ0〈log p(x|z1)〉q(z1) = S0(x)T 〈∇g(z1, θ0)〉q(z1) − 〈µ
T
x|z1∇g(z1, θ0)〉q(z1) (6)

∇θlF = ∇θl〈log p(zl|zl+1)〉q = 〈Sl(zl)T∇g(zl+1, θl)〉q(zl,zl+1) − 〈µ
T
zl|zl+1

∇g(zl+1, θl)〉q(zl+1)

(7)

(for l = 1 . . . L− 1) and

∇θLF = ∇θL〈log p(zL)〉q = 〈SL(zL)〉 − ∇Φ(θL) (8)

These are the gradients that must be computed in the wake phase.

In order to compute these gradients from the DDC posterior representation we need to express the
functions of zl that appear in Eqs. 6–8 as linear combinations of the encoding functions T (zl). The
linear coefficients can be learnt using samples from the generative model produced during the sleep
phase. The example given in the main paper is the most straightforward. We wish to find

∇θ0g(z1, θ0) ≈
∑
i

α
(i)
0 T (i)(z1) (9)

in which the coefficients α0 can be obtained from samples by evaluating the gradient of g with respect
to θ0 at z(s)1 and minimising the squared error:

α0 ← argmin
∑
s

(
∇θg(z

(s)
1 , θ0)− α0 · T (z

(s)
1 )
)2
. (10)

Once these coefficients have been found in the sleep phase, the wake phase expectations are found
from the DDC recognition model very simply:

〈∇θ0g(z1, θ0)〉q(z1) ≈
∑
i

α
(i)
0 〈T (i)(z1)〉q(z1) (11)

=
∑
i

α
(i)
0 r

(i)
1 (x, φ1) (12)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Some of the gradients (see Eq.7) require taking expectations using the joint posterior distribution
q(zl, zl+1|x). However, the recognition network as we have described it in the main paper only
contains information about the marginal posteriors q(zl|x), q(zl+1|x). It turns out that it is neverthe-
less possible to estimate these expectations without imposing an assumption that the approximate
posterior factorises across the layers zl, zl+1.

We begin by noticing that due to the structure of the generative model the posterior distribution q
can be factorised into q(zl+1, zl|x) = p(zl+1|zl)q(zl|x) without any further assumptions (where
p(zl+1|zl)) is the conditional implied by the generative model. Thus, we can rewrite the term in
Equation 7 as:

〈Sl(zl)T 〈∇θlg(zl+1, θl)〉p(zl+1|zl)〉q(zl)
Now, we can replace the expectation 〈∇θlg(zl+1, θl)〉p(zl+1|zl) by an estimate using sleep samples,

i.e. for each pair of samples {z(s)l , z
(s)
l+1} from the prior, we have a single sample from the true

posterior distribution z(s)l+1 ∼ p(zl+1|zl = z
(s)
l ). Thus, we obtain coefficients αl during the sleep

phase so:

αl = argmin
∑
s

(
Sl(z

(s)
l )T∇θlg(z

(s)
l+1, θl)− αl · T (z

(s)
l )
)2

(13)

which will converge so that

αl · T (zl) ≈ Sl(zl)T 〈∇θlg(zl+1, θl)〉p(zl+1|zl) . (14)

Now, during the wake phase it follows that〈
Sl(zl)

T∇θlg(zl+1, θl)
〉
q(zl+1,zl)

= 〈Sl(zl)T 〈∇θlg(zl+1, θl)〉p(zl+1|zl)〉q(zl) (15)

≈

〈∑
i

α
(i)
l T (i)(zl)

〉
q(zl)

(16)

=
∑
i

α
(i)
l r

(i)
l (x, φl) (17)

Thus, all the function approximations needed to evaluate the gradients are carried out by using samples
from the generative model (sleep samples) as training data. The full set of necessary function approxi-
mations with (matrix) parameters describing the linear mappings denoted by {αl}l=0...L, {βl}l=1...L

is:

α0 : T (z
(s)
1 ) 7→ ∇θg(z

(s)
1 , θ0) (18)

βl : T (z
(s)
l ) 7→ µT

zl−1|z(s)l
∇θg(z

(s)
l , θl−1) (19)

αl : T (z
(s)
l ) 7→ Sl(z

(s)
l )∇θg(z

(s)
l+1, θl) (20)

αL : T (z
(s)
L ) 7→ SL(z

(s)
L ) (21)

where the expressions on the right hand side are easy to compute given the current parameters of
the generative model. Note that µ

zl−1|z(s)l
appearing in equation 19 are expectations that can be

evaluated analytically for tractable exponential family models, as a consequence of the conditionally
independent structure of the generative model. Alternatively, they can also be estimated using the
sleep samples, by training

βl : T (z
(s)
l ) 7→ Sl−1(z

(s)
l−1)

T
∇θg(z

(s)
l , θl−1) (22)

Finally, putting the sleep and the wake phase together, the updates for the generative parameters
during the wake phase are:

∆θ0 ∝ S0(x)Tα0r1(x, φ1)− β1r1(x, φ1)

∆θl ∝ αlrl(x, φl)− βl+1rl+1(x, φl+1)

∆θL ∝ αLrL(x, φL)−∇θLΦ(θL)

(23)
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