A Discussions on Tuning

In this section, we discuss the challenges in tuning 3 via other approaches. Recall that by

the calculation shown after Theorem 1, a 3 such that Jar(u*) < 8 < ar(u*) where u* £

argmin, e a Zthl f:(u) ensures a regret bound of O(N?(InT)?3). We first show the existence of
such 8 when the environment is oblivious, that is, r1, . . ., r are all fixed ahead of time. (However,
we emphasize that our adaptive tuning method introduced in Section 3 does not rely on the existence
of such [ at all and works even against non-oblivious environments.)

When 71,79, ...,rr are fixed and thus u* is also fixed, one can view ar(u*) as a (complicated)
function of 5. It is not hard to see that this function is continuous: note that x;, 1 is a continuous
function with respect to 3, A¢, n:, T+, V¢ because x4 is the minimizer of a strongly convex function

parameterized by these quantities. Also, A, n;, V¢ are continuous functions of {x, ... 7xt}.4 So
overall, x;1 is a continuous function of {8, z1,...,z:}. By induction, we know that x; is a
continuous function of S for all ¢. Finally, since ar(u*) continuously depends on {z1,...,zr},itis

also a continuous function of 3.

Next note that the range of o (u*) is [ 155, 3] because 8|V (u* —xt)\ <8 Vel Nlur — 2|, <
L6NT'. Thus by intermediate value theorem, if we vary 3 from =5 NT to 2, there must exist a 3 such

that 2ar(u*) < B < ar(u*), which completes our argument. In fact, by cvp(u*)’s continuity, the
set of 3’s satisfying the inequality will form an interval or a union of intervals.

Given that such 8 does exist but is unknown a natural idea is to instantiate M copies of BARRONS’s
with different 5’s forming a grid on [+ 2 NT, 2] then use Hedge to learn over these copies, which only
introduces an additional In M regret since the loss is exp-concave. If any of these 3’s happens to fall
into one of the intervals described above, then the algorithm has overall regret O(N?(InT)3 + In M).

However, the challenge is to figure out how dense the grid has to be, which depends on the slope (i.e.
Lipschitzness) of az(u*) with respect to 5. The larger the slope, the denser the grid needs to be.
Trivial analysis only shows that the Lipschitzness is exponential in 7', which is far from satisfactory.
Also note that the running time per round of this algorithm is (M N3-®). Therefore even if M is
polynomial in 7" which is good for the regret, it still defeats our purpose of deriving more efficient
algorithms.

B Omitted Proofs

We first show that competing with smooth CRP from A y is enough.
Lemma 10. For any v’ € Ay, withu = (1 — %) u 4 ﬁ € A we have
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Next we provide the omitted proofs for several lemmas.
*The fact that 7, is continuous with respect to {z1, ...,z } depends on our new increasing learning rate

scheme and is not true for the scheme used in previous works [2, 21] based on doubling trick.

12



Proof of Lemma 5. Note that the function hy(z) = e 28/ = (z,r,)?" is concave since
0 < 28 < 1. Therefore we have hy(u) < hi(xt) + (Vhe(zt),u — x¢) . Plugging in Vhy(z) =
—2Be~ 281 (@) f,(x) gives

e~ 2Bt (u) < e~ 2B e (xt) (1 - 25 <Vt’u _ mt)) ,

or equivalently
folw) > filwn) - % In (1 - 28 (Vi,u— 1))

By the condition on 3 we also have |23 (V;,u — a;)| < 1. Using the fact —In(1 — z) > z + 122
for |z <  gives:

o) = 1) < (T =) =2 ()
= <Vt,.13t — th+1> + <vt,$t+1 — U> — g (Vt, Tt — U>2
< (Ve = 2012) + Doy t,20) = Doy, 2042) = 5 (T =),

where the last step follows standard OMD analysis. More specifically, since ;41 is the minimizer
of the function Fy(z) £ (Vy,z) + Dy, (v, ), by the first-order optimality condition, we have
(u— @441, VF(2r41)) > 0forall u € Ay. Note VFy(2¢11) = Vi + Vb (zr41) — Vibe(xe).
Rearranging the condition gives (V;, ;11 —u) < (V(xi41) — Vbi(2t),u — x41). Directly
using the definition of Bregman divergence, one can verify (Vi (z41) — Vb (), 4 — Tpy1) =
Dy, (u, x) — Dy, (6, £441) — Dy, (2141, 24 ), which is further bounded by Dy, (u, x¢) — Dy, (4, 441)
by the nonnegativity of Bregman divergence. This concludes the proof. O

Proof of Lemma 8. Define W;(u) = ZZ=1 fs(u) + %Zf\;l In % We first show that if
lue — werillvew,, () < 1 holds, then the conclusion follows.

.
Indeed, note that V2W, (u) = SO0H0 Tefe 4 l{ L } - l{ L } , where [ L ]
v diag v diag “ diag

s=1 (ug,rg)? uf21 i i

a;
represents the NV dimensional diagonal matrix whose ¢-th diagonal element is u% . We thus have
t

llue — UtHH%u/ugyi]diag < fue = ut+1||V2\Pt+1(ut) <1/2,

which implies (u‘ﬂy_siz‘“‘)? <lor1-¥I< T <1 YT forall i € [N].

t,i

1
5.
If we can prove Wy (u) > Wy (ue) for any v’ that satisfies [|[u' — wi|gog, | (0, = 1, then we

Next, we prove the inequality [|uy — uet1llgay,,, (4) < 3- Note w1 = argmingca, Vip1(2).

obtain the desired inequality [|u¢ — uet1llg2g,,, (u) < 1 by the convexity of ¥y 1.
By Taylor’s expansion, we know there exists some ¢ in the line segment joining u’ and u;, such that
1
Ui () = Wopa (ue) + Vi (ug) T (0 — ) + §(u/ —ug) "V (€) (0 — )
1 2
= \Ilt+1(ut) + Vft+1(ut)T(u/ — ut) + V\I/t(ut)—r(u/ _ Ut) + 5 ||u' _ ut||v2‘1’t,+1(£)
T, 1 / 2
> Wi (u) + Vifipr(ue) (v —ug) + 5 v — UtHv%ptH(g)

1 2
> Wy (ug) — ||Vft+1(ut)||vf2\1;,,+1(ut) ||“I - Ut”v?xytﬂ(ut) + ) HU/ - Ut”vhpt“(g)

1 1 2
= \I/t+1(ut) - 5 ||Vft+1(ut)||v—2\pt+l(ut) + 5 ||u/ _ ut||v2q;t+l(§) (9)
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where the first inequality is by the optimality of u;. As VW1 (u;)

1 {ug ] implies
v il diag

V72U, (ug) <y [th,i]diag’ we continue with

T 2
Y41 [ut,i]diag T4l ’YZ =1 utz t+1 i<

|\Vft+1(ut)||2v—2\pt+1(ut) < ||vft“(ut)”3[u?,i]d.w =

<Ut,7"t+1>2 <Ut,7"t+1>2 B
(10)
Note £ is between u; and ', 50 [|€ — will g2y, , | () < 1 and thus uf - <1+ L < 15 according to
previous discussions. Therefore, we have
t+1 T t+1 T
TsT 111 100 rsT 111 100
V32U = SRR - — s — | = = VU .
w@=3 o gl | S [u ] e
s=1 " ¢ v - diag s=1 " ¢ * 1 diag
(11)
Now combining inequalities (9), (10) and (11), we arrive at
Y 2
Uypq(u') > Uy (ug) — % + ﬁ [’ ut||v2\1,t+1(ut)
VY25
=0 NV 2e
t+1(ut) 5 + 212
> Wy (uy),
which finishes the proof. O

Proof of Lemma 9. The proof is similar to the proof of Lemma 8. Denote Fy(z) = (x,Vy) +

Dy, (z,2,). We again first prove thatif [|z; — z¢41[lg2p, (4, < 1, then the conclusion follows.

Note V2F,(x;

:A+[1} >[1} >[#} because 7:; <
BA N7, diag Ne,it7 diag 3nag diag’ i =

)
nexp (logy(5F)) < 3n. Thus we have
|z — $t+1\\3¢n[1/x§11]dmg <z — zeillvepy @) < 1/25

(:rt,rmt2+1,i)2 <

which implies a2

- iandthusl—@§%§1+@foralli€[N].

It remains to prove the inequality ||z, — Zi41llg2p, () < 1. Since 441 = argminge 5, Fy(z), if
we can prove Fy(z') > Fi(xz) for all 2’ that satisfies [|2" — z¢|[gep, 4,y = 1, then we obtain the
desired inequality ||z; — 2441 g2 Fo(z) < 2 by the convexity of F;. By Taylor s expansion, there

exists some ¢ on the line segment joining z’ and ¢, such that

Fi(a) = Fu(wr) + VE (20) (2 — 1) + = (2’ — 20) V2 F(C)(2/ — )

5
1
= Fi(ae) + V[ (@' —20) + 5 1o’ = w1l|3a

1
> Fi(z1) = [Villg-2r, 20 [|=" — Tl 2 + 5 ||$ - xt”V?Ft ©)

1 1
= Fy(2¢) — 2 |Vellg-2p,ap) + 5 12" — xtuém - (12)
2 () T 9 ©

As VQFt(xt) P+ {nt iy, jdiag = % { %

— } , we have V72F,(z;) < 3 [x7,] . . Therefore
t,i 1 diag !

diag

3/ [tz]dla Tt 37]2{1%21‘7}21
IVelearion S Vel o, = Gt = ont = 0
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Since ¢ is between z; and z’, we have ||( — #¢[|g2p,(,,) < 3 and thus <1+ Vi < 21

L
300"

t T t T
9 _ Tl 1 400 Tl 1 _ 400 _o
\Y% Ft(() = Z (’I“TC)Q + |: :| . = m Z (’I“TI‘t)Q + D) = EV Ft(l't).
diag s=1 %% diag

according to previous discussions and the fact n < Therefore, we have

= (rg Ne,iC? — My
(14)
Now combining inequalities (12), (13) and (14), we get
V3n 200 2
Fi(z') > Fy(zy) — N + VRl =" — xtHVQFt(It)
V3n 50
- F _ v, oY
s v
> Fy(ug),
which finishes the proof. O
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