
A Proofs

A.1 Proof of Theorem 1

Theorem 1. Let Q∗ be the fixed-point of the optimal Bellman operator T . Define the action-gap
function g(s) as the difference between the value of the best action and the second best action at each
state s. Let Q̃ be the fixed-point of the mellow Bellman operator T̃ with parameter κ > 0 and denote
by βκ > 0 the inverse temperature of the induced Boltzmann distribution (as in [3]). Then:∥∥∥Q∗ − Q̃∥∥∥

∞
≤ 2γRmax

(1− γ)2

∥∥∥∥∥ 1

1 + 1
|A|e

βκg

∥∥∥∥∥
∞

. (4)

Proof. We begin by noticing that:∥∥∥Q∗ − Q̃∥∥∥
∞

=
∥∥∥TQ∗ − T̃ Q̃∥∥∥

∞

=
∥∥∥TQ∗ − T̃Q∗ + T̃Q∗ − T̃ Q̃

∥∥∥
∞

≤
∥∥∥TQ∗ − T̃Q∗∥∥∥

∞
+
∥∥∥T̃Q∗ − T̃ Q̃∥∥∥

∞

≤
∥∥∥TQ∗ − T̃Q∗∥∥∥

∞
+ γ

∥∥∥Q∗ − Q̃∥∥∥
∞
,

where the first inequality follows from Minkowsky’s inequality and the second one from the contrac-
tion property of the mellow Bellman operator. This implies that:∥∥∥Q∗ − Q̃∥∥∥

∞
≤ 1

1− γ
∥∥∥TQ∗ − T̃Q∗∥∥∥

∞
. (6)

Let us bound the norm on the right-hand side separately. In order to do that, we will bound the
function

∣∣∣TQ∗(s, a)− T̃Q∗(s, a)
∣∣∣ point-wisely for any pair 〈s, a〉. By applying the definition of the

optimal and mellow Bellman operators, we obtain:∣∣∣TQ∗(s, a)− T̃Q∗(s, a)
∣∣∣ =

∣∣∣R(s, a) + γE
[
max
a′

Q∗(s′, a′)
]
−R(s, a)− γE

[
mm
a′

Q∗(s′, a′)
]∣∣∣

= γ
∣∣∣E [max

a′
Q∗(s′, a′)

]
− E

[
mm
a′

Q∗(s′, a′)
]∣∣∣

≤ γE
[∣∣∣max

a′
Q∗(s′, a′)−mm

a′
Q∗(s′, a′)

∣∣∣] . (7)

Thus, bounding this quantity reduces to bounding |maxaQ
∗(s, a)−mmaQ

∗(s, a)| point-wisely for
any s. Recall that applying the mellow Bellman operator is equivalent to computing an expectation
under a Boltzmann distribution with inverse temperature βκ induced by κ [3]. Thus, we can write:∣∣∣max

a
Q∗(s, a)−mm

a
Q∗(s, a)

∣∣∣ =

∣∣∣∣∣∑
a

π∗(a|s)Q∗(s, a)−
∑
a

πβκ(a|s)Q∗(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∑
a

Q∗(s, a) (π∗(a|s)− πβκ(a|s))
∣∣∣∣∣

≤
∑
a

|Q∗(s, a)| |π∗(a|s)− πβκ(a|s)|

≤ Rmax
1− γ

∑
a

|π∗(a|s)− πβκ(a|s)| , (8)

where π∗ is the optimal (deterministic) policy w.r.t. Q∗ and πβκ is the Boltzmann distribution induced
by Q∗ with inverse temperature βκ:

πβκ(a|s) =
eβκQ

∗(s,a)∑
a′ e

βκQ∗(s,a′)
.
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Denote by a1(s) the optimal action for state s under Q∗. We can then write:∑
a

|π∗(a|s)− πβκ(a|s)| = |π∗(a1(s)|s)− πβκ(a1(s)|s)|+
∑

a6=a1(s)

|π∗(a|s)− πβκ(a|s)|

= |1− πβκ(a1(s)|s)|+
∑

a 6=a1(s)

|πβκ(a|s)|

= 2 |1− πβκ(a1(s)|s)| . (9)
Finally, denoting with a2(s) the second-best action in state s, let us bound this last term:

|1− πβκ(a1(s)|s)| =
∣∣∣∣1− eβκQ

∗(s,a1(s))∑
a′ e

βκQ∗(s,a′)

∣∣∣∣
=

∣∣∣∣1− eβκ(Q∗(s,a1(s))−Q∗(s,a2(s)))∑
a′ e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣
=

∣∣∣∣1− eβκg(s)∑
a′ e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣
=

∣∣∣∣∣1− eβκg(s)

eβκg(s) +
∑
a′ 6=a1(s) e

βκ(Q∗(s,a′)−Q∗(s,a2(s)))

∣∣∣∣∣
≤
∣∣∣∣1− eβκg(s)

eβκg(s) + |A|

∣∣∣∣
=

∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s)

∣∣∣∣∣ . (10)

Combining Eq. (8), (9), and (10), we obtain:∣∣∣max
a

Q∗(s, a)−mm
a
Q∗(s, a)

∣∣∣ ≤ 2Rmax
1− γ

∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s)

∣∣∣∣∣ .
Finally, using Eq. (7) we get:∣∣∣TQ∗(s, a)− T̃Q∗(s, a)

∣∣∣ ≤ 2γRmax
1− γ E

[∣∣∣∣∣ 1

1 + 1
|A|e

βκg(s′)

∣∣∣∣∣
]
.

Taking the norm and plugging this into Eq. (6) concludes the proof.

A.2 Proof of Theorem 2

We begin by proving some important lemmas. Then, we use them to derive a finite-sample analysis
of Algorithm 1 with linearly parameterized value functions for both Gaussian distributions (Theorem
3) and Gaussian mixture models (Theorem 4). Theorem 2 follows by combining these two results.

Finite-sample Analysis of the Variational Transfer Algorithm We start by proving some impor-
tant properties of the variational approximation introduced in Section 3.1. Our results generalize
those of existing works that consider variational approximations of intractable Gibbs posteriors [1].
From now on, we consider only Q-functions parameterized by weights w and assume them to be
uniformly bounded by Rmax

1−γ .

Lemma 1. Let p and q be arbitrary distributions over weights w, and ν be a probability measure
over S × A. Consider a dataset D of N i.i.d. samples where state-action couples are distributed
according to ν and define v(w) , Eν

[
V arP

[
b̃(w)

]]
. Then, for any λ > 0 and δ > 0, with

probability at least 1− δ, the following two inequalities hold simultaneously:

Eq
[∥∥∥B̃w∥∥∥2

ν

]
≤ Eq

[∥∥∥B̃w∥∥∥2

D

]
− Eq [v(w)] +

λ

N
KL(q||p) + 4

R2
max

(1− γ)2

√
log 2

δ

2N
(11)

Eq
[∥∥∥B̃w∥∥∥2

D

]
≤ Eq

[∥∥∥B̃w∥∥∥2

ν

]
+ Eq [v(w)] +

λ

N
KL(q||p) + 4

R2
max

(1− γ)2

√
log 2

δ

2N
. (12)
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Proof. From Hoeffding’s inequality we have:

P

(∣∣∣∣Eν,P [∥∥∥B̃w∥∥∥2

D

]
−
∥∥∥B̃w∥∥∥2

D

∣∣∣∣ > ε

)
≤ 2 exp

− 2Nε2(
2Rmax1−γ

)4


which implies that, for any δ > 0, with probability at least 1− δ:∣∣∣∣Eν,P [∥∥∥B̃w∥∥∥2

D

]
−
∥∥∥B̃w∥∥∥2

D

∣∣∣∣ ≤ 4
R2
max

(1− γ)2

√
log 2

δ

2N
.

Under independence assumptions, the expected TD error can be re-written as:

Eν,P
[∥∥∥B̃w∥∥∥2

D

]
= Eν,P

[
1

N

N∑
i=1

(ri + γmm
a′

Qw(s′i, a
′)−Qw(si, ai))

2

]
= Eν,P

[
(R(s, a) + γmm

a′
Qw(s′, a′)−Qw(s, a))2

]
= Eν

[
EP
[
b̃(w)2

]]
= Eν

[
V arP

[
b̃(w)

]
+ EP

[
b̃(w)

]2]
= v(w) +

∥∥∥B̃w∥∥∥2

ν
,

where v(w) , Eν
[
V arP

[
b̃(w)

]]
. Thus:

∣∣∣∣∥∥∥B̃w∥∥∥2

ν
+ v(w)−

∥∥∥B̃w∥∥∥2

D

∣∣∣∣ ≤ 4
R2
max

(1− γ)2

√
log 2

δ

2N
. (13)

From the change of measure inequality [32], we have that, for any measurable function f(w) and
any two probability measures p and q:

logEp
[
ef(w)

]
≥ Eq [f(w)]−KL(q||p).

Thus, multiplying both sides of (13) by λ−1N and applying the change of measure inequality with

f(w) = λ−1N

∣∣∣∣∥∥∥B̃w∥∥∥2

ν
+ v(w)−

∥∥∥B̃w∥∥∥2

D

∣∣∣∣, we obtain:

Eq [f(w)]−KL(q||p) ≤ logEp
[
ef(w)

]
≤ 4

R2
maxλ

−1N

(1− γ)2

√
log 2

δ

2N
,

where the second inequality holds since the right-hand side of (13) does not depend on w. Finally,
we can explicitly write:

Eq
[∣∣∣∣∥∥∥B̃w∥∥∥2

ν
+ v(w)−

∥∥∥B̃w∥∥∥2

D

∣∣∣∣] ≤ λ

N
KL(q||p) + 4

R2
max

(1− γ)2

√
log 2

δ

2N

from which the lemma follows straightforwardly.

From Lemma 1 we can straightforwardly prove the following result which will be of fundamental
importance in the remaining.
Lemma 2. Fix a taskMτ . Let p be a prior distribution over weights w, and ν be a probability
measure over S × A. Assume ξ̂ is the minimizer of (2) for a dataset D of N i.i.d. samples where
state-action couples are distributed according to ν. Define v(w) , Eν

[
V arPτ

[
b̃(w)

]]
. Then, for

any δ > 0, with probability at least 1− δ:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃w∥∥∥2

ν

]
+ Eqξ [v(w)] + 2

λ

N
KL(qξ||p)

}
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N
.
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Proof. Let us use Lemma 1 for the specific choice q = qξ̂. From Eq. (11), we have:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ Eq

ξ̂

[∥∥∥B̃w∥∥∥2

D

]
− Eq

ξ̂
[v(w)] +

λ

N
KL(qξ̂||p) + 4

R2
max

(1− γ)2

√
log 2

δ

2N

≤ Eq
ξ̂

[∥∥∥B̃w∥∥∥2

D

]
+
λ

N
KL(qξ̂||p) + 4

R2
max

(1− γ)2

√
log 2

δ

2N

= inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃w∥∥∥2

D

]
+
λ

N
KL(qξ||p)

}
+ 4

R2
max

(1− γ)2

√
log 2

δ

2N
,

where the second inequality holds since v(w) > 0, while the equality holds from the definition of ξ̂.

We can now use Eq. (12) to bound Eqξ
[∥∥∥B̃w∥∥∥2

D

]
, thus obtaining:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃w∥∥∥2

ν

]
+ Eqξ [v(w)] + 2

λ

N
KL(qξ||p)

}
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N
.

This concludes the proof.

It is worth noting the generality of Lemma 2: in bounding the expected Bellman error we do not need
to assume any particular distribution, nor we have to assume any particular function approximator.

Finite-sample Analysis of GVT and MGVT We are now ready to state our main results. We start
from the Gaussian case and then straightforwardly extend the proof to the mixture one.

Theorem 3. Fix a target task Mτ . Assume linearly parameterized value functions Qw(s, a) =
wTφ(s, a) with bounded weights ‖w‖2 ≤ wmax and uniformly bounded features ‖φ(s, a)‖2 ≤
φmax. Consider the Gaussian version of Algorithm 1 with prior p(w) = N (µp,Σp) and denote by
(µ̂, Σ̂) the variational parameter minimizing the objective of Eq. (2) on a datasetD ofN i.i.d. samples

distributed according to τ and ν. Letw∗ = arginfw

∥∥∥B̃w∥∥∥2

ν
and define υ(w∗) , EN (w∗, 1

N I) [v(w)],

with v(w) , Eν
[
V arP

[
b̃(w)

]]
. Then, there exist constants c1, c2, c3 such that, with probability at

least 1− δ over the choice of the dataset D:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + λ ‖w∗ − µp‖Σ−1

p

N
+

c3
N2

.

(14)

Proof. Using Lemma 2 with variational parameters ξ̂ = (µ̂, Σ̂), we have:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃w∥∥∥2

ν

]
+ Eqξ [v(w)] + 2

λ

N
KL(qξ||p)

}
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N

≤ EN (w∗,cI)

[∥∥∥B̃w∥∥∥2

ν

]
+ EN (w∗,cI) [v(w)] + 2

λ

N
KL (N (w∗, cI) || p)

+ 8
R2
max

(1− γ)2

√
log 2

δ

2N
, (15)

where the second inequality is due to the fact that, since Lemma 2 contains an infimum over the
variational parameters, we can upper bound its right-hand side by choosing any specific ξ from Ξ.
Here, we choose µ = w∗ and Σ = cI , for some positive constant c > 0. Let us now bound these
terms separately.
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Bounding the expected Bellman error We have:

EN (w∗,cI)

[∥∥∥B̃w∥∥∥2

ν

]
= EN (w∗,cI)

[
Eν
[
(T̃Qw −Qw)2

]]
= Eν

[
EN (w∗,cI)

[
(T̃Qw −Qw)2

]]
= Eν

[
E2
N (w∗,cI)

[
T̃Qw −Qw

]]
+ Eν

[
V arN (w∗,cI)

[
T̃Qw −Qw

]]
.

(16)

Let us bound these two terms point-wisely for each pair 〈s, a〉. For the first expectation, we have:

EN (w∗,cI)

[
T̃Qw −Qw

]
= EN (w∗,cI)

[
R(s, a) + γEs′

[
mm
a′
wTφ(s′, a′)

]
−wTφ(s, a)

]
= R(s, a) + γEN (w∗,cI)

[
Es′
[
mm
a′
wTφ(s′, a′)

]]
−w∗Tφ(s, a).

(17)

To bound the second term, we adopt Jensen’s inequality:

EN (w∗,cI)

[
Es′
[
mm
a′
wTφ(s′, a′)

]]
= EN (w∗,cI)

[
Es′
[

1

κ
log

1

|A|
∑
a′

eκw
Tφ(s′,a′)

]]

≤ Es′
[

1

κ
log

1

|A|
∑
a′

EN (w∗,cI)

[
eκw

Tφ(s′,a′)
]]
. (18)

Now, since we know that wTφ(s′, a′) ∼ N (w∗Tφ(s′, a′), c φ(s′, a′)Tφ(s′, a′)), eκw
Tφ(s′,a′) fol-

lows a log-normal distribution with mean eκw
∗Tφ(s′,a′)+ 1

2κ
2cφ(s′,a′)Tφ(s′,a′). Thus:

Es′
[
1

κ
log

1

|A|
∑
a′

EN (w∗,cI)

[
eκw

Tφ(s′,a′)
]]

= Es′
[
1

κ
log

1

|A|
∑
a′

eκw
∗Tφ(s′,a′)+ 1

2
κ2cφ(s′,a′)Tφ(s′,a′)

]

≤ Es′
[
1

κ
log

1

|A|
∑
a′

eκw
∗Tφ(s′,a′)e

1
2
κ2cφ2

max

]

= Es′
[
1

κ
log

1

|A|
∑
a′

eκw
∗Tφ(s′,a′)

]
+

1

2
κcφ2

max

= Es′
[
mm
a′
w∗Tφ(s′, a′)

]
+

1

2
κcφ2

max.

Plugging this into (18) and then into (17), we obtain:

EN (w∗,cI)

[
T̃Qw −Qw

]
≤ R(s, a) + γEs′

[
mm
a′
w∗Tφ(s′, a′)

]
+

1

2
γκcφ2

max −w∗Tφ(s, a)

= B̃w∗ +
1

2
γκcφ2

max.

This implies:

E2
N (w∗,cI)

[
T̃Qw −Qw

]
≤
(
B̃w∗ +

1

2
γκcφ2

max

)2

≤ 2B̃2
w∗ +

1

2
γ2κ2c2φ4

max,

where the second inequality follows from Cauchy-Schwarz inequality. Going back to (16), the first
term can now be upper bounded by:

Eν
[
E2
N (w∗,cI)

[
T̃Qw −Qw

]]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+

1

2
γ2κ2c2φ4

max.
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Let us now consider the variance term of (16) and derive a bound that holds point-wisely for any s, a.
We have:

V arN (w∗,cI)

[
T̃Qw −Qw

]
= V arN (w∗,cI)

[
R(s, a) + γEs′

[
mm
a′
wTφ(s′, a′)

]
−wTφ(s, a)

]
= V arN (w∗,cI)

[
γEs′

[
mm
a′
wTφ(s′, a′)− 1

γ
wTφ(s, a)

]]
= V arN (w∗,cI)

[
γEs′

[
mm
a′
wT

(
φ(s′, a′)− 1

γ
φ(s, a)

)]]
= γ2V arN (w∗,I)

[
Es′
[
mm
a′

√
cwT

(
φ(s′, a′)− 1

γ
φ(s, a)

)]]
.

From Cauchy-Schwarz inequality:
√
c

∣∣∣∣wT

(
φ(s′, a′)− 1

γ
φ(s, a)

)∣∣∣∣ ≤ √c ‖w‖∥∥∥∥φ(s′, a′)− 1

γ
φ(s, a)

∥∥∥∥
≤ √cwmaxφmax

1 + γ

γ
.

Then, the random variable over which the variance is computed is limited in
[−√cwmaxφmax 1+γ

γ ,
√
cwmaxφmax

1+γ
γ ] and the variance can be straightforwardly bounded using

Popoviciu’s inequality:

V arN (w∗,cI)

[
T̃Qw −Qw

]
≤ γ2 1

4

(
2
√
cwmaxφmax

1 + γ

γ

)2

= c (wmaxφmax(1 + γ))
2
.

We can finally plug everything into (16), thus obtaining:

EN (w∗,cI)

[∥∥∥B̃w∗∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+

1

2
γ2κ2c2φ4

max + c (wmaxφmax(1 + γ))
2
.

Bounding the KL divergence We have:
KL (N (w∗, cI) || p) = KL (N (w∗, cI) || N (µp,Σp))

=
1

2

(
log
|Σp|
cd

+ cTr
(
Σ−1
p

)
+ ‖w∗ − µp‖Σ−1

p
− d
)

≤ 1

2
d log

σmax
c

+
1

2
d

c

σmin
+

1

2
‖w∗ − µp‖Σ−1

p
.

Now, putting all together into (15):

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+

1

2
γ2κ2c2φ4

max + c (wmaxφmax(1 + γ))
2

+ EN (w∗,cI) [v(w)]

+
λ

N
d log

σmax
c

+
λ

N
d

c

σmin
+
λ

N
‖w∗ − µp‖Σ−1

p
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N
.

Since the bound holds for any c > 0, we can set it to 1/N , thus obtaining:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) +

1

N2

(
1

2
γ2κ2φ4

max +
λd

σmin

)
+

1

N

(
w2
maxφ

2
max(1 + γ)2 + λd(log σmax + logN) + λ ‖w∗ − µp‖Σ−1

p

)
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N

Finally, defining the constants c1 =
8R2

max√
2(1−γ)2

, c2 = w2
maxφ

2
max(1 + γ)2 + λd log σmax, and

c3 = 1
2γ

2κ2φ4
max + λd

σmin
, we obtain:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + λ ‖w∗ − µp‖Σ−1

p

N
+

c3
N2

.
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Theorem 4. Fix a target task Mτ . Assume linearly parameterized value functions Qw(s, a) =
wTφ(s, a) with bounded weights ‖w‖2 ≤ wmax and uniformly bounded features ‖φ(s, a)‖2 ≤
φmax. Consider the mixture version of Algorithm 1 using C components, source task weights
Ws, and bandwidth σ2

p for the prior. Denote by ξ̂ = (µ̂1, . . . , µ̂C , Σ̂1, . . . , Σ̂C) the variational
parameters minimizing the objective of Eq. (2) on a dataset D of N i.i.d. samples distributed
according to τ and ν. Let w∗ = arginfw ||B̃w||2ν and define υ(w∗) , EN (w∗, 1

N I) [v(w)], with

v(w) , Eν
[
V arPτ

[
b̃(w)

]]
. Then, there exist constants c1, c2, c3 such that, with probability at

least 1− δ over the choice of the dataset D:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + 2λϕ (∆)

N
+

c3
N2

,

where ∆ is the vector of distances to the source tasks’ weights, ∆j = 1
2σ2
p
‖w∗ −wj‖, and, for a

vector x = (x1, . . . , xd), ϕ (x) ,
∑
i

e−xi∑
j e
−xj xi is the softmin function.

Proof. Similarly to the previous proof, we can apply Lemma 2 with variational parameters ξ̂ =

(µ̂1, . . . , µ̂C , Σ̂1, . . . , Σ̂C), while choosing the same specific parameters for the right-hand side:
µi = w∗ and Σi = cI for all i = 1, . . . , C. Then, we obtain:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ inf
ξ∈Ξ

{
Eqξ

[∥∥∥B̃w∥∥∥2

ν

]
+ Eqξ [v(w)] + 2

λ

N
KL(qξ||p)

}
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N

≤ EN (w∗,cI)

[∥∥∥B̃w∥∥∥2

ν

]
+ EN (w∗,cI) [v(w)] + 2

λ

N
KL (N (w∗, cI) || p)

+ 8
R2
max

(1− γ)2

√
log 2

δ

2N
. (19)

The only difference w.r.t. Eq. (15) of Theorem 3 is the KL divergence term, which now contains a
mixture distribution. From Theorem 5 we have:

KL(N (w∗, cI) || p) ≤ KL(χ(2)||χ(1)) +
∑
j

χ
(2)
j KL(N (w∗, cI) || N (wj , σ

2
pI)), (20)

where the vectors χ(1) and χ(2) are the ones defined in Theorem 5. Notice that, since we reduced the
posterior to one component, we can get rid of the index i. Using the definitions of these two vectors
from Section 8 of [14], we have:

χ
(1)
j =

1

|Ws|
∀j = 1, . . . , |Ws|

χ
(2)
j =

e−KL(N (w∗,cI) || N (wj ,σ
2
pI))∑

j′ e
−KL(N (w∗,cI) || N (wj′ ,σ

2
pI))
∀j = 1, . . . , |Ws| . (21)

Since the KL divergence is:

KL(N (w∗, cI) || N (wj , σ
2
pI)) =

1

2

(
d log

σ2
p

c
+ d

c

σ2
p

+
1

σ2
p

‖w∗ −wj‖ − d
)
,

Eq. (21) can be rewritten as:

χ
(2)
j =

e
− 1

2σ2p
‖w∗−wj‖

∑
j′ e
− 1

2σ2p
‖w∗−wj′‖ ∀j = 1, . . . , |Ws| .
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Let us bound the two terms of (20) separately. For the first one, we have:

KL(χ(2)||χ(1)) =
∑
j

χ
(2)
j log

χ
(2)
j

χ
(1)
j

=
∑
j

χ
(2)
j logχ

(2)
j −

∑
j

χ
(2)
j log

1

|Ws|
≤ log |Ws| ,

where the inequality holds since the first term is negative. For the second term of (20):∑
j

χ
(2)
j KL(N (w∗, cI) || N (wj , σ

2
pI)) =

1

2

∑
j

χ
(2)
j

(
d log

σ2
p

c
+ d

c

σ2
p

+
1

σ2
p

‖w∗ −wj‖ − d
)

≤ 1

2
d log

σ2
p

c
+

1

2
d
c

σ2
p

+
∑
j

χ
(2)
j

1

2σ2
p

‖w∗ −wj‖

=
1

2
d log

σ2
p

c
+

1

2
d
c

σ2
p

+ ϕ (∆) .

where we defined the vector ∆ whose components are ∆j = 1
2σ2
p
‖w∗ −wj‖. Putting the two terms

together:

KL(N (w∗, cI) || p) ≤ log |Ws|+
1

2
d log

σ2
p

c
+

1

2
d
c

σ2
p

+ ϕ (∆) .

Notice that, from now on, one can simply apply the proof of Theorem 3 with σmax = σmin = σ2
p

and 1
2 ‖w∗ − µp‖Σ−1

p
replaced by ϕ (∆). Thus, by redefining the three constants to c1 =

8R2
max√

2(1−γ)2
,

c2 = w2
maxφ

2
max(1 + γ)2 + λd log σ2

p + 2λ log |Ws|, and c3 = 1
2γ

2κ2φ4
max + λd

σ2
p

, we can write
that, with probability at least 1− δ:

Eq
ξ̂

[∥∥∥B̃w∥∥∥2

ν

]
≤ 2

∥∥∥B̃w∗∥∥∥2

ν
+ υ(w∗) + c1

√
log 2

δ

N
+
c2 + λd logN + 2λϕ (∆)

N
+

c3
N2

.

Proof of Theorem 2. The theorem follows straightforwardly by combining Theorem 3 and Theorem
4.

B Additional Details on the Algorithms

B.1 Gaussian Variational Transfer

Under Gaussian distributions, all quantities of interest for using Algorithm 1 can be computed
very easily. The KL divergence between the prior and approximate posterior can be computed in
closed-form as:

KL (qξ(w) || p(w)) =
1

2

(
log
|Σp|
|Σ| + Tr

(
Σ−1
p Σ

)
+ (µ− µp)TΣ−1

p (µ− µp)− d
)
, (22)

for ξ = (µ,L) and Σ = LLT . Its gradients with respect to the variational parameters are:

∇µKL (qξ(w) || p(w)) = Σ−1
p (µ− µp) (23)

∇LKL (qξ(w) || p(w)) = Σ−1
p L− (L−1)T (24)

Finally, the gradients w.r.t. the expected likelihood term of the variational objective (2) can be
computed using the reparameterization trick (e.g., [15, 29]):

∇µEw∼N (µ,LLT )

[
||Bw||2D

]
= Ev∼N (0,I)

[
∇w||Bw||2D

]
for w = Lv + µ (25)

∇LEw∼N (µ,LLT )

[
||Bw||2D

]
= Ev∼N (0,I)

[
∇w||Bw||2D · vT

]
for w = Lv + µ (26)
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B.2 Mixture of Gaussian Variational Transfer

As mentioned in the main paper, for the mixture version of Algorithm 1 we rely on the upper bound
on the KL divergence between two mixture of Gaussians presented in [14]. We report it here for the
sake of completeness.

Theorem 5 ([14]). Let p =
∑
i c

(p)
i f

(p)
i and q =

∑
j c

(q)
j f

(q)
j be two mixture of Gaussian distri-

butions, where f (p)
i = N (µ

(p)
i ,Σ

(p)
i ) denotes the i-th component of p, c(p)i denotes its weight, and

similarly for q. Introduce two vectors χ(1) and χ(2) such that c(p)i =
∑
j χ

(2)
j,i and c(q)j =

∑
i χ

(1)
i,j .

Then:
KL(p||q) ≤ KL(χ(2)||χ(1)) +

∑
i,j

χ
(2)
j,iKL(f

(p)
i ||f

(q)
j ). (27)

Our new algorithm replaces the KL with the above-mentioned upper bound. Each time we require its
value, we have to recompute the parameters χ(1) and χ(2) that tighten the bound. As shown in [14],
we can use a simple fixed-point procedure for this purpose, alternating the computation of the two
parameters as:

χ
(2)
i,j =

c
(q)
j χ

(1)
j,i∑

i′ χ
(1)
j,i′

, χ
(1)
j,i =

c
(p)
i χ

(2)
i,j e
−KL(f

(p)
i ||f

(q)
j )∑

j′ χ
(2)
i,j′e

−KL(f
(p)
i ||f

(q)

j′ )
. (28)

Finally, both terms in the objective are now linear combinations of functions of the variational param-
eters of different components, and their gradients easily derive from the ones of the Gaussian case.
Consider a posterior with C components, qξ(w) = 1

C

∑C
i=1N (w|µi,Σi), and a prior distribution,

constructed from the set of weights Ws =
{
w1, ...,w|Ws|

}
of the sources’ optimal Q-functions,

p(w) = 1
|Ws|

∑|Ws|
j=1 N (w|wj , σ2

pI). Then, using Theorem 5:

KL (qξ(w) || p(w)) ≤ KL(χ(2)||χ(1)) +

C∑
i=1

|Ws|∑
j=1

χ
(2)
j,iKL(N (w|µi,Σi) || N (w|wj , σ2

pI)).

(29)
Substituting (29) in the negative ELBO in (2), we get the following upper bound on the objective:

L(ξ) ≤ L̃(ξ) = Ew∼qξ
[
‖Bw‖2D

]
+
λ

N
KL(χ(2)||χ(1))

+
λ

N

C∑
i=1

|Ws|∑
j=1

χ
(2)
j,iKL(N (w|µi,Σi) || N (w|wj , σ2

pI)). (30)

Finally, using this upper bound as objective of our optimization problem, we can then exploit the
linearity of the expectation operator to obtain:

L̃(ξ) =
1

C

C∑
i=1

Ew∼N (w|µi,Σi)

[
‖Bw‖2D

]
+

λ

N
KL(χ(2)||χ(1))

+
λ

N

C∑
i=1

|Ws|∑
j=1

χ
(2)
j,iKL(N (w|µi,Σi) || N (w|wj , σ2

pI)), (31)

which is easily differentiable with respect to ξ = (µ1, ...,µC ,Σ1, ...,ΣC) using the equations (23),
(24), (25), (26) derived for the Gaussian case.

C Additional Details on the Experiments

In the present section, we provide details on the parameters adopted in all experiments and provide
further empirical evaluation to complement the results reported in the main paper.
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(a) (b)

Figure 4: Two-Rooms Problem: (a) ε-greedy vs. GVT, and (b) ε-greedy vs. 1-MGVT

C.1 The Rooms Problem

Parameters We use ADAM as the stochastic optimizer for all algorithms. In order to train the
source tasks, we directly minimize the TD error as described in Section 3.4. We use a batch size of
50, a buffer size of 50000, ψ = 0.5, and a learning rate α = 0.001. Additionally, we use an ε-greedy
policy for exploration, with ε linearly decaying from 1 to 0.02 in a fraction of 0.7 the maximum
number of iterations.

For the transfer algorithm GVT, we set a batch size of 50 and a buffer size of 10000. We use ψ = 0.5,
λ = 10−4 and 10 weights to estimate the expected TD error. For the learning rates, αµ = 0.001
for the mean of the posterior and αL = 0.1 to learn its Cholesky factor L. Furthermore, we restrict
the minimum value reachable by the eigenvalues of these factors to be σ2

min = 0.0001. In the case
of MGVT we use, instead, λ = 10−6, αµ = 0.001, and αL = 0.1. Finally, we use a bandwidth
σ2
p = 10−5 for the prior.

Additional Results We investigate the exploratory behavior induced by our transfer algorithms
and compare it to simple ε-greedy exploration. In Figure 4, we show the positions visited by the agent
when running 2000 iterations of the no-transfer (NT) algorithm, GVT, and 1-MGVT. Observing
Figure 4a, it is possible to understand the difference between the ε-greedy exploration and the
resulting behavior from GVT. It is noticeable that NT is not capable to lead the agent to the goal
within the given iterations as most of the states visited are sparse within the first room, whereas GVT
is able to concentrate more of its effort in looking for the door around the middle of the wall. After
finding it, within the second room, the positions concentrate in the path leading to the goal. This
is not surprising as the value function should be equal for all tasks after crossing the door. In the
other case, Figure 4b shows a similar situation, but it is quite interesting to notice how sparser the
exploration of 1-MGVT is with respect to GVT. Indeed, 1-MGVT is able to actually explore the right
part of the first room within these iterations, which might be seen as the result of the prior model
being able to capture more information than the Gaussian; hence, the higher speed-up in convergence
and robustness to changes in the distribution from which target tasks are drawn. Indeed, as 1-MGVT
is able to allow for more flexible exploration, it is capable to discover how to best solve the task much
faster than GVT.

In Figure 5, we analyze the (online) expected return achieved by the transfer algorithms as a function
of the number of source tasks used to estimate their prior. In particular, we show the resulting curves
after 1000 iterations in Figure 6a and after 1950 iterations in Figure 6b. It is interesting to notice
the difference between MGVT and GVT whenever there is a small number of source tasks. MGVT
clearly provides faster adaptation in the presence of low prior knowledge as it can be seen from the
two plots. This should be expected from the properties of the two algorithms discussed in Section 4.

Finally, we analyze the transfer performance as a function of how likely the target task is according
to the prior. We consider a two-room version of the environment of Figure 2. Unlike before, we
generate tasks by sampling the door position from a Gaussian with mean 5 and standard deviation
1.8, so that tasks with the door near the sides are very unlikely. Figure 6 shows the performance
reached by GVT and 1-MGVT at fixed iterations as a function of how likely the target task is
according to such distribution. As expected, GVT achieves poor performance on very unlikely
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Figure 5: Expected return w.r.t. to the number of source tasks after (a) 1000 iterations, and (b) 1950
iterations.

tasks, even after many iterations. In fact, estimating a single Gaussian distribution definitely entails
some information loss, especially about the unlikely tasks. On the other hand, MGVT keeps such
information and, consequently, performs much better. Perhaps not surprisingly, MGVT reaches the
optimal performance in 4k iterations no matter what task is being solved.

C.2 Classic Control

Cartpole For this environment, we generate tasks by uniformly sampling the cart mass in the range
[0.5, 1.5], the pole mass in [0.1, 0.3], and the pole length in [0.2, 1.0].

During the training of the source tasks, we use a batch size of 150 and a buffer size of 50000.
Specifically, for DDQN we use a target update frequency of 500, exploration fraction of 0.35, and a
learning rate α = 0.001. We use a Multilayer Perceptron (MLP) with ReLU as activation function
and a single hidden layer of 32 neurons.

For the transfer experiments, we set the batch size to 500, the number of weights sampled to
approximate the expected TD error to 5, λ = 0.001, and ψ = 0.5 . We use αµ = 0.001 as the
learning rate for the mean of the Gaussian posterior. For its the Cholesky factor L we use αL = 0.0001
and set the limit that the minimum eigenvalue may reach to σ2

min = 0.0001 . Additionally, for MGVT
we set the variance of the prior components σ2

p = 10−5 and leave the learning rates of the posterior
components’ means and Cholesky factor the same as GVT.

C.2.1 Mountain Car

We generate tasks by sampling uniformly the base speed of the car in the range [0.001, 0.0015].
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Figure 6: Expected return as a function of the (normalized) target task likelihood after a specified
number of iterations.
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Figure 7: Performance on (a) Maze 8i, and (b) Maze 8n.

For the sources, we train the tasks using DDQN with a target update frequency of 500, a batch size
of 32, a buffer size of 50000 and learning rate α = 0.001. Moreover, we set the exploration fraction
to 0.15. We use an MLP with single hidden layer of 64 neurons with ReLU activation function.

For the transfer experiments, we set the batch size to 500, and use 10 weights to approximate the
expected TD error, λ = 10−5 and ψ = 0.5. For the learning rates, we use αµ = 0.001 for the
means of the Gaussians. In the case of the Cholesky factors L, we use αL = 0.0001 and allow the
eigenvalues to reach a minimum value of σ2

min = 0.0001. In the case of MGVT, additionally, we set
the prior covariance to be σ2

p = 10−5.

C.3 Maze Navigation

Parameters The mazes adopted in the experiments of Section 6.3 are shown in Figure 8. Our 20
mazes have varying degree of difficulty and are designed to hold few similarities that would be useful
for transferring. Moreover, we ensure 4 groups of mazes that are characterized by the same goal
position.

For the experiments, we use as approximator an MLP with two hidden layers of 32 neurons with
ReLU activation functions. For training the sources, we use a DDQN with a batch size of 70, a
buffer size of 10000, and a target update frequency of 100, setting the exploration fraction to 0.1 and
learning rate to α = 0.001.

In the transfer experiments, we use ψ = 0.5, a batch size of 50, a buffer size of 50000 and use 10
sampled weights from the posterior to approximate the TD error. Moreover, we use λ = 10−6. For
GVT, in particular, we use αµ = 0.001, αL = 10−7, and set the minimum value reachable by its
eigenvalues to be σmin = 0.0001. In the case of MGVT, we set αµ = 0.001 and αL = 10−6. Finally,
we use σ2

p = 10−5 as the prior bandwidth.

Additional Results The mazes used for the experiments in the main paper are Maze 8a (for Figure
2e) and Maze 8g (for Figure 2f). Figure 7 shows the performances achieved the algorithms on two
more mazes (Maze 8i and 8n). The results are consistent with those presented in the main paper.
In particular, we can appreciate that MGVT is able to provide significant speed-up in a consistent
manner. On the other hand, GVT consistently fails at transferring, while FT has variable behavior in
the different target mazes.

C.4 A Comparison to Fast-Adaptation Algorithms

The Rooms Problem For meta-training, we used a meta-batch size of 20 tasks, a fast batch size of
20, and a fast learning rate of 0.1. The meta-objective was optimized until convergence by TRPO,
while the fast-adaptation step was vanilla policy gradient (REINFORCE) with baseline estimated by
generalized advantage estimation. Policies were represented by neural networks using one layer of
32 neurons on top of our radial basis representation (see Section 6.1). We used the same batch size
and fast learning rate at meta-testing.
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Figure 8: Set of mazes for the Maze Navigation task.

For the experiment using MAML-batch, each meta-training run sampled a fixed number of 10 source
tasks before learning started. Each meta-batch was then re-sampled from a uniform distribution over
these 10 fixed tasks. For the experiment using MAML-shift, we meta-trained on the full distribution
by re-sampling only the position of the top door, while keeping the bottom one fixed in the middle
as in our experiment of Figure 2b. We then meta-tested on the original distribution with both doors
moving.

Maze Navigation For meta-training, we used a meta-batch size of 20 tasks, a fast batch size of 50,
and a fast learning rate of 0.1. The objectives were optimized using the same algorithms as for the
rooms problem, this time using a neural network with two layers of 32 neurons.

For the experiment using MAML-full, we meta-trained on the discrete distribution over all 20 mazes,
while, for the experiment using MAML-batch, we used only 5 source mazes, making sure that they
did not contain the target. We meta-tested only on the maze shown in Figure 8a (which is the one
adopted in Figure 2e).
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