Supplementary Material for the Paper: Boosted Sparse and Low-Rank Tensor Regression

Lifang He Weill Cornell Medicine lifanghescut@gmail.com Kun Chen* University of Connecticut kun.chen@uconn.edu

Wanwan Xu University of Connecticut wanwan.xu@uconn.edu

Jiayu Zhou Michigan State Universtiy dearjiayu@gmail.com Fei Wang Weill Cornell Medicine few2001@med.cornell.edu

A Proof of Theorem and Lemmas

Lemma 1. Let **X** be the (N + 1)-mode matricization of \mathcal{X} . Denote $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_I]$ where each \mathbf{x}_i is a column of **X**, then

$$\lambda_{\max} = 2/M \max\{|\mathbf{x}_i^{\mathrm{T}}\mathbf{y}|; i = 1, \cdots, I.\}$$

Moreover, letting $i^* = \arg \max_i |\mathbf{x}_i^{\mathrm{T}} \mathbf{y}|$ and (i_1^*, \dots, i_N^*) represents its corresponding indices in tensor space, then the initial non-zero solution of (11), denoted as $(\sigma, {\mathbf{w}^{(n)}})$, is given by

$$\sigma = \epsilon, \mathbf{w}^{(1)} = sign(\mathbf{x}_{i^*}^{\mathrm{T}} \mathbf{y}) \mathbf{1}_{i_1^*}, \ \mathbf{w}^{(n)} = \mathbf{1}_{i_n^*}, \forall n = 2, \cdots, N.$$

where $\mathbf{1}_{i_n^*}$ is a vector with all 0's except for a 1 in the i_n^* -th coordinate.

Proof. By using multilinear algebra, the problem (8) can be equivalently written as

$$\min_{\{\sigma, w^{(n)}\}} \frac{1}{M} \| \mathbf{y} - \mathbf{X}(\sigma \mathbf{w}^{(N)} \otimes \dots \otimes \mathbf{w}^{(1)} \|_{2}^{2} + \lambda \sigma \prod_{n=1}^{N} \| \mathbf{w}^{(n)} \|_{1} + \alpha \sigma^{2} \prod_{n=1}^{N} \| \mathbf{w}^{(n)} \|_{2}^{2} \\
\text{s.t.} \quad \sigma \ge 0, \ \| \mathbf{w}^{(n)} \|_{1} = 1, \ n = 1, \cdots, N.$$
(1)

where \otimes denotes the Kronecker product operator.

This problem has the same λ_{\max} as its corresponding elastic net problem by considering $(\sigma \mathbf{w}^{(N)} \otimes \cdots \otimes \mathbf{w}^{(1)})$ as a whole. Thus λ_{\max} and the initial non-zero solution can be obtained as above by the Karush-Kuhn-Tucker (KKT) optimality conditions for the elastic net problem.

Lemma 2. If there exists s and i_n with $|s| = \epsilon, n = 1, \dots, N$ such that

$$\Gamma(s\mathbf{1}_{i_1}, \mathbf{1}_{i_2}, \cdots, \mathbf{1}_{i_N}; \lambda) \le \Gamma(\{\mathbf{0}\}; \lambda), \tag{2}$$

it must be true that $\lambda \leq \lambda_0$ *.*

Proof. By assumption, we can expand (2) as

$$J(s\mathbf{1}_{i_1},\mathbf{1}_{i_2},\cdots,\mathbf{1}_{i_N})+\lambda\Omega(s\mathbf{1}_{i_1},\mathbf{1}_{i_2},\cdots,\mathbf{1}_{i_N})\leq J(\{\mathbf{0}\}).$$

It follows that

$$\begin{split} \lambda &\leq \frac{1}{\epsilon} (J(\{\mathbf{0}\}) - J(s\mathbf{1}_{i_1}, \mathbf{1}_{i_2}, \cdots, \mathbf{1}_{i_N})) \\ &\leq \frac{1}{\epsilon} (J(\{\mathbf{0}\}) - \min_{\{i_1, \cdots, i_N\}, s = \pm \epsilon} J(s\mathbf{1}_{i_1}, \mathbf{1}_{i_2}, \cdots, \mathbf{1}_{i_N})) \\ &= \lambda_0. \end{split}$$

*Corresponding Author

Lemma 3. For any t with $\lambda_{t+1} = \lambda_t$, we have $\Gamma(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}; \lambda_{t+1}) \leq \Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_{t+1}) - \xi$. *Proof.* This is obviously true if the backward step is taken since $\Gamma(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}; \lambda_t) \leq \Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_t) - \xi$ and $\lambda_{t+1} = \lambda_t$. So we only need to consider the forward step when $\lambda_{t+1} = \lambda_t$. If the claim is not true, then

$$J(\sigma_t, \{\mathbf{w}_t^{(n)}\}) - J(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) < \lambda_t \Omega(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \lambda_t \Omega(\sigma_t, \{\mathbf{w}_t^{(n)}\}) + \xi = \lambda_t \epsilon + \xi.$$

That is,

$$\lambda_{t+1} = \lambda_t > \frac{1}{\epsilon} (J(\sigma_t, \{\mathbf{w}_t^{(n)}\}) - J(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \xi),$$

which contradicts with the fact that $\lambda_{t+1} = \min(\lambda_t, \frac{1}{\epsilon}(J(\sigma_t, {\mathbf{w}_t^{(n)}}) - J(\sigma_{t+1}, {\mathbf{w}_{t+1}^{(n)}}) - \xi)).$

Lemma 4. For any t with $\lambda_{t+1} < \lambda_t$, we have $\Gamma(\hat{\mathbf{w}}_t^{(n)} + s_{i_n} \mathbf{1}_{i_n}; \lambda_t) > \Gamma(\hat{\mathbf{w}}_t^{(n)}; \lambda_t) - \xi$. Proof. First of all, when $\lambda_{t+1} < \lambda_t$, it holds that $\Omega(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) = \Omega(\sigma_t, \{\mathbf{w}_t^{(n)}\}) + \epsilon$. From $\lambda_{t+1} = \min(\lambda_t, \frac{1}{\epsilon}(J(\sigma_t, \{\mathbf{w}_t^{(n)}\}) - J(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \xi))$ and $\lambda_{t+1} < \lambda_t$, we know that $J(\sigma_t, \{\mathbf{w}_t^{(n)}\}) - J(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \xi = \lambda_{t+1}\epsilon = \lambda_{t+1}(\Omega(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}) - \Omega(\sigma_t, \{\mathbf{w}_t^{(n)}\}))$, that is, $\Gamma(\hat{\mathbf{w}}_t^{(n)}; \lambda_{t+1}) - \xi = \Gamma(\hat{\mathbf{w}}_{t+1}^{(n)}; \lambda_{t+1})$. Then we have

$$\begin{split} \Gamma(\hat{\mathbf{w}}_{t}^{(n)};\lambda_{t}) &- \xi = \Gamma(\hat{\mathbf{w}}_{t}^{(n)};\lambda_{t+1}) - \xi + (\lambda_{t} - \lambda_{t+1})\Omega(\sigma_{t},\{\mathbf{w}_{t}^{(n)}\}) \\ &= \Gamma(\hat{\mathbf{w}}_{t+1}^{(n)};\lambda_{t+1}) + (\lambda_{t} - \lambda_{t+1})\Omega(\sigma_{t},\{\mathbf{w}_{t}^{(n)}\}) \\ &= \Gamma(\hat{\mathbf{w}}_{t+1}^{(n)};\lambda_{t}) + (\lambda_{t+1} - \lambda_{t})(\Omega(\sigma_{t+1},\{\mathbf{w}_{t+1}^{(n)}\}) - \Omega(\sigma_{t},\{\mathbf{w}_{t}^{(n)}\})) \\ &= \Gamma(\hat{\mathbf{w}}_{t+1}^{(n)};\lambda_{t}) + (\lambda_{t+1} - \lambda_{t})\epsilon < \Gamma(\hat{\mathbf{w}}_{t+1}^{(n)};\lambda_{t}) = \min\{\Gamma(\hat{\mathbf{w}}_{t}^{(n)} + s_{i_{n}}\mathbf{1}_{i_{n}};\lambda_{t})\}. \Box \end{split}$$

 $= \Gamma(\mathbf{\hat{w}}_{t+1}^{(n)}; \lambda_t) + (\lambda_{t+1} - \lambda_t)\epsilon < \Gamma(\mathbf{\hat{w}}_{t+1}^{(n)}; \lambda_t) = \min\{\Gamma(\mathbf{\hat{w}}_{t}^{(n)} + s_{i_n}\mathbf{1}_{i_n}; \lambda_t)\}. \perp$ **Theorem 1.** For any t such that $\lambda_{t+1} < \lambda_t$, we have $(\sigma_t, \{\mathbf{w}_t^{(n)}\}) \rightarrow (\sigma(\lambda_t), \{\mathbf{\widetilde{w}}^{(n)}(\lambda_t)\})$ as $\epsilon, \xi \rightarrow 0$, where $(\sigma(\lambda_t), \{\mathbf{\widetilde{w}}^{(n)}(\lambda_t)\})$ denotes a coordinate-wise minimum point of Problem (7).

Proof. First, by Lemma 3, we have $\Gamma(\sigma_t, {\mathbf{w}_t^{(n)}}; \lambda_t) \leq \Gamma(\sigma_{t-1}, {\mathbf{w}_{t-1}^{(n)}}; \lambda_{t-1}) - \xi$ when $\lambda_t = \lambda_{t-1}$. Then it is easy to verify the series of inequalities

 $\Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_t) \leq \Gamma(\sigma_{t-1}, \{\mathbf{w}_{t-1}^{(n)}\}; \lambda_{t-1}) - \xi \leq \cdots \leq \Gamma(\sigma_{t-p}, \{\mathbf{w}_{t-p}^{(n)}\}; \lambda_{t-p}) - p\xi$ (3) holds when $\lambda_t = \lambda_{t-1} = \cdots = \lambda_{t-p}$ and p is the value such that $\lambda_{t-p} < \lambda_{t-p-1}$. As $\epsilon, \xi \rightarrow 0$, a straightforward consequence of (3) is that the sequence of the objective function values is monotonically decreasing at λ_t , that is,

$$\Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_t) \le \Gamma(\sigma_{t-1}, \{\mathbf{w}_{t-1}^{(n)}\}; \lambda_t) \le \dots \le \Gamma(\sigma_{t-p}, \{\mathbf{w}_{t-p}^{(n)}\}; \lambda_t).$$
(4)

Using Lemma 4, we know that λ_t gets reduced such that $\lambda_{t+1} < \lambda_t$ only occurs in the forward step when $\Gamma(\sigma_{t+1}, \{\mathbf{w}_{t+1}^{(n)}\}; \lambda_t) > \Gamma(\sigma_t, \{\mathbf{w}_t^{(n)}\}; \lambda_t) - \xi$. This means that even by searching over all possible coordinate descent directions in each subproblem (with the size of update fixed at ϵ), the objective function at λ_t can not be further reduced. Since each subproblem is strongly convex w.r.t $(\sigma, \mathbf{w}^{(n)})$, it has a unique solution. Therefore, when $\epsilon, \xi \to 0$ and at the time λ_t gets reduced to λ_{t+1} , we can say a coordinate-wise minimum point of $\Gamma(\cdot)$ is reached for λ_t , which completes the proof.

B Description of Data Preprocessing

We preprocessed the DTI and MRI acquisitions on 656 subjects as follows. T1-weighted MRI data was acquired using the ADNI-2 sequence, and processed using the FreeSurfer², followed by [1]. For DTI data, each subject's raw data were aligned to the b0 image using the FSL³ eddy-correct tool to correct for head motion and eddy current distortions. The gradient table is also corrected accordingly. Non-brain tissue is removed from the diffusion MRI using the Brain Extraction Tool (BET) from FSL [2]. To correct for echo-planar induced (EPI) susceptibility artifacts, which can cause distortions at tissue-fluid interfaces, skull-stripped b0 images are linearly aligned and then elastically registered to their respective preprocessed structural MRI using Advanced Normalization Tools (ANTs⁴) with

²https://surfer.nmr.mgh.harvard.edu

³http://www.fmrib.ox.ac.uk/fsl

⁴http://stnava.github.io/ANTs/

SyN nonlinear registration algorithm [3]. The resulting 3D deformation fields are then applied to the remaining diffusion-weighted volumes to generate full preprocessed diffusion MRI dataset for the brain network reconstruction. In the meantime, 84 ROIs is parcellated from T1-weighted MRI using Freesufer.

Based on these 84 ROIs, we reconstruct four types of brain connectivity matrices for each subject, using the following four tensor-based deterministic tractography algorithms: Fiber Assignment by Continuous Tracking (FACT) [4], the 2nd-order Runge-Kutta (RK2) [5], interpolated streamline (SL) [6], and the tensorline (TL) [7]. Each resulted connectivity matrix for each subject is 84×84 . To avoid computation bias, we normalize each connectivity matrix by dividing by its maximum value, as matrices derived from different tractography methods have different scales and ranges.

References

- [1] Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M Nir, Cassandra D Leonardo, Jieping Ye, Paul M Thompson, et al. Comparison of nine tractography algorithms for detecting abnormal structural brain networks in alzheimer's disease. *Frontiers in aging neuroscience*, 7:48, 2015.
- [2] Stephen M Smith. Fast robust automated brain extraction. Human brain mapping, 17(3):143–155, 2002.
- [3] Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. *Medical image analysis*, 12(1):26–41, 2008.
- [4] Susumu Mori, Barbara J Crain, Vadappuram P Chacko, and Peter Van Zijl. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. *Annals of neurology*, 45(2):265–269, 1999.
- [5] Peter J Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi. In vivo fiber tractography using dt-mri data. *Magnetic resonance in medicine*, 44(4):625–632, 2000.
- [6] Thomas E Conturo, Nicolas F Lori, Thomas S Cull, Erbil Akbudak, Abraham Z Snyder, Joshua S Shimony, Robert C McKinstry, Harold Burton, and Marcus E Raichle. Tracking neuronal fiber pathways in the living human brain. *Proceedings of the National Academy of Sciences*, 96(18):10422–10427, 1999.
- [7] Mariana Lazar, David M Weinstein, Jay S Tsuruda, Khader M Hasan, Konstantinos Arfanakis, M Elizabeth Meyerand, Benham Badie, Howard A Rowley, Victor Haughton, Aaron Field, et al. White matter tractography using diffusion tensor deflection. *Human brain mapping*, 18(4):306–321, 2003.