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A Proof of Theorem and Lemmas

Lemma 1. Let X be the (N + 1)-mode matricization of X . Denote X = [x1, · · · ,xI ] where each
xi is a column of X, then

λmax = 2/M max{|xT
i y|; i = 1, · · · , I.}.

Moreover, letting i∗ = arg maxi|xT
i y| and (i∗1, · · · , i∗N ) represents its corresponding indices in

tensor space, then the initial non-zero solution of (11), denoted as (σ, {w(n)}), is given by

σ = ε,w(1) = sign(xT
i∗y)1i∗1 , w

(n) = 1i∗n ,∀n = 2, · · · , N.
where 1i∗n is a vector with all 0’s except for a 1 in the i∗n-th coordinate.

Proof. By using multilinear algebra, the problem (8) can be equivalently written as

min
{σ,w(n)}

1

M
‖y −X(σw(N) ⊗ · · · ⊗w(1)‖22+λσ

∏N

n=1
‖w(n)‖1+ασ2

∏N

n=1
‖w(n)‖22

s.t. σ ≥ 0, ‖w(n)‖1= 1, n = 1, · · · , N. (1)

where ⊗ denotes the Kronecker product operator.

This problem has the same λmax as its corresponding elastic net problem by considering (σw(N) ⊗
· · · ⊗w(1)) as a whole. Thus λmax and the initial non-zero solution can be obtained as above by the
Karush-Kuhn-Tucker (KKT) optimality conditions for the elastic net problem.

Lemma 2. If there exists s and in with |s|= ε, n = 1, · · · , N such that

Γ(s1i1 ,1i2 , · · · ,1iN ;λ) ≤ Γ({0};λ), (2)

it must be true that λ ≤ λ0.

Proof. By assumption, we can expand (2) as

J(s1i1 ,1i2 , · · · ,1iN ) + λΩ(s1i1 ,1i2 , · · · ,1iN ) ≤ J({0}).
It follows that

λ ≤ 1

ε
(J({0})− J(s1i1 ,1i2 , · · · ,1iN ))

≤ 1

ε
(J({0})− min

{i1,···,iN},s=±ε
J(s1i1 ,1i2 , · · · ,1iN ))

= λ0.
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Lemma 3. For any t with λt+1 = λt, we have Γ(σt+1, {w(n)
t+1};λt+1) ≤ Γ(σt, {w(n)

t };λt+1)− ξ.

Proof. This is obviously true if the backward step is taken since Γ(σt+1, {w(n)
t+1};λt) ≤

Γ(σt, {w(n)
t };λt)− ξ and λt+1 = λt. So we only need to consider the forward step when λt+1 = λt.

If the claim is not true, then
J(σt, {w(n)

t })− J(σt+1, {w(n)
t+1}) < λtΩ(σt+1, {w(n)

t+1})− λtΩ(σt, {w(n)
t }) + ξ = λtε+ ξ.

That is,

λt+1 = λt >
1

ε
(J(σt, {w(n)

t })− J(σt+1, {w(n)
t+1})− ξ),

which contradicts with the fact that λt+1 = min(λt,
1
ε (J(σt, {w(n)

t })−J(σt+1, {w(n)
t+1})−ξ)).

Lemma 4. For any t with λt+1 < λt, we have Γ(ŵ
(n)
t + sin1in ;λt) > Γ(ŵ

(n)
t ;λt)− ξ.

Proof. First of all, when λt+1 < λt, it holds that Ω(σt+1, {w(n)
t+1}) = Ω(σt, {w(n)

t }) + ε. From
λt+1 = min(λt,

1
ε (J(σt, {w(n)

t })− J(σt+1, {w(n)
t+1})− ξ)) and λt+1 < λt, we know that

J(σt, {w(n)
t })− J(σt+1, {w(n)

t+1})− ξ = λt+1ε = λt+1(Ω(σt+1, {w(n)
t+1})− Ω(σt, {w(n)

t })),

that is, Γ(ŵ
(n)
t ;λt+1)− ξ = Γ(ŵ

(n)
t+1;λt+1). Then we have

Γ(ŵ
(n)
t ;λt)− ξ = Γ(ŵ

(n)
t ;λt+1)− ξ + (λt − λt+1)Ω(σt, {w(n)

t })

= Γ(ŵ
(n)
t+1;λt+1) + (λt − λt+1)Ω(σt, {w(n)

t })

= Γ(ŵ
(n)
t+1;λt) + (λt+1 − λt)(Ω(σt+1, {w(n)

t+1})− Ω(σt, {w(n)
t }))

= Γ(ŵ
(n)
t+1;λt) + (λt+1 − λt)ε < Γ(ŵ

(n)
t+1;λt) = min{Γ(ŵ

(n)
t + sin1in ;λt)}.

Theorem 1. For any t such that λt+1 < λt, we have (σt, {w(n)
t }) → (σ(λt), {w̃(n)(λt)}) as

ε, ξ → 0, where (σ(λt), {w̃(n)(λt)}) denotes a coordinate-wise minimum point of Problem (7).

Proof. First, by Lemma 3, we have Γ(σt, {w(n)
t };λt) ≤ Γ(σt−1, {w(n)

t−1};λt−1) − ξ when λt =
λt−1. Then it is easy to verify the series of inequalities

Γ(σt, {w(n)
t };λt) ≤ Γ(σt−1, {w(n)

t−1};λt−1)− ξ ≤ · · · ≤ Γ(σt−p, {w(n)
t−p};λt−p)− pξ (3)

holds when λt = λt−1 = · · · = λt−p and p is the value such that λt−p < λt−p−1. As ε, ξ →
0, a straightforward consequence of (3) is that the sequence of the objective function values is
monotonically decreasing at λt, that is,

Γ(σt, {w(n)
t };λt) ≤ Γ(σt−1, {w(n)

t−1};λt) ≤ · · · ≤ Γ(σt−p, {w(n)
t−p};λt). (4)

Using Lemma 4, we know that λt gets reduced such that λt+1 < λt only occurs in the forward
step when Γ(σt+1, {w(n)

t+1};λt) > Γ(σt, {w(n)
t };λt)− ξ. This means that even by searching over

all possible coordinate descent directions in each subproblem (with the size of update fixed at ε),
the objective function at λt can not be further reduced. Since each subproblem is strongly convex
w.r.t (σ,w(n)), it has a unique solution. Therefore, when ε, ξ → 0 and at the time λt gets reduced to
λt+1, we can say a coordinate-wise minimum point of Γ(·) is reached for λt, which completes the
proof.

B Description of Data Preprocessing

We preprocessed the DTI and MRI acquisitions on 656 subjects as follows. T1-weighted MRI data
was acquired using the ADNI-2 sequence, and processed using the FreeSurfer2, followed by [1]. For
DTI data, each subject’s raw data were aligned to the b0 image using the FSL3 eddy-correct tool to
correct for head motion and eddy current distortions. The gradient table is also corrected accordingly.
Non-brain tissue is removed from the diffusion MRI using the Brain Extraction Tool (BET) from
FSL [2]. To correct for echo-planar induced (EPI) susceptibility artifacts, which can cause distortions
at tissue-fluid interfaces, skull-stripped b0 images are linearly aligned and then elastically registered
to their respective preprocessed structural MRI using Advanced Normalization Tools (ANTs4) with

2https://surfer.nmr.mgh.harvard.edu
3http://www.fmrib.ox.ac.uk/fsl
4http://stnava.github.io/ANTs/
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SyN nonlinear registration algorithm [3]. The resulting 3D deformation fields are then applied to the
remaining diffusion-weighted volumes to generate full preprocessed diffusion MRI dataset for the
brain network reconstruction. In the meantime, 84 ROIs is parcellated from T1-weighted MRI using
Freesufer.

Based on these 84 ROIs, we reconstruct four types of brain connectivity matrices for each subject,
using the following four tensor-based deterministic tractography algorithms: Fiber Assignment by
Continuous Tracking (FACT) [4], the 2nd-order Runge-Kutta (RK2) [5], interpolated streamline (SL)
[6], and the tensorline (TL) [7]. Each resulted connectivity matrix for each subject is 84× 84. To
avoid computation bias, we normalize each connectivity matrix by dividing by its maximum value, as
matrices derived from different tractography methods have different scales and ranges.
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