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Abstract

A large class of machine learning techniques requires the solution of optimization
problems involving spectral functions of parametric matrices, e.g. log-determinant
and nuclear norm. Unfortunately, computing the gradient of a spectral function
is generally of cubic complexity, as such gradient descent methods are rather
expensive for optimizing objectives involving the spectral function. Thus, one
naturally turns to stochastic gradient methods in hope that they will provide a way
to reduce or altogether avoid the computation of full gradients. However, here
a new challenge appears: there is no straightforward way to compute unbiased
stochastic gradients for spectral functions. In this paper, we develop unbiased
stochastic gradients for spectral-sums, an important subclass of spectral functions.
Our unbiased stochastic gradients are based on combining randomized trace esti-
mators with stochastic truncation of the Chebyshev expansions. A careful design
of the truncation distribution allows us to offer distributions that are variance-
optimal, which is crucial for fast and stable convergence of stochastic gradient
methods. We further leverage our proposed stochastic gradients to devise stochastic
methods for objective functions involving spectral-sums, and rigorously analyze
their convergence rate. The utility of our methods is demonstrated in numerical
experiments.

1 Introduction

A large class of machine learning techniques involves spectral optimization problems of the form,

min F(A(9)) + 9(9), 1)

where C is some finite-dimensional parameter space, A is a function that maps a parameter vector
6 to a symmetric matrix A(6), F is a spectral function (i.e., a real-valued function on symmetric
matrices that depends only on the eigenvalues of the input matrix), and g : C — R. Examples include
hyperparameter learning in Gaussian process regression with F'(X) = log det X [23], nuclear norm
regularization with F(X) = tr (X!/2) [21], phase retrieval with F/(X) = tr (X) [9], and quantum
state tomography with F'(X) = tr (X log X) [16]. In the aforementioned applications, the main
difficulty in solving problems of the form (1) is in efficiently addressing the spectral component
F(A(-)). While explicit formulas for the gradients of spectral functions can be derived [18], it is
typically computationally expensive. For example, for F/(X) = logdet X and A(f) € R?*9, the
exact computation of Vy F'(A(6)) can take as much as O(d>k), where k is the number of parameters
in . Therefore, it is desirable to avoid computing, or at the very least reduce the number of times we
compute, the gradient of F'(A(0)) exactly.
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It is now well appreciated in the machine learning literature that the use of stochastic gradients is
effective in alleviating costs associated with expensive exact gradient computations. Using cheap
stochastic gradients, one can avoid computing full gradients altogether by using Stochastic Gradient
Descent (SGD). The cost is, naturally, a reduced rate of convergence. Nevertheless, many machine
learning applications require only mild suboptimality, in which case cheap iterations often outweigh
the reduced convergence rate. When nearly optimal solutions are sought, more recent variance
reduced methods (e.g. SVRG [15]) are effective in reducing the number of full gradient computations
to O(1). For non-convex objectives, the stochastic methods are even more attractive to use as they
allow to avoid a bad local optimum. However, closed-form formulas for computing the full gradients
of spectral functions do not lead to efficient stochastic gradients in a straightforward manner.

Contribution. In this paper, we propose stochastic methods for solving (1) when the spectral
function F' is a spectral-sum. Formally, spectral-sums are spectral functions that can be expressed as
F(X) =tr(f(X)) where f is a real-valued function that is lifted to the symmetric matrix domain by
applying it to the eigenvalues. They constitute an important subclass of spectral functions, e.g., in all
of the aforementioned applications of spectral optimization, the spectral function F' is a spectral-sum.

Our algorithms are based on recent biased estimators for spectral-sums that combine stochastic trace
estimation with Chebyshev expansion [12]. The technique used to derive these estimators can also be
used to derive stochastic estimators for the gradient of spectral-sums (e.g., see [8]), but the resulting
estimator is biased. To address this issue, we propose an unbiased estimator for spectral-sums, and
use it to derive unbiased stochastic gradients. Our unbiased estimator is based on randomly selecting
the truncation degree in the Chebyshev expansion, i.e., the truncated polynomial degree is drawn
under some distribution. We remark that similar ideas of sampling unbiased polynomials have been
studied in the literature, but for different setups [5, 17, 31, 26], and none of which are suitable for
use in our setup.

While deriving unbiased estimators is very useful for ensuring stable convergence of stochastic
gradient methods, it is not sufficient: convergence rates of stochastic gradient descent methods
depend on the variance of the stochastic gradients, and this can be rather large for naive choices
of degree distributions. Thus, our main contribution is in establishing a provably optimal degree
distribution minimizing the estimators’ variances with respect to the Chebyshev series. The proposed
distribution gives order-of-magnitude smaller variances compared to other popular ones (Figure 1),
which leads to improved convergence of the downstream optimization (Figure 2(c)).

We leverage our proposed unbiased estimators to design two stochastic gradient descent methods, one
using the SGD framework and the other using the SVRG one. We rigorously analyze their convergence
rates, showing sublinear and linear rate for SGD and SVRG, respectively. It is important to stress that
our fast convergence results crucially depend on the proposed optimal degree distributions. Finally,
we apply our algorithms to two machine learning tasks that involve spectral optimization: matrix
completion and learning Gaussian processes. Our experimental results confirm that the proposed
algorithms are significantly faster than other competitors under large-scale real-world instances. In
particular, for learning Gaussian process under Szeged humid dataset, our generic method runs up to
six times faster than the state-of-art method [8] specialized for the purpose.

2 Preliminaries

We denote the family of real symmetric matrices of dimension d by S*?. For A € S%%9, we use
|| Al to denote the time-complexity of multiplying A with a vector, i.., | A||zy = O(d?). For some
structured matrices, e.g. low-rank, sparse or Toeplitz matrices, it is possible to have ||A|n, = o(d?).

2.1 Chebyshev expansion

Let f : R — R be an analytic function on [a, b] for a,b € R. Then, the Chebyshev series of f is
given by

00 _ b+a T.
)= biT; ([)2x—b+a), bj = 2= b= 0/ S (55ta + 5 ](z)dm.
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In the above, 1,—g = 1if j = 0 and 0 otherwise and T} () is the Chebyshev polynomial (of the first
kind) of degree j. An important property of the Chebyshev polynomials is the following recursive



formula: T q(z) = 22Tj(x) — Tj—1(x), Th(x) = =z, To(x) = 1. The Chebyshev series can
be used to approximate f(x) via simply truncating the higher order terms, i.e., f(z) & p,(z) :=
Z;L:O b T (52 — Ilfj—g) We call p,, () the truncated Chebyhshev series of degree n. For analytic
functions, the approximation error (in the uniform norm) is known to decay exponentially [29].
Specifically, if f is analytic with | f (1’77“2 + H?“)| < U for some U > 0 in the region bounded by
the ellipse with foci +1, —1 and sum of major and minor semi-axis lengths equals to p > 1, then

2U . 4U
|b]‘ < F7 V] >0, sup |f(l‘) _pn(x” <
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2.2 Spectral-sums and their Chebyshev approximations

ded

Given a matrix A € and a function f : R — R, the spectral-sum of A with respect to f is

d
£5(4) = e (F(4) = 3 F0).

where tr (-) is the matrix trace and A1, Ao, . . ., Ay are the eigenvalues of A. Spectral-sums constitute
an important subclass of spectral functions, and many applications of spectral optimization involve
spectral-sums. This is fortunate since spectral-sums can be well approximated using Chebyshev
approximations.

For a general f, one needs all eigenvalues to compute X ;(A), while for some functions, simpler
types of decomposition might suffice (e.g., log det A = X4 (A) can be computed using the Cholesky
decomposition). Therefore, the general complexity of computing spectral-sums is O(d?), which is
clearly not feasible when d is very large, as is common in many machine learning applications. Hence,
it is not surprising that recent literature proposed methods to approximate the large-scale spectral-
sums, e.g., [12] recently suggested a fast randomized algorithm for approximating spectral-sums
based on Chebyshev series and Monte-Carlo trace estimators (i.e., Hutchinson’s method [14]):

M n
1 )
S5(A) = tx (£(4) ~ tx (pa(A) = By [v pu(A)v] = 3 vOT (370wl | 3)
k=1 §j=0
where w](»i)l =2 (ﬁA — lﬁ—i]) w§k) — w;li)l, ng-) = (ﬁA - gJ_rZI v, w(()k) = v(k), and

{v(k) }2/[:1 are Rademacher random vectors, i.e., each coordinate of v(¥) is an i.i.d. random variable
in {—1, 1} with equal probability 1/2 [14, 2, 25]. The approximation (3) can be computed using only
matrix-vector multiplications, vector-vector inner-products and vector-vector additions O(Mn) times
each. Thus, the time-complexity becomes O(Mn||A||luw + Mnd) = O(Mn||Al|ay)- In particular,
when Mn < d and ||A|lzy = o(d?), the cost can be significantly cheaper than O(d?) of exact
computation. We further note that to apply the approximation (3), a bound on the eigenvalues is
necessary. For an upper bound, one can use fast power methods [7]; this does not hurt the total
algorithm complexity (see [11]). A lower bound can be encforced by substituting A with The lower
bound can typically be ensured A + €I for some small ¢ > 0. We use these techniques in our
numerical experiments.

We remark that one may consider other polynomial approximation schemes, e.g. Taylor, but we focus
on the Chebyshev approximations since they are nearly optimal in approximation among polynomial
series [20]. Another recently suggested powerful technique is stochastic Lanczos quadrature [30],
however it is not suitable for our needs (our bias removal technique is not applicable for it).

3 Stochastic Chebyshev gradients of spectral-sums

Our main goal is to develop scalable methods for solving the following optimization problem:

min 3¢(A(6)) + 9(9), 4)
0cCCRY

where C C R? is a non-empty, closed and convex domain, A : RY — S§9%d ig a function of
parameter § = [0;] € R? and g : RY — R is some function whose derivative with respect to



any parameter ¢ is computationally easy to obtain. Gradient-descent type methods are natural
candidates for tackling such problems. However, while it is usually possible to compute the gradient
of ¥ (A(0)), this is typically very expensive. Thus, we turn to stochastic methods, like (projected)
SGD [4, 34] and SVRG [15, 33]. In order to apply stochastic methods, one needs unbiased estimators
of the gradient. The goal of this section is to propose a computationally efficient method to generate
unbiased stochastic gradients of small variance for ¥ ¢ (A(6)).

3.1 Stochastic Chebyshev gradients

Biased stochastic gradients. We begin by observing that if f is a polynomial itself or the Chebyshev
approximation is exact, i.e., f(z) = pn(z) = 377 b1} (35 — 252, we have

0 0 0 0
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where {v(®)}M are i.i.d. Rademacher random vectors and 8w§-k) /06; are given by the following
recursive formula:
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and A = ﬁA — Zf—g[ . We note that in order to compute (6) only matrix-vector products with
A and 0A/00; are needed. Thus, stochastic gradients of spectral-sums involving polynomials of

degree n can be computed in O(Mn(||Allny d + Z, nl a(’f lluv)). As we shall see in Section 5,
the complexity can be further reduced in certain cases. The above estimator can be leveraged to
approximate gradients for spectral-sums of analytic functions via the truncated Chebyshev series:
VXt (A(0)) = VoX,, (A(0)). Indeed, [¢] recently explored this in the context of Gaussian process
kernel learning. However, if f is not a polynomial, the truncated Chebysheyv series p,, is not equal
to f, so the above estimator is biased, i.e. VX (A4) # E[Vyv'p,(A)v]. The biased stochastic
gradients might hurt iterative stochastic optimization as biased errors accumulate over iterations.

Unbiased stochastic gradients. The estimators (3) and (5) are biased since they approximate an
analytic function f via a polynomial p,, of fixed degree. Unless f is a polynomial itself, there
exists an xg (usually uncountably many) for which f(xq) # pn(zo), so if A has an eigenvalue at
xo we have ¥ (A) # X, (A). Thus, one cannot hope that the estimator (3), let alone the gradient
estimator (5), to be unbiased for all matrices A. To avoid deterministic truncation errors, we simply
randomize the degree, i.e., design some distribution D on polynomials such that for every = we have
E,p [p(z)] = f(x). This guarantees E,p [tr (p(A))] = X(A) from the linearity of expectation.

We propose to build such a distribution on polynomials by using truncated Chebyshev expansions
where the truncation degree is stochastic. Let {¢;}32, C [0,1] be a set of numbers such that
Z?io q; = 1 and Z;’ir q; > 0 for all » > 0. We now define forr = 0,1, ...

. = b; 4 2 b+a
pr(z) = Zl—ZZO%T (b_ax—b_a). (7)

7=0

Note that p, () can be obtained from p,.(z) by re-weighting each coefficient according to {g;}52,.
Next, let n be a random variable taking non-negative integer values, and defined according to
Pr(n = r) = ¢,. Under certain conditions on {g;}, p,, (-) can be used to derive unbiased estimators
of X7(A) and VX (A) as stated in the following lemma.

Lemma 1 Suppose that f is an analytic function and p,, is the randomized Chebyshev series of | in
(7). Assume that the entries of A are differentiable for 0 € C', where C' is an open set containing
C, and that for a,b € R all the eigenvalues of A(0) for 6 € C’ are in [a,b]. For any degree

'We assume that all partial derivatives 0A; /00, forj, k=1,...,d,i=1,...,d existand are continuous.



distribution on non-negative integers {q; € (0,1) : >.° 0 q; = 1,572, q» > 0,Vi > 0} satisfying
limy, 00 Doy 1 €ibn () = 0 for all z € [a, b], it holds

Ev,, [V Dn (A)v] = S5(A), Ev, [Vov by (A) v] = VoS (A). (8)

where the expectations are taken over the joint distribution on random degree n and Rademacher
random vector v (other randomized probing vectors can be used as well).

The proof of Lemma [ is given in the supplementary material. We emphasize that (8) holds for any
distribution {g; }5°, on non-negative integers for which the conditions stated in Lemma 1 hold, e.g.,
geometric, Poisson or negative binomial distribution.

3.2 Main result: optimal unbiased Chebyshev gradients

It is a well-known fact that stochastic gradient methods converge faster when the gradients have
smaller variances. The variance of our proposed unbiased estimators crucially depends on the choice
of the degree distribution, i.e., {g; }32,. In this section, we design a degree distribution that is variance-
optimal in some formal sense. The variance of our proposed degree distribution decays exponentially
with the expected degree, and this is crucial for for the convergence analysis (Section 4).

The degrees-of-freedoms in choosing {¢; }$°, is infinite, which poses a challenge for devising low-
variance distributions. Our approach is based on the following simplified analytic approach studying
the scalar function f in such a way that one can naturally expect that the resulting distribution
{4:}22, also provides low-variance for the matrix cases of (8). We begin by defining the variance of
randomized Chebyshev expansion (7) via the Chebyshev weighted norm as

b—a b+a\2
5T+ =5 )

1
. A q(
Var n) = E, n — 2 ,  Where 2 ;:/
¢ (Pn) (15 — FIIE] lglle L =

The primary reason why we consider the above variance is because by utilizing the orthogonality of
Chebyshev polynomials we can derive an analytic expression for it.

dz. 9)

Lemma 2 Suppose {b; };”;0 are coefficients of the Chebyshev series for analytic function f and p,, is

j—1
its randomized Chebyshev expansion (7). Then, it holds that Varc (p,) = & Z;’;l b? (g%’,?q)
i=0 417
The proof of Lemma 2 is given in the supplementary material. One can observe from this result that the
variance reduces as we assign larger masses to to high degrees (due to exponentially decaying property
of b; (2)). However, using large degrees increases the computational complexity of computing the
estimators. Hence, we aim to design a good distribution given some target complexity, i.e., the
expected polynomial degree N. Namely, the minimization of Varc (p,,) should be constrained by
> 2, ig; = N for some parameter N > 0.

However, minimizing Varc (p,,) subject to the aforementioned constraints might be generally in-
tractable as the number of variables {g;}32, is infinite and the algebraic structure of {b,}°, is
arbitrary. Hence, in order to derive an analytic or closed-form solution, we relax the optimization.
In particular, we suggest the following optimization to minimize an upper bound of the variance by
utilizing |b;| < 2Up~7 from (2) as follows:

[e’e} J—1 [e e} e’}
min p~ % (W) subject to ig;=N,d ¢ =1and ¢;>0. (10)
{ai}520 ; 1- ZZZS Qi ; ;

Figure 1(d) empirically demonstrates that b2 ~ cp~27 for constant ¢ > 0 under f(z) = logx,
in which case the above relaxed optimization (10) is nearly tight. The next theorem establishes
that (10) has a closed-form solution, despite having infinite degrees-of-freedom. The theorem
is applicable when knowing a p > 1 and a bound U such that the function f is analytic with
| f (b_?az + b-&-?a) | < U in the complex region bounded by the ellipse with foci +1, —1 and sum of
major and minor semi-axis lengths is equal to p > 1.
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Figure 1: Chebyshev weighted variance for three distinct distributions: negative binomial (neg),
Poisson (pois) and the optimal distribution (11) (opt) with the same mean N under (a) log z, (b) v/x
on [0.05,0.95] and (c) exp(z) on [—1, 1], respectively. Observe that “opt” has the smallest variance
among all distributions. (d) Comparison between b? and cp~ 27 for some constant ¢ > 0 and log .

Theorem 3 Let K = max{0, N — LﬁJ }. The optimal solution {q} }32, of (10) is

0 for i < K
g =S1-(N-K)(p-1)p" fori=K (11)
(N=EK)(p—12p VK for i > K,

and it satisfies the unbiasedness condition in Lemma 1, i.e., lim,_, Z;’Zn 41 qipn () =0.

The proof of Theorem 3 is given in the supplementary material. Observe that a degree smaller than K
is never sampled under {¢; }, which means that the corresponding unbiased estimator (7) combines
deterministic series of degree K with randomized ones of higher degrees. Due to the geometric decay
of {¢q/} , large degrees will be sampled with exponentially small probability.

The optimality of the proposed distribution (11) (labeled opt) is illustrated by comparing it numerically
to other distributions: negative binomial (labeled neg) and Poisson (labeled pois), on three analytic
functions: log z, /= and exp(z). Figures 1(a) to 1(c) show the weighted variance (9) of these
distributions where their means are commonly set from N = 5 to 100. Observe that the proposed
distribution has order-of-magnitude smaller variance compared to other tested distributions.

4 Stochastic Chebyshev gradient descent algorithms

In this section, we leverage unbiased gradient estimators based on (8) in conjunction with our optimal
degree distribution (11) to design computationally efficient methods for solving (4). In particular, we
propose to randomly sample a degree n from (11) and estimate the gradient via Monte-Carlo method:

_ 9 T ~ 1 M (k)T bj Wj
oo, = [5‘9iv P ) V] ~u 2\ LTy (12
k=1 7=0 i=0 11

where 8w§k) /08; can be computed using a Rademacher vector v(*) and the recursive relation (6).

4.1 Stochastic Gradient Descent (SGD)

In this section, we consider the use of projected SGD in conjunction with (12) to numerically solve the
optimization (4). In the following, we provide a pseudo-code description of our proposed algorithm.

Algorithm 1 SGD for solving (4)

1: Input: number of iterations 7', number of Rademacher vectors M, expected degree N and 60
2: fort =0 toT — 1do
3:  Draw M Rademacher random vectors {v(*) MM | and a random degree n from (11) given N

4: Compute 1) from (12) at 0*) using {v(® }M  and n

5:  Obtain a proper step-size 7

6: 0D Tl (00 — ny (v + Vg(0®™))), where II¢ (-) is the projection mapping into C
7: end for




In order to analyze the convergence rate, we assume that (A40) all eigenvalues of A(f) for € C’ are in
the interval [a, b] for some open C’' D C, (A1) X¢(A(8)) + g(0) is continuous and a-strongly convex
with respect to 6 and (A2) A(0) is L a-Lipschitz for ||-|| z, g(6) is Ly-Lipschitz and 8,-smooth. The
formal definitions of the assumptions are in the supplementary material. These assumptions hold
for many target applications, including the ones explored in Section 5. In particular, we note that
assumption (.A0) can be often satisfied with a careful choice of C. It has been studied that (projected)
SGD has a sublinear convergence rate for a smooth strongly-convex objective if the variance of
gradient estimates is uniformly bounded [24, 22]. Motivated by this, we first derive the following
upper bound on the variance of gradient estimators under the optimal degree distribution (11).

Lemma 4 Suppose that assumptions (A0)-(.A2) hold and A(0) is Lyyc-Lipschitz for ||| .. Let ¥
be the gradient estimator (12) at 6 € C using Rademacher vectors {v(k)}ﬁf: 1 and degree n drawn
from the optimal distribution (11). Then, Ey ,[[|v|3] < (2L% /M + d'L2,.) (C1 + CoN*p=2N)
where C1,Cy > 0 are some constants independent of M, N.

nuc’

The above lemma allows us to provide a sublinear convergence rate for Algorithm 1.

Theorem 5 Suppose that assumptions (A0)-(.A2) hold and A(0) is Loyc-Lipschitz for ||-||
chooses the step-size n, = 1/at, then it holds that

If one

nuc’

4 212 CyN*
T * (12 2 A 2 2
E[||9( ) — 0 ||2] < ﬁ max <L97 (M + danuc) (Cl + p2]\/>)

where Cy,Cy > 0 are constants independent of M, N, and 0* € C is the global optimum of (4).

The proofs of Lemma 4 and Theorem 5 are given in the supplementary material. Note that larger
M, N provide better convergence but they increase the computational complexity. The convergence
is also faster with smaller d’, which is also evident in our experiments (see Section 5).

4.2 Stochastic Variance Reduced Gradient (SVRG)

In this section, we introduce a more advanced stochastic method using a further variance reduction
technique, inspired by the stochastic variance reduced gradient method (SVRG) [15]. The full
description of the proposed SVRG scheme for solving the optimization (4) is given below.

Algorithm 2 SVRG for solving (4)
1: Input: number of inner/outer iterations 7', S, number of Rademacher vectors M, expected degree
N, step-size 1) and initial parameter 0(9) € C
(1) 90
fors=1to Sdo _ ~
i)+ V(A(0)) and ) <+ (=)
fort =0to7T —1do
Draw M Rademacher random vectors {v(¥) }M | and a random degree n from (11)
Compute 1), () from (12) at #*) and #(*), respectively using {v(*) MM and n
9+ TIe (9(t> _q <¢<t> ) 4 ) 4 vg(g(t))))
end for
o+ LT o)
end for

TY R R AN

—_—

The main idea of SVRG is to subtract a mean-zero random variable to the original stochastic gradient
estimator, where the randomness between them is shared. The SVRG algorithm was originally
designed for optimizing finite-sum objectives, i.e., > ., fi(z), whose randomness is from the index
1. On the other hand, the randomness in our case is from polynomial degrees and trace probing
vectors for optimizing objectives of spectral-sums. This leads us to use the same randomness in
{v(k) }i:\/IZI and n for estimating both () and +/(*) in line 7 of Algorithm 2. We remark that unlike
SGD, Algorithm 2 requires the expensive computation of exact gradients every 7 iterations. The next
theorem establishes that if one sets 7" correctly only O(1) gradient computations are required (for a
fixed suboptimality) since we have a linear convergence rate.
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Figure 2: Matrix completion results under (a) MovieLens 1M and (b) MovieLens 10M. (c) Algorithm
1 (SGD) in MovieLens 1M under other distributions such as negative binomial (neg) and Poisson
(pois). (d) SGD and SGD-DET under N = 10, 30.

Theorem 6 Suppose that assumptions (A0)-(A2) hold and A(0) is Ba-smooth for |-|| p. Let 3* =

2534_(% + Lj) (D1 + Dp%—%s)for some constants D1, Dy > 0 independent of M, N. Choose
n= 7% and T > 2532 /a?. Then, it holds that

E[[0%) —0*[3] < r [0 — 0|13],

where 0 < r < 1 is some constant and 0* € C is the global optimum of (4).

The proof of the above theorem is given in the supplementary material, where we utilize the recent
analysis of SVRG for the sum of smooth non-convex objectives [ 10, 1]. The key additional component
in our analysis is to characterize 8 > 0 in terms of M, N so that the unbiased gradient estimator (12)
is -smooth in expectation under the optimal degree distribution (11).

5 Applications

In this section, we apply the proposed methods to two machine learning tasks: matrix completion and
learning Gaussian processes. These correspond to minimizing spectral-sums X with f(z) = xl/?
and log x, respectively. We evaluate our methods under real-world datasets for both experiments.

5.1 Matrix completion

The goal is to recover a low-rank matrix § € [0, 5]4*" when a few of its entries are given. Since the
rank function is neither differentiable nor convex, its relaxation such as Schatten-p norm has been
used in respective optimization formulations. In particular, we consider the smoothed nuclear norm

(i.e., Schatten-1 norm) minimization [19, 21] that corresponds to
; 1/2 R )2
ee[l(&})]%xrtr(A )+ A Z (0i; — Rij)
(i,5)€EQ

where A = 007 + eI, R € [0,5]?%" is a given matrix with missing entries, (2 indicates the positions
of known entries and ) is a weight parameter and € > 0 is a smoothing parameter. Observe that
| Allay = [|0]lav = O(dr), and the derivative estimation in this case can be amortized to compute
using O(dM (N? + Nr)) operations. More details on this and our experimental settings are given in
the supplementary material.

We use the MovieLens 1M and 10M datasets [13] (they correspond to d = 3,706 and 10,677,
respectively) and benchmark the gradient descent (GD), Algorithm 1 (SGD) and Algorithm 2
(SVRG). We also consider a variant of SGD using a deterministic polynomial degree, referred as
SGD-DET, where it uses biased gradient estimators. We report the results for MovieLens 1M in
Figure 2(a) and 10M in 2(b). For both datasets, SGD-DET performs badly due to its biased gradient
estimators. On the other hand, SGD converges much faster and outperforms GD, where SGD for
10M converges much slower than that for 1M due to the larger dimension d’ = dr (see Theorem 5).
Observe that SVRG is the fastest one, e.g., compared to GD, about 2 times faster to achieve RMSE
1.5 for MovieLens 1M and up to 6 times faster to achieve RMSE 1.8 for MovieLens 10M as shown
in Figure 2(b). The gap between SVRG and GD is expected to increase for larger datasets. We also
test SGD under other degree distributions: negative binomial (neg) and Poisson (pois) by choosing



parameters so that their means equal to N = 15. As reported in Figure 2(c), other distributions have
relatively large variances so that they converge slower than the optimal distribution (opt). In Figure
2(d), we compare SGD-DET with SGD of the optimal distribution under the (mean) polynomial
degrees N = 10, 30. Observe that a larger degree (/N = 30) reduces the bias error in SGD-DET,
while SGD achieves similar error regardless of the degree. The above results confirm that the unbiased
gradient estimation and our degree distribution (11) are crucial for SGD.

5.2 Learning for Gaussian process regression

Next, we apply our method to hyperparameter learning for Gaussian process (GP) regression. Given

training data {xi € R* }jzl with corresponding outputs y € R¢, the goal of GP regression is to learn
a hyperparameter 6 for predicting the output of a new/test input. The hyperparameter ¢ constructs
the kernel matrix A(0) € S%*¢ of the training data {x;}¢_; (see [23]). One can find a good
hyperparameter by minimizing the negative log-marginal likelihood with respect to 6:
1 1
L:=—logp (yl{xi}L,) = inA(G)_ly + 3 log det A(6) + g log 27.

For handling large-scale datasets, [32] proposed the structured kernel interpolation framework
assuming 6 = [0;] € R? and

A(0) = WEWT + 9%], K, ;= 9% exp (||xl — Xj||%/29?2)) ,

where W € R¥*" is some sparse matrix and K € R"*" is a dense kernel with r < d. Specifically,

in [32], r “inducing” points are selected and entries of W are computed via interpolation with the

inducing points. Under the framework, matrix-vector multiplications with A can be performed even
DA

faster, requiring || Allny = [|W|lav + | K|lav = O(d + 72) operations. From || Al|ny = ”W”mv and

d' = 3, the complexity for computing gradient estimation (12) becomes O(M N (d + r?)). If we
choose M, N,r = O(1), the complexity reduces to O(d). The more detailed problem description
and our experimental settings are given in the supplementary material.

We benchmark GP regression under natural sound
dataset used in [32] and Szeged humid dataset [6]
where they correspond to d = 35,000 and 16, 930,
respectively. Recently, [8] utilized an approximation
to derivatives of log-determinant based on stochastic
Lanczos quadrature [30] (LANCZOS). We compare
it with Algorithm 1 (SGD) which utilizes with un-
biased gradient estimators while SVRG requires the © apsedime see] ® apeedtmofeed
exact gradient computation at least once which is in- @ (b)

tractable to run in these cases. As reported in Figure

3, SGD converges faster than LANCZOS for both  Fjgure 3: Hyperparameter learning for Gaus-
datasets and it runs 2 times faster to achieve RMSE  gjan process in modeling (a) sound dataset and
0.0375 under sound dataset and under humid dataset (b) Szeged humid dataset comparing SGD to
LANCZOS can be often stuck at a local optimum,  stochastic Lanczos quadrature (LANCZOS).
while SGD avoids it due to the use of unbiased gradi-

ent estimators.

0.041

~-LANCZOS ~-LANCZOS
SGD 0.171 sGD

o
o
i~

test RMSE
o
o
&

0.038

6 Conclusion

We proposed an optimal variance unbiased estimator for spectral-sums and their gradients. We
applied our estimator in the SGD and SVRG frameworks, and analyzed convergence. The proposed
optimal degree distribution is a crucial component of the analysis. We believe that the proposed
stochastic methods are of broader interest in many machine learning tasks involving spectral-sums.
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Stochastic Chebyshev Gradient Descent
for Spectral Optimization:
Supplementary material

A Details of experiments

A.1 Matrix completion

For matrix completion, the problem can be expressed via the convex smoothed nuclear norm mini-
mization as

. 1/2 R
9e[rg}éﬁx’"tr(A )+)\(m§');fz (aw Rw) 7 o

where A = 007 + eI, R € [0,5]7%" is a given matrix with missing entries, (2 indicates the positions
of known entries and A is a weight parameter and € > 0 is a smoothing parameter. In this case, the
gradient estimator (12) can be amortized as

9 M n—l n—1 b T
Votr( Ap/2 Z —0) Wl(m Z #ﬁl*yyﬁl 0 (14)
k:l z:O = =04
where
(?1 = QW(k) Wg»k_)l, ng) = /va, W(()k) = v(k),

(k) (k) (k)

k = k
Yj+1 = 2wty 00 v =24v®, gt = v(®)

and A = (%A - Zf—i]) for the lower/upper bound on A’s eigenvalues a,b € R*. This comes
from the following lemma, whose proof is in Section B.5.

Lemma 7 Suppose f is an analytic function and p,, () = Z;‘L:O b;T;(x) is its truncated Chebyshev
series of degree n > 1 for v € [—1,1]. Let A = 007 + I for 6 € R¥" ¢ > 0 such that all
eigenvalues of A are in [—1,1). Then, for any v € R, it holds that

n—1 n—1 T
Vov pn(A)v =2 Z (2- (Z bit1yj— 1) ,

i=0
where w1 = 2AW; —W;_1,W1 = Av,Wo =vandy i1 =2Wj1 +y;j—1,¥1 = 24v,yo = V.
Observe that |A|lwy = ||0|lov = O(dr), and the computation for (14) can be amortized using
O(M (n*d + ndr)) operations. For M, n,r = O(1), the complexity reduces to O(d).
After update the parameter @ in a direction of gradient estimator, we project 6 onto [0, 5]9%", that is,

Hi,j, if Hiﬁj c [0, 5],

e (0i,) = {0, if 0;; <0,
5, otherwise.

In addition, after performing all gradient updates, we finally apply low-rank approximation using
truncated SVD with rank 10 once and measure the test root mean square error (RMSE).

Setup. We use matrix R from MovieLens 1M (about 10° integer ratings from 1 to 5 from 6, 040
users on 3, 706 movies) and 10M (about 107 ratings from 0.5 to 5 with intervals 0.5 from 10, 677



users on 71,567 movies) datasets [13].We randomly select 90% of each dataset for training and
use the rest for testing. We choose the (mean) polynomial degree N = 15 and the number of
trace random vectors M = 100 for SVRG and M = 200 for SGD-DET, SGD, respectively, for
comparable complexity at each gradient update. Especially, for SVRG, we choose T' = 100.We
decrease step-sizes exponentially with ratio 0.97 over the iterations.

A.2 Gaussian process (GP) regression

Given training data {x; € R’ }il with corresponding outputs y € R, the goal of GP regression is
to learn a hyperparameter 6 for predicting the output of a new/test input. GP defines a distribution
over functions, which follow multivariate Gaussian distribution with mean function g : R 5 R
and covariance (i.e., kernel) function ay : RY x RY — R. To this end, we set the kernel matrix
A = A(0) € S of {x;}¢_, such that 4; ; = ag (x;,%;) and the mean function to be zero. One
can find a good hyperparameter by minimizing the negative log-marginal likelihood with respect to 6:

1

1
2yTA_1y+ §1ogdetA+ glog%r, (15)

L:=—logp (yl{xi}i,) =
and predict y = aTA’ly where a; = ap(x;,x) (see [23]). Gradient-based methods can be used for
optimizing (15) using its partial derivatives:

oc 1 ( +0A e 0A 10logdet A

o6, — 2\7 8, 00.7) "2 06,

Observe that the first term can be computed by an efficient linear solver, e.g., conjugate gradient
descents [27], while the second term is computationally expensive for large d. Hence, one can use
our proposed gradient estimator (12) for X y(A) with f(z) = log x.

For handling large-scale datasets, [32] proposed the structured kernel interpolation framework
assuming 6 = [0;] € R? and

A(9) = WEKWT + H%I,KM = 9% exp (sz‘ — xjH%/Zeg) ,

where W € R?*" is some sparse matrix and K € R"*" is a dense kernel with r < d. Specifically,
the authors select r “inducing” points and compute entries of W via interpolation with the inducing
points. Under the framework, matrix-vector multiplications with A can be performed even faster,
requiring || Allny = [|W ||lav + || K |lav = O(d + 72) operations. From ||A||ny = H%Hmv and d’' = 3,
the complexity for computing gradient estimation (12) becomes O(M N (d + 72)). If we choose
M, N,r = O(1), the complexity reduces to O(d).

Setup. We benchmark GP regression under natural sound dataset used in [32, 8] and Szeged humid
data [6]. We randomly choose 35, 000 points for training and 691 for testing in sound dataset and
choose 16, 930 points for training and 614 points for test in Szeged 2015-2016 humid dataset. We set
the polynomial degree N = 15 and M = 30 trace vectors for all algorithms. We also select » = 3000
induced points for kernel interpolation. Since GP regression is non-convex problem, the gradient
descent methods are sensitive to the initial point. We select a good initial point using random grid
search. We observe that our algorithm (SGD) utilizing unbiased gradient estimator performs well for
any initial point. On the other hand, since LANCZOS is type of biased gradient descent methods, it
is often stuck on a bad local optimum.

B Proof of theorems

B.1 Smoothness and strong convexity of matrix functions

We first provide the formal definitions of the assumptions in Section 4. Let C C RY be a non-empty,
closed convex domain and h : R¥ — Rbea continuously differentiable function.

Definition 1 A function h is L-Lipschitz continuous (or L-Lipschitz) on C if for all 6,0" € C, there
exists a constant L > 0 such that

1(0) = h(0")] < L |6 — 6]



Definition 2 A function h is S-smooth on C if its gradient is B-Lipschitz such that
IVR(0) = VA(E )], < B0 =6, -

Definition 3 A function h is a-strongly convex on C if for all 0,6’ € C, there exists a constant o > 0
such that

(Vh(B) — Vh(6'),6 —0') > a[|§ — 6|5

The above definition can be extended to functions map into matrix space. For example, suppose
A:RY — R4 ig a function of @ € C and assume that all 0A, ;/00; ’s exist and are continuous.

Definition 4 A function A(0) is L s-Lipschitz with respect to ||-|| . if for all 6,6’ € C, there exists a
constant L 4 > 0 such that

IA() = A(0) | p < Lall =6,

Similarly, A(0) is Lyuc-Lipschitz with respect to ||-||
Lpwe > 0 such that

e (Matrix nuclear norm) there exists a constant

IA(0) = A(0)l|yue < Lauc 0 — 6], -

nuc

Definition 5 Ler A : R — S%*? pe a continuously differentiable function of 0 € C. If A(0) is
Ba-smooth if for all 6,0’ € C, there exists a constant 3, > 0 such that

‘ DA(B)  DA(0)

00 00

\SBAW—wQ.
F

B.2 Proof of Theorem 3 : optimal degree distribution

By adding Z;’il p~% =1/(p* — 1) in both sides of (10), the optimization (10) is equivalent to

min subject to ann =N, Z ¢n=1and g, >0. (16
{an}so £ 1_ Zn 04n n=1 n=0

Note that the equality conditions can be written as

n=1j=1 j=1ln=j J=1

By Cauchy-Schwarz inequality for infinite series, we have

; 00 J—1 00 *2j
N 1- n N
Zl— . ;( q) ;1—2] =0 n

2
1

(p—1)?

i
bI

and the equality holds when go = 1 —N(p—1)p~ " and q,, = N(p—1)2p~ "+ for n > 1. However,
this solution is not feasible when a given integer NV is greater than ﬁ (due to go < 0). The solution
of (16) exists since the feasible region is closed and nonempty. For example,

0 for 0 <n <k,
(N =k=1)(p—1)
" 1-— for n=k+1,
qp, = P (18)
N—k—1)(p—1)?
( )k(p ) for k+2<n
P



withk (=N —-1— L 7| is feasible and achieves the objective function of (16)

1— p—2(k:+1) 1

2
P—1  (N—k—1)(p— 12200

To figure out that ¢* is the optimal solution, one can investigate KKT conditions of (16). However, in
general, KKT theorem can not be applied to infinite dimensional problems. Instead, we consider the
finite dimensional approximation of (16):
T 2 T T
min Z T subject to ann =N, an =1 and ¢, >0. (19)
qose--y _
n=0 dn n=0 n=0

As we show in later, one can obtain the optimal solution of (19) for sufficently large 7" using KKT
conditions, which is
0 for 0 <n <k,
(N—k=1(p-1) _,
1— p~T+k+1
=9 (N—-k—-1)(p—1)2 _ .\ (20
1= Tkt for k+2<n<T-1

(N —k=1)(p—1)

1—

for n=k+1,

P for n=T
with k := N — 1 — [ -2 ] and achieves the minimum
1— p—2(k+1) N (1 p—T+k+1) on
p?—1 (N —k—1)(p—1)2p2kt1)’

We will show that the minimum of the infinite problem (16) is equivalent to the limit of (21) (a similar
approach was introduced in [28]). We first extend q,, to the point with infinite dimension.
Let q,(LT) = g, forn < T and q%T)

of (16). Note that lim7_, (L(v,T)

=0forn > T, then ¢(T) = (q(()T), a0 ), ...) is a feasible point
= g, for all n. Define that

—2.'

P

—————a—q%n, T=1,2,...,

ey ={ 2 Tozotn

¢.T) = e

o el CINE L
0 4n

for ¢ = (qo,q1,-..). We claim that f is continuous. Suppose T; € N is a nondecreasing infinite
sequence such that T; > k,T; — oo and ¢ — ¢* as i — oo. Consider that

f(q*a OO) - f(q(Tl)7TZ)

1 -
]11_

=|C(q") — C(¢");Ty)

00 *2j T —2j

e

j=1 Zn 0 dn ]ll_z’n an

= p% N 1 L
AR Yl )
j:Ti—&-l Zn oqu =1 1_En an Z ( )

pr —k prifkfl
SN kDD T kD12 (22

IN

’If k = —1, it is equivalent to the minimum from Cauchy-Schwarz inequality.



and (22) goes to zero as ¢ — oo. In addition, the feasible set of (19) is nondecreasing, i.e., if we
define the feasible regions as

T T
X(T) = {q:ann—N,an—l,qn > 0,4, =0 forn>T},

n=0 n=0

X = {q:inQaniQnLano}
n=0 n=0

then X (T") C X(T'+ 1) for any T'. This leads to limp_,oo X(T") = Up>1 X (T') = X. Therefore, by
the Berge’s Maximum Theorem [3], the minimum of the finite dimensional problem (21) converges
to that of infinite problem (16), i.e.,

min Zi'qGX = lim min Zi'le(T)
jll_ZnOn T=roe jll_ZnO”
1 — p—20k+1) 1 o~ T+k+1
— lim 2 n (1-p )
500 P2 — 1 (N —k—1)(p— 1)2p20+D
1— p—2(k+1) 1
T P—1 (N k-D(p— 1P

Since ¢* in (18) achieves the above minimum, it follows that ¢* in (18) is the minimizer of (16).

The remaining part is to obtain the solution of the finite dimensional approximation (19) using
KKT conditions. Since the objective and all inequality conditions are convex functions, any feasible
solution that satisfies KKT conditions are optimal. Define the Lagrangian as

(ann —N) + X2 <nz:qn — 1) —nz:unqn

where A1, Ay and vy, ..., vy are the Lagrangian multipliers of equality and inequality condition,
respectively. The corresponding KKT conditions are following:

T p=2i

Lig\v) =) T

j=1 n=09n

e Stationary: For0 <n < T,

L p¥
—= = +Ain+ A2 — v, =0, (CI)
9n j:%-:i,-l (1 Zn’ 0 In’ )

T T
Y nga =N, > gn=1, ¢, >0, (C2)
n=0 n=0
e Dual feasibility: For0 <n < T,
Un 2 0, (C3)

o Complementary slackness: For 0 < n < T,

VnQn = 0. (4
Consider (g, A, v) that satisfies the KKT conditions holds that v, =0,k +1 <n < T and v,, # 0,
0 < n < k for some k € [0,7]. By the complementary slackness (C4), go = g1 = --- = g = 0.
Substracting two consecutive stationary conditions (C1), we obtain for 0 <n <7T —1
oL oL p~2(n+h)

dadi - — M —VUp+vpy1 =0, (23)
3% 3Qn+1 (1 — Zn’ 0 qn’ )2 ! i



which implies that
—(n+1)
p
1-— Gt = == fork+1<n<T-1. (24)
EI o

Putting them together into the equality condition (17) gives
1— p—(T—k—l)
N = 1-—- G | =k +14+ ———F——,
§:< ;% ) VAP 1)

_ = (T—k-1)

equivalently, \/\; = 0 Ni DT (=T Therefore, we obtain the solution from (24):

0 for 0 <n <k,

(N—k-1)(p—-1) _,
1— p—T+k+1

=9 N-k-1)(p—1)° _,
1 — p-THk+1

N -k—-1)(p—1)
pT—h=1_1

1—

for n=k+1,

for k+2<n<T-1

for n=T

In order to satisfy the primal feasibility (C2), it should hold that
1— —T+k+1
p(p—l)zN—k—l and k<N —1. (25)
p—
From (23), the dual variables v can be written as for n < k

Up — Ung1 = p72(n+1) o Al

and in order to satisfy the dual feasibility (C3), i.e., v, > 0 for n < k, the sufficient condition is
(1= p T+

N—-k-1>
p—1

(26)

(1—p=T"HEHY)  p(1—p=THEH)
p—1 ’ p—1

To satisfy both (25) and (26), there exists an integer in the interval [
We now choose 7" large enough such that
p_| _pl—p )
p—1] "~ p—1

—T+k+1) p(lfp_T'H“'H)

and it holds that { £ J [ , P ] for some 0 < k£ < N — 1. By choosing

ki=N-1-[;%].{¢ W}, in (20) satisfies the KKT conditions and acheives the minimum

)

1— p20e+1) (1- p—T+k+1)
Po1 Nk (- D2

B.3 Proof of Theorem 5 : convergence analysis of SGD

We recall that §®) € ¢ C RY by the parameter in the ¢-th iteration and 92@ by its element i-th
position for ¢ = 1,...,d’. For simplicity, we denote that

h(0) := %5 (A(0)) + 9(0)

and 0* € C be the optimal of h. Let ¢(*) be our unbiased gradient estimator for ¥ ;(A(6)) using
{v(®)}M and n, that is,

950

(®)
nv[djt] 80



and Vg(*) be the derivative of g(#) at 6*). Unless stated otherwise, we use ||-|| as the entry-wise
Ls-norm, i.e., Lo-norm for vectors and Frobenius norm for matrices. Now we are ready to show the
convergence guarantee for SGD. The iteration of SGD can be written as

o+ — 11, (9<t) —n(® 4 vgu)))

where I1¢ (-) is the projection mapping in C. The remaining part is similar with standard proof of the
projected stochastic gradient descent. First, we write the error between 8(*) and 6* as

164+ — 671> = ||TLe (6 — n(p® + Vg(¥))) — 6|2
<6 = n(w® + vg®) — 67|
= (160 = 0712 = 2 (v + Vg, 00 = 9*) + v + Vg
<[00 = 0712 = 2 (0 + Vg, 00 — 67 )+ 2|2 4 207 Vg
<69 — 0|2 — 2 (4 © + Vg, 0D — 0 ) + 22|y D + 2L
where the inequality in the second line holds from the convexity of C, the inequality in the fourth
line follows from that ||a + b||?> < 2||a||? + 2||b||? and the last inequality follows from Lipschitz

continuity of g. Taking the expectation with respect to random samples (i.e., random degree and
vectors) in ¢-th iteration, which denoted as E;[-], we have

Ei[]j60) = 0%2) < 6 — 0*)* — 20 (VA(O), 60 — %) +4n?B  @7)
where B? := max (E,[[|¢(V]|?], L2). In addition, by a-strong convexity of h, it holds that
alo® — 6% < <Vh(9<t>), oo e*> . (28)

Combining (27) with (28) and taking the expectation on both sides with respect to all random samples
from 1, ..., ¢ iteration, we obtain that

E[||6"+Y — 6%|°] < (1 - 200)E[|6" — 67[%] + 4B
Applying n = é we have

4B2
a?t?’

2
BlIOC -2 < (1- 3 ) B0 - 6712+

Therefore, if E[||§()) — 6%||?] < 4B%/a? holds, then the result follows by induction on ¢ > 1. Under
assumption that E[||6®) — 0*|?] < 4B?/(a?t), it is straightforward that

2\ 4B2 4B2 4B2 1
E[I00) —o* 2 < (1-2) = + = < — [ — ).
i I = t) o?t + a?t? — a2 \t+1

To show the case of ¢ = 1, we recall the strong convexity of h and use Cauchy-Schwartz inequality:
ol — 6 < (90 + Vg0, 60 — 6 < [V + VgV 60 — 67,
which leads to that
o’E[[I8W — 67|17 < B[y + Vg’ < 4B,
Recall that Lemma 4 implies that for all ¢
E (9@ < LA/M + d' L) (Cr + C2Np~2Y) .

for some constants C,Cy > 0. This completes the proof of Theorem 5.



B.4 Proof of Theorem 6 : convergence analysis of SVRG

Denote the objective as h(6) := X ;(A(6)) + g(0). Let p®), 4 be our unbiased gradient estimator for
Y1 (A(0)) at 6®) and 6, respectively, and i = VX 1 (A(6*))). We use Vg by the exact gradient
of g(6) at 6), which is easy to compute. The iteration of SVRG can be written as

9D =TI (6 — pe®),  where €@ = ¢® — o) + i+ Vg®

where Il (+) is the projection mapping in C. We first introduce the lemma that implies our unbiased
estimator is 3-smooth for some 5 > 0.

Lemma 8 Suppose that assumptions (A0)-(A2) hold and assume that A : C — S4*? is 3 4-smooth
function with respect to ||-|| . Let 1,1’ be our unbiased gradient estimator (12) at 6,6’ € C C R

using the same {v(k)}{y:1 and n (drawn from (11) with mean N ). Then, it holds that

L4 2 D NS
B 10+ V0(0) — o = Va0 18] < (262 + (5572 + 14) (D14 22 ) ) Io - 02

where Dy, Dy > 0 are some constants independent of M, N.

The proof of the above lemma is given in Section B.5. For notational simplicity, we denote

LA —|—ﬁ2 Dy N8
2. 2 A A 4
B 253—"—(-{-1/4) <D1+2N .

The remaining part mimics the analysis of [10]. Using the above lemma, the moment of the gradient
estimator is bounded as

Ey[[[0 — & + i+ Vg *) < 2By [[[010 + Vg — 47 = Vg |P] + 2Be [} — " ~ Vg* — ]’
<2E[[[9") + Vg — ¢ = Vg P + 2B |l + Vg — v* = Vo]
<282 (16 — 6|12 + 16 - 0|2) (29)

where the inequality in the first line holds from ||a + b||?> < 2(||a||? + ||b]|?), the inequality in the

second line holds that E[|| X —E[X]||?] < E[|| X ||?] for any random variable X and the last inequality
holds from Lemma 8.

Now, we use similar procedures of Theorem 5 to obtain
00+ = 0%)12 = e () — ) — 072
< [0 —ne® — 07|
= (169 = 6%12 =20 (6 = 07, &: ) + llI*.

where the inequality holds from the convexity of C. Taking the expectation with respect to random
samples of ¢-th iteration, which denoted as E;[-], we obtain that

B[00 — 07| = 6 — 0" — 20 (6 — 6", VA(8D) ) + n*Bu[& ]
< 109 = 6|12 = 2500 — 67|12 + 1P Eu |6
<6 — 6|12 — 26 — 6|12 + 2725 (|0 - 6°|1* + |7 - 6" )

where the inequality in the second line holds from the a-strong convexity of the objective and the last
inequality holds from (29). Taking the expectation over the randomness of all iterations, we have

E[0¢H) — 6%|°] = B[|0Y — 6°|]°] < 20 (n8* — ) B[ — 0] + 20° BE[[|6 — 67|
Summing both sides over ¢t = 1,2, ..., 7T, it yields that

T-1
E[|6 — 67 |°] = B[]0 — 67|"] < 20 (n8” — ) > E[|6") — 6*[|°] + 2T B°E[[|6 — 67|°]

t=0



Rearranging and using the facts that E[[|§(T) — 6*||2] > 0 and 6 = (), we get
T—1

21 (a —np%) Y E[|0D — 0| < (14 2T9°6%) E[|0 — 6?].
t=0

From A(:+1) = % ZZ;I 6" and Jensen’s inequality, we have

1+ 2Tn%p?

BYI§C+) - 67| ZEW IS g

E[|0©) — 0%’

49’3 , we have that

Substituting n = ﬁ2 and T' >
E[[09) — 07| < rSE[|6 — 6%

for some 0 < r < 1.

B.5 Proof of lemmas

B.5.1 Proof of Lemma 1

Without loss of generality, we choose a = —1,b = 1. An analytic function f has an (unique) infinite
Chebyshev series expansion: f(z) = ZOO b;T;(x). and recall that our proposed estimator as

- b
3 il Zz o i

To prove that E,, [p,, (z)] = f(z), we define two sequences:

M M
A qn 1' , B = .
" JZ;JHX—; Ll_ZzO 4 e jz(:)nz_; 1_21 oqz

Then, it is easy to show that
n

JWh—I>nooAM ZZ 1_ = an Z b T Zann :En [ﬁn (SC)],

j=0n=j ZZOZ n=0 jOl_Zzol

and

lim lim By kg = hmz i” &: lim ZbT (x).

M—oc0o K— _ M—
o o 7=0 n=j 1 27 Oq >

In general, Aj; and B)y, i might not converge to the same values. Now, consider sufficiently large
K > M. From the condition that lim,, o z;’an ¢iDn (x), we have

E, [An (1‘)] - f(l') = lim lim (AM - BM,K) hm lim Z Z 7)

M—00 K—00 M—o00 K—00 _
j=0n=M+1 "1 Zz 0‘12

K M
lim lim Z In Z L()
M—o00 K—00 ]__ZJ Oql

n=M+1 7=0

Jim (nz qn> ZT

—M+1 =0 i=0 i
oo
1&%( 2 %) w(@) =0
n=M+1



Therefore, we can conclude that p,, (x) is an unbiased estimator of f(x). In addition, this also holds
for the trace of matrices due to its linearity: E,, [tr (p, (A))] = tr (f(A)) . By taking expectation
over Rademacher random vectors v and degree n, we establish the unbiased estimator of spectral-
sums:

Env [V 5a (A)v] = Ey [Ey [v 5, (4) vin]] = E, [t (Ba (4))] = tr (f(4)),

For fixed v and n, the function h(0) := v p,(A(f))v is a linear combination of all entries of A,
so the fact that all partial derivatives 0A; ;,/00; exist and are continuous implies that the partial
derivatives of h with respectto 61, ...,y exist and are continuous. In particular, since expectation
over v € [—1,+1]%is a finite sum, it is straightforward that the gradient operator and expectation
operator can be interchanged:

Votr (f(A)) = VoE [v' 5, (A)v] =E [Vov D, (4)v].

In the case of trace probing vector v is a continuous random vector, i.e., Gaussian, we turn to use the
Leibniz rule which allows to interchange the gradient operator and expectation operator. Hence, we
conclude the same result. This completes the proof of Lemma 1.

B.5.2 Proof of Lemma 2

Without loss of generality, we choose a = —1,b = 1. We first introduce the orthogonality of
Chebyshev polynomials of the first kind, that is,

0 i # J
L@@, _ ] . i=j=0
V1 — 72 ’
-Vl T i=j+#0

Given functions f, g defined on [—1, 1], Chebyshev induced inner-product and weighted norm are
defined as

oo = [ H2%8ae s = 7.

For a fixed n, the square of Chebyshev weighted error can be written as

Hﬁn - f||2C = ||ib\n —Pn +pn - fH% = Hpn - f”%‘ +2<pn - fa}/?\n _pn>c + ||]/9\n _an%

(T) ~
”pn f”%} + ”pn - pn”%‘

2 2
=S 1| + Z Y= an b, T
j=n+1 . Zk: 0% c
2
[o ] n J
Wz( o).
j=n+1 1_21 OqZ

Both the second equality () and the last equality (1) come from the orthogonality of Chebyshev
polynomials and the following facts:

prn — [ : linear combination of Ty y1(x), Tpyo(x), -,
Dn — pp : linear combination of Ty (z),- -+ , T ().

10



The Chebyshev weighted variance can be computed by taking expectation with respect to n:

2
*En An_ :
ZEn(|5n — fI2]

9 X oo oo
;ZQan)\n _fH%' ZQOZb?"‘ZQn
n=0 7j=1 n=1

> ¥

j=n+1

n 7j—1
1OQ1
Z( zOl)

=> qo+Zq1 ( 120% > qu
j=1 i=0 i

:jibz 2:% <f(hh> (1_mqu
j=1 ’ Y0 € i=0

:ib2 jzjlq (Zz 0%) :ib2< Zl_é% >
j:1j 101 1_2101 1_21 OQl

This completes the proof of Lemma 2.

B.5.3 Proof of Lemma 4

First, we define the n degree Chebyshev polynomials of the first kind by T;,(-) and the second kind

by U,(-). One important property is that T, (z) :

D.

LT, (x) = nUp—1(z) forn > 1 (see [

Consider our unbiased estimator with a single random sample, i.e., a Rademacher vector v and a
degree n drawn from the optimal distribution (11).

From the intermediate result (34) in the proof of Lemma 7, the gradient estimator can be written as

following:
8 T~
90, vV Dn

i =
where

G:ZE

Jj=0

(A@©)) v

(22’7’

2
T b—a

vIGv

@)

(30)

and A = 72-A(0) — 22T and 3_ ' implies the summation where the first term is halved. We also

note that tr (G) = (gé ﬁn(A)) Here, our goal is to find the upper bound of E,, v [1/?], that s,
O, 2l = By [(vTGY)?] = B By [(vTGv) 0] .

From [14, 2], we have that Var, [v Av] = 2(||A]|7, — 2%, 42) < 2]||A|% and B, [v Gv] =

tr (G) for Rademacher random vector v € [—

E, [(VTGV)Q |n} = Varv[vTGv‘n] +E, [VTGv’n}2 <2 ||G||§7 + (tr (@))%

The first term in (31) is bounded as

9A 2 no

2Gll < 2|55 b
v F j=1

OA 2 no

<2 b

=2|3g, |, | =1

9A 2 noo

=2 bj

0i||p \ =7

1,1]% and A € §9*4

. Therefore, we have

€2y

2

| (22 I, (D) o0 (A >|2>

2

r=0

4 (22’(]’—7"4—1))

11



which the first inequality comes from the triangle inequality of ||-|| » and the fact that || XY||» <
[IX||z |Y]|2 for mutliplicable matrices X and Y. The inequality in the second line holds from

ITi(A)ll> < 1 and [[Us(A)l2 < i +1 for i > 0.

For second term in (31), we use the inequality that tr (XY) < || X]||
matrices X, Y (see Section B.5.8) to obtain

e = (o (L)) <[22 o

nuc

e 1Y ||2 for real symmetric

2

OA LA .
=170; > biU;1(A)
¢ llnuc || j=1
2
2

A |I?

<
— || 06;

> [

nuc \ j=1

=1 /b\jjUjfl(LL') and the

last 1nequahty holds from ||U;(A)|lz < i + 1. Putting all together into (31) and summing for all
i=1,...,d, we obtam that

.
ZEN <5 _4@)2 S E. 20617 + (e ()]
i=1

oo Claal 1) = |

o (1L S ) (0
j=1

00;
When we estimate 1) using M Rademacher random vectors {v(k) MM | the variance in (31) is reduced
by 1/M. Hence, we have

R ’
where the equality in the second line uses that (Z?:o bjTj(;v)) ="

2 n
Je. | (Sl

=1

nuc

4 d noo ‘
e o (], ) = (SR
_2
4 212
< oo ( 2L ﬂmguc \b E

Finally, we introduce the following lemma to bound the right-hand side, where its proof is given in
Section B.5.6.

Lemma 9 Suppose that q}, is the optimal degree distribution as defined in (11) and b; is the Cheby-

shev coefficients of analytic function f. Define the weighted coefficient Bj as Ej =b;/(1- Zf (} q;)
for 7 > 0 and conventionally q* ; = 0. Then, there exists constants C1, Co > 0 independent of M, N

such that
2

- Oy N4
an Zlbﬂf <Ci+ pzziN'

j=1

To sum up, we conclude that
2L72 CyN*
ETL;V[wQ] S ( MA + d/L121u0> (Cl + 2 )
p2N

for some constant C, Cy > 0. This completes the proof of Lemma 4.

12



B.5.4 Proof of Lemma 7

We consider more general case in which A S SdXd is a function of parameter 8 = [01,...,04],
and our goal is to derive a closed form of 89 v p,, (A) v with allowing only vector operations. We

begin by observing that for any polynomial p,, and symmetric matrix A € S¢*9, the derivative of
Ey[vp, (A) v] can be expressed by a simple formulation, that is,

0A
80;"

iIEV [van (A)v] =

i r (pu(4)) = 9},(4)

—t
00;
Howeyver, it does not holds that

o pal A = ot (pa(A)v ) £ (AT S

for some vector v € R?. This is because of %tr (Ajva) £ jA Ty T gA in general.

If p,(z) is the truncated Chebyshev series, i.e., po(z) = 3°7_(b;Tj(x), we can compute

a%‘ v p, (A)v efficiently using the recursive relation of Chebyshev polynomials, that is,

Tja(x) = 20T (x) — T (2),

where T;(x) is the Chebyshev polynomial of the first-kind with degree j. Let w; := T;(A)v for
7 > 0, and we have that

%V (A varT va ( > ibv . (32

7=0 7=0 7=0

In the right hand side, v (%9 ) can be computed using the recursion w11 = 24Aw; — w;_1:

ow 0 0
T+ T R 5 T N
5.~ 0, (2Aw; —w;_1) 20, (Aw;) —v

0A ow ; ow;_
_ T ) T Jj) T Jj—1
2<v aeiw]+v A89i> v 26,

where v 2% = v gg‘ vandv ' d‘g"’ = 0. Applying induction on j > 1, we can obtain that

TOW;j-1

00;

ow; J OA
T +1 T
8; = ;;) (2 — o) Wy 76,1 (33)

where yj 11 = 24y; —yj—1 = 2Wj11 +yj-1,y1 = 2Avand yo = v. 3 Putting (33) to (32), we
get

9 i Wil o J 9A
%van v = Z bjav' J Z b1 ];) (2 — ]lkzo)w,;ra—eiyj_k ) 34)
In case when A = 00T + el and §# € R**",itholds thatfor ¢ = 1,...,dand m = 1,...,r,

0A
09¢m

= egQ:Tm + 9;’me2—, (35

¥ Indeed, y; = U;(A)v for j > 1, where Uj(z) is the j-th Chebyshev polynomial of the second-kind.

13



where 0. ,,, € R is the m-th column of ¢ and e, € R? is a unit vector with the index £. Finally, we
substitute (35) to (34) to have

0 9 ! J 9A

n—1 J
= Z bj+1 (Z 2 — 1= 0) Wk (610 + 0. ,m€y )Yj—k>
k=0

=0

n—1 J
(t
D E bj+1 ( E (2 — Lr=o) (€ WrY; 40:m + e;r}’jkwijﬁ,m))
-0

7=0

(2= Tp—o) (Why, i +¥j- ka)>]9m

||
l—l
<.
H
[en}

k

+

=
-~
bl
n M~
(e}

(2 — Lp—0) 2 Wry,_ k>]0

i=0 k=0
n—1 7
= e; |? Z bjt1 <Z (2 — Tg=0) ka;rk> 9‘| e;n
=0 k=0
n—1
2[22(2—111@ 0 (ij+1yg k) ]
k=0 £,m

where e/, € R” is the unit vector with index m satisfying with 6. ,,, = fe},,. The equality (}) holds
from that a' b = b a for any two vectors a and b, and for the equality (i) it is easy to check that

i:o (2 — 1g=0) wky] P = Zk 02 —=1—0)y;— kW) using 2w; =y, —y;_2 for j > 2. Thus,

n—1
Vov ' pa(A :22 2 — 1y=o) <ij+1yj k)

=0

This completes the proof of Lemma 7.

B.5.5 Proof of Lemma 8

The proof of Lemma 8 is similar with the proof of Lemma 4. We recall the formulation

_ 0 T _ 2 o7
(IRES 89iv Dn (A(0)) v = T Gv
where
G= ZZ (22 T, ( (A))
j=0
and A = 72-A(0) — 221, Define that AG := G(0) — G(¢). Our goal is to find some 3 € R such

A(0
that E,, v [(vT AGv)? ] < B%(0; — 0%)2. For notational simplicity, we write that
T(A) ~T.(A) =T, ~T;,  AU;=Uj(A) - U;(A) =U; - Uj,
2

bfa<A<9>—A(9’>), 0A _ DA©) _ 9A()

9 9 99
and AG can be expressed as

AA = A)=0-0.

n—1 j /
0A 0A
E [ ( > T&T@-U T;aT Uj r> :

r=0

14



We use similar procedure in the proof of Lemma 4 to obtain

(b—a)?
1

By [(05 = 0)%] = Buw [(vTAGY)’] = B, [By [(vTAGY)*[n]]
=E, [Varv[vTAGv|n} +E, [v'AGvV|n] 2}

E, [2 IAG|2 + (tr (AG))Q] . (36)

For the first term in (36), we use the triangle inequality to obtain

A/
T’(9 U

n—1
Iacls <3 541 '

®

and consider that

0A 0A 0A 0A
T T/ Tri j—r T ! T/ !
s H< 550+ [ o] [ (5 - )
3A 3A 0A
-1, 18Tl 1T a5 | -,
aA , 9A (j—r)(j—r+1)<j—r+2) oA .
< [|AA|, 7 || 5 —r 1)+ || = AA AT —r+1
<A, 22 Fo rt >+H% ) : jaal, +ags| G-ren

where the first inequality is from the triangle inequality of ||-|| . and the second inequality holds
from || XY < || X|l5 )Yl » for multiplicable matrices X, Y and the last is from ||T;(A)|2 < 1,
Ui (A)|l2 < i+ 1fori > 0and

|U(X + E) — Ui(X)|, < W

(221 37)

for X, E € 84 satisfying with | X + E, , || X ||, < 1 (see Section B.5.8).

Summing (f) forall »r = 0,1,..., 4, we have
aG], < Z o] (131 | 5 w +|age] ov?)
gmax< aA )Z‘b]+1’<W+(j+1)2>
g% (||AA||2 o4 g—i F) Zl 3j+1\ G+

=0

If one estimates 1/ and ¢’ using M Rademacher random vectors, the variance of v AGv is reduced

by 1/M so that we have
) 2
A L~
) (Sl
F j=1

1 8A
2| AG|; < 577 max <||AA|2

15



For the second term in (36), it holds that

9A .

tHAG%=W<é@@%uﬂ—pAA»>S o

P
0A LSO ~ ~
< | 7g, FZ b, ]‘Uj—l(A)_Uj—l(Al)HF
0A |~ | (2 - 1)
<[, 1aa1e Sl

Al IAAlE S | 4
< 5 bv‘ .
109 || - 3 j—l‘ i

where the inequality in the first line holds from matrix version Cauchy-Schwarz inequality, the
inequality in the second line holds from p,(z) = (Z?:o EJTJ(z)>I =30 gjjUj_l(x) and
inequality in the third line holds from (37).

Putting all together into (36), we obtain that

Bux (45— ¥)°] = Bu [2|1AGIE + (5 (AG))’]
< (L A2 )]
< | o7 mex 2 . 90,
9 2
1 1\]o4 DA g
< 4z - .
_<(2M+9>H86i 00; F>E" Z‘bﬂ‘]
7j=1
1 1)\ o4
< 4
()2

where the inequality in the second line holds from max(a, b) < a+b for a,b € RT and the inequality
in the third line holds from the Lipschitz continuity on A (assumption .A(2)), formally,

IA(0) — A(0")]l2 < [|A(0) — AO")]|r < Lall0 — ¢,

2

0A
00;

0A
00;

)
F

2
2 2 n
AA ~ .
I 9IIF E, Z’ba"f
F j=1

2

, 1
84T+ 7

A |I?

06;

2 4L ||A|l;
r (b—a)?

2
) B | X[
j=1

|
+— A
2M h

Summing the above forall ¢ = 1,2, ..., d" and using that |0A/00||, < L4 and ||A(0A/00)||r <
BallAd]y, we get

-4

bj|J

2 Ly + 53 4 2 -
E,v [lv —¢'ll3] < Do —7 tla IAGIZE, || Y

for some constant Dy > 0.

To bound the right-hand side, we introduce the following lemma, whose proof is in Section B.5.7.

Lemma 10 Suppose that g}, is the optimal degree distribution as defined in (11) and b; is the Cheby-

shev coefficients of analytic function f. Define the weighted coefficient Bj as Ej =b;/(1- ZZ;& q;)
for 7 > 0 and conventionally q* ; = 0. Then, there exists constants D}, D} > 0 independent of
M, N such that

2

o n

) o D N®
doan [ Doblit ] <Di+ S5
n=1 =1 P
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Therefore, we obtain the result that

Eny [l —v'13] <8210 -0 (38)
where
LY + 53 D,N®
e (5000 (o0 22)

Under the assumption that g(6) is 34-smooth function (assumptio .A(2),), we have that
IV9(0) = Vg(0")ll3 < 55 16— 0'l;- (39)
Summing both (38) and (39), it yields that
2 2 2
Bo [0~ /2 + [V9(6) ~ Va@)|2] < (8 + 82) 10— 0/

Using |la + b|| < 2(||al|? + ||b]|*) again, we conclude that

B [0+ V9(0) = v/ — Vg(8)3] <2 (8% +52) o — ¢/l

This completes the proof of Lemma 8.

B.5.6 Proof of Lemma 9
Recall that the optimal degree distribution as
0 for + < K
¢ ={1-(N-K)(p—1p ' fori=K
(N -K)(p—1)2p7 " 1E for i > K.
where K = max(0, N — [;£7]). We first use the upper bound on the coefficients from (2), i.e.,
|bj| < 2U/p? to obtain

2 2

an Zl@lf an Z@lf <4U22qn Z

1
Jj=1 Jj=1 n=K 31(1_250f)

To express (40) more simple, we define that

(40)

HO-Ya)y o Pj (p—1)°
which equals to the second term in the summation (40) when n = K. Forn > K 41,7 > 1, we get
ST Sy SLEY ) )
po 1(1—2{3%*) (N=K)(p—1)pK"

Putting ¢; and (41) to the right hand side of (40), we have

( Ry p >A2 (N - K) ([);1)2(/\+(N—(§)J(rplfl)pf<

)
+ (N - K) ('0_1>2; <A+( > (K ) >2
) ‘

2

N—K)(p— DpK




Rearranging all terms with respect to A, we obtain that

. i . 2
pey 20D (SRS $ (3 +9)°)
pK+1 — pi (N _ K)p2K+1 — pl
Note that
i o (K +0)  K2p(p—1)* + 2Kp*(p = 1) + p*(p+ 1)
i=1 P’ (p—1)*
and

= poly(K4).

f’: (Cjoa (K +4)*)?
i=1 r
Since K = O(N) and N — K = O(1), we can conclude that

2
4

o0 n N N
Zq; Z|bj|j2 <G+ Co—y
n=1 j=1 P
for some constants C, Cs > 0 not depend on N.

B.5.7 Proof of Lemma 10

The proof of Lemma 10 is straightforward from that of Lemma 9. One can replace ;2 into j* in the
proof of Lemma 9, which results in N® dependence. We omit the details of the proof.

B.5.8 Proof of other lemmas

Lemma 11 Suppose that A, A + E € R are symmetric matrices and they have eigenvalues in
[—1,1). Let T; and U; be the first and the second kind of Chebyshev basis polynomial with degree
1 > 0, respectively. Then, it holds that

ITi(A + B) = Ti(A)|| < 2| E]l, U«(A+E) - Ui(A)] <

i(i+1;(i+2) B

where ||-|| can be ||-||2 (spectral norm) or ||-|| z (Frobenius norm).
Proof. Denote R; := T; (A + E) — T; (A). From the recursive relation of Chebyshev polynomial,
ie., Tj11(x) = 2AT;(z) — Tj—1(z), R; has following property:

Riy1=2(A+E)R;,—R;_1 +2ET;(A)

fori > 1 where Ry = E, Ry = 0. By induction on ¢, it is easy to show that

Ry = QZ/Ui—j (A+E)ET; (A)
=0

where Uj(x) is the Chebyshev polynomial of the second kind. Therefore, we have

1Risallr <2 1Ui—; (A + B) E Ty(A)||r
j=0

<2 Ui (A+ B, I Ellp 1T3(A)l,
§=0

<2 i+ 1= Elp =G+ 1)? B,
j=0
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where the second inequality holds from ||[Y X ||r = || XY ||r < || X||2]|Y || 7 for matrices X, Y. This
also holds for ||-||,, giving that || R;11|, < (i +1)? ||E|, . Similarly, we denote Y; := U;(A + E) —
U;(A). By induction on i, it is easy to show that

Yij1 =2 Ui (A+E)EU; (A)
=0

Then, we have that for 7 > 0

Yirillr <2 |IUimj (A+ E) E Uj(A)|r

=0

<2) Uiy (A+ B, 1Bl 1U;(A)],

=0

<2 (i+1-5)0+1)|Elp
j=0
_ i+ +2)(i+3)

- ; 1Bl 5

This also holds for ||-||, giving that || V1|, < “HEEDEED | Byl This completes the proof of
Lemma 11. ]

Lemma 12 For symmetric matrices A, B € S, it holds that tr (AB) < || Al nuc || Bl|5-

Proof. Since A is real symmetric, it can be written as A = Zle /\iuiuiT where \; and u; is i-th
eigenvalue and eigenvector, respectively. Then, the result follows that

d d
tr (AB) = Z A tr (uiuiTB) = Z Ai uiTBui
=1 =1

d
< Z [\ uiTBui
i=1

d
<D Bz = Al 1Bl

=1

This completes the proof of Lemma 12. ]
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