
A Proof of Theorem 1

We first prove (9). We start by constructing a rate-constrained stochastic function F̂ : X → R
m as

follows. Let q be the nearest neighbor quantizer

q(z) = arg min
i∈[2R]

‖z − ci‖ (12)

with the centers {c1, . . . , c2R} ⊂ Rm chosen to minimize E[mini∈[2R] ‖z − ci‖] (the minimum is

attained by Prop. 2.1 in [45]). Let Ai be the Voronoi region associated with ci, i.e., Ai = {z ∈
R

m : ‖z − ci‖ = mini∈[2R] ‖z − ci‖}. We now set E(X) = q(F ⋆(X)) and B(i) = Zi, where
F ⋆ is a minimizer of (7) for G = G⋆ and Zi ∼ PZ|Z∈Ai

, independent of Z given Ai. It holds

F̂ (X) := B(E(X))) ∼ Z by construction and the described choice of B,E is feasible for (8). We

continue by upper-bounding d(X,G⋆(F̂ (X)))

d(X,G⋆(F̂ (X))) ≤ d(X,G⋆(F ⋆(X))) + d(G⋆(F ⋆(X)), G⋆(F̂ (X)))

≤ d(X,G⋆(F ⋆(X))) +K‖F ⋆(X)− F̂ (X)‖
≤ d(X,G⋆(F ⋆(X))) +K‖F ⋆(X)− cE(X)‖+K‖cE(X) − F̂ (X)‖. (13)

By Cor. 6.7 from [46] we have

EX [‖F ⋆(X)− cE(X)‖] ≤ 2−
R

m (C1E[‖Z‖1+δ] + C2), δ > 0, 2R > C3, (14)

where C1, C2, C3 > 0 are numerical constants depending on δ,m and ‖ · ‖. The same upper

bound holds for E[‖cE(X) − F̂ (X)‖] as E(X) = q(F ⋆(X)) = q(F̂ (X)), i.e., ‖cE(X) − F̂ (X)‖ =

‖cq(F̂ (X)) − F̂ (X)‖, and F̂ (X) ∼ Z ∼ F ⋆(X). Taking the expectation on both sides of (13) and

using (14) in the resulting expression yields the upper bound in (9). The lower bound is obtained by
noting that the minimization (7) includes the rate-constrained mappings B ◦ E.

Eq. (10) directly follows from the distribution constraint in (8), B(E(X)) ∼ PZ : This constraint
implies G⋆(B(E(X))) ∼ G⋆(Z) which in turn implies (10).

Remark 1. The construction of the discrete encoder F̂ in the proof of Theorem 1 requires optimal
vector quantization, which is generally NP hard. However, if we make stronger assumptions on PZ

than done in the statement of Theorem 1 one can prove exponential convergence without optimal
vector quantization. For example, if Z is uniformly distributed on [0, 1]m, R = km for a positive
integer k, and ‖ · ‖ is the Euclidean norm, then one can partition [0, 1]m into 2R hypercubes of equal

edge length 1/2k = 1/2
R

m and associate the centers ci with the centers of these hypercubes. In

this case, the two last terms in (13) are upper-bounded by
√
m · 2− R

m . The quantization error thus

converges to 0 as 2−
R

m for R → ∞.

B Hyperparameters and architectures

Learning the generative model G⋆. The training parameters used train G⋆ using WAE, WGAN-GP,
and Wasserstein++ are shown in Table 2. The parameters for WAE correspond to those used for the
WAE-MMD experiments on CelebA in [17], see Appendix C.2, with the difference that we use a
batch size of 256 and a slightly modified schedule (note that 41k iterations with a batch size of 256
correspond to roughly 55 epochs with batch size 100, which is suggested by [17]). This does not
notably impact the performance WAE (we obtain a slightly lower sample FID than reported in [17,
Table 1]). The parameters for WGAN-GP correspond to those recommended for LSUN bedrooms
in [28, Appendix E].

Learning the function B ◦E. The training parameters to solve (8) can be found in Table 3. To solve
(1) (i.e., to train the CAE baseline) we use the same parameters as for WAE (except that λMMD = 0
as there is no distribution constraint in (1)), see Table 2.

Training the baseline (3) as in [15]. To solve (3) we use the parameters and schedule specified in
Table 2 for Wasserstein++ (except that we do not need λMMD), and we determine λ in (3) based on

the bitrate as λ(R) = 2.5 · 10−5 · MSECAE(R)
MSECAE(0.5bpp) for CelebA and λ(R) = 7.5 · 10−5 · MSECAE(R)

MSECAE(1bpp) for

LSUN bedrooms.

13



Architectures. We use the following notation. cxsy-z stands for a 2D convolution with an x × x
kernel, stride y, and z filters, followed by the ReLU non-linearity (the ReLU non-linearity is
omitted when the convolution is followed by quantization or the tanh non-linearity). The suffixes
b and l, i.e., cxsyb-z and cxsyl-z, indicate that batch normalization is employed before the
non-linearity and layer normalization as well as leaky ReLU with a negative slope of 0.2 instead
of ReLU, respectively. txsyb-z stands for a transposed 2D convolution with an x × x kernel,
stride 1/y, and z filters, followed by batch normalization and ReLU non-linearity. fc-z denotes
flattening followed by a fully-connected layer with z neurons. r-z designates a residual block with
z filters in each layer. The abbreviations bn, tanh, and -q are used for batch normalization, the
tanh non-linearity, and quantization with differentiable approximation for gradient backpropagation,
respectively. k is the number of channels of the quantized feature representation (i.e., k determines
the bitrate), and the suffix +n denotes concatenation of an m-dimensional noise vector with i.i.d.
entries uniformly distributed on [0, 1], reshaped as to match the spatial dimension of the feature maps
in the corresponding network layer.

• F : c4s2-64, c4s2b-128, c4s2b-256, c4s2b-512, fc-m, bn

• G: t4s2b-512, t4s2b-256, t4s2b-128, t4s2b-64, t4s2b-64, c3s1-3, tanh

• f : c3s1-64, c4s2l-64, c4s2l-128, c4s2l-256, c4s2l-512, fc-1

• E: c4s2-64, c4s2b-128, c4s2b-256, c4s2b-512, c3s1-k-q+n

• B: c3s1-512, r-512, ..., r-512, fc-m, bn

Table 2: Adam learning rates αF , αG, αf for the WAE encoder F , the generator G, and the WGAN
critic f , respectively, Adam parameters β1, β2, MMD regularization coefficient λMMD, mini-batch
size b, number of (generator) iterations niter, and learning rate schedule (LR sched.), for CelebA.
The number of critic iterations per generator iteration is set to ncritic = 5 for WGAN-GP and
Wasserstein++. For LSUN bedrooms, the parameters are identical, except that λMMD = 300 for
WAE and Wasserstein++, and the number of iterations is doubled (with the learning rate schedule
scaled accordingly) for all three algorithms.

αF αG αf β1 β2 λMMD λGP b niter LR sched.

WAE 10−3 10−3 / 0.5 0.999 100 / 256 41k ×0.4@22k;38k

WGAN-GP / 10−4 10−4 0.5 0.900 / 10 64 100k /

Wasserstein++ 3 · 10−4 3 · 10−4 10−4 0.5 0.999 100 10 256 25k ×0.4@15k;21k

Table 3: Adam parameters α, β1, β2, MMD regularization coefficient λMMD as a function of the
MSE incurred by CAE at rate R (MSECAE(R)), mini-batch size b, number of iterations niter, and
learning rate schedule (LR sched.) used to solve (8).

α β1 β2 λMMD(R) b niter LR sched.

CelebA 10−3 0.5 0.999 150 · MSECAE(R)
MSECAE(0.5bpp) 256 41k ×0.4@22k;38k

LSUN bedrooms 10−3 0.5 0.999 800 · MSECAE(R)
MSECAE(1bpp) 256 82k ×0.4@44k;76k

14



C The Wasserstein++ algorithm

Algorithm 1 Wasserstein++

Require: MMD regularization coefficient λMMD, WGAN coefficient γ, WGAN gradient penalty coefficient λGP,

number of critic iterations per generator iteration ncritic, mini-batch size b, characteristic positive-definite

kernel k, Adam parameters (not shown explicitly).

1: Initialize the parameters φ, θ, andψ of the WAE encoderFφ, the generatorGθ , and the WGAN discriminator

fψ , respectively.

2: while (φ, θ, ψ) not converged do

3: for t = 1, . . . , ncritic do

4: Sample {x1, . . . , xb} from the training set

5: Sample z̄i from Fφ(xi), for i = 1, . . . , b

6: Sample {z1, . . . , zb} from the prior PZ

7: Sample {η1, . . . , ηb} from Uniform(0, 1)

8: Sample {ν1, . . . , νb} from Uniform(0, 1)

9: z̃i ← ηizi + (1− ηi)z̄i, for i = 1, . . . , b

10: x̂i ← Gθ(z̃i), for i = 1, . . . , b

11: x̃i ← νixi + (1− νi)x̂i, for i = 1, . . . , b

12: Lf ←
1
b

∑b

i=1 fψ(x̂i)− fψ(xi) + λGP(‖∇x̃ifψ(x̃i)‖ − 1)2

13: ψ ← Adam(ψ,Lf )

14: end for

15: Ld ←
1
b

∑b

i=1 ‖xi −Gθ(z̄i)‖

16: LMMD ←
1

b(b−1)

∑
ℓ 6=j k(zℓ, zj) +

1
b(b−1)

∑
ℓ 6=j k(z̄ℓ, z̄j)−

2
b2

∑
ℓ,j
k(zℓ, z̄j)

17: LWGAN ←
1
b

∑b

i=1−fψ(Gθ(z̄i))

18: θ ← Adam(θ, (1− γ)Ld + γLWGAN)

19: φ← Adam(φ, (1− γ)(Ld + λMMDLMMD))

20: end while

D Visual examples

In the following, we show random samples and reconstructions produced by different DPLC models
and CAE, at different bitrates, for the CelebA and LSUN bedrooms data set. None of the examples
are cherry-picked.

15



WAE

WGAN-GP

Wasserstein++

Figure 4: Random samples produced by the trained generator G⋆(Z), with Z ∼ PZ , on CelebA.
The samples produced by WGAN-GP and Wasserstein++ are sharper than those generated by WAE.

16



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 5: Testing reconstructions produced by our DPLC model with WAE G⋆, along with the
original image (green border), for CelebA. The variability between different reconstructions increases
as the bitrate decreases.

17



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 6: Testing reconstructions produced by our DPLC model with WGAN-GP G⋆, along with the
original image (green border), for CelebA. The variability between different reconstructions increases
as the bitrate decreases.

18



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 7: Testing reconstructions produced by our DPLC model with Wasserstein++ G⋆, along
with the original image (green border), for CelebA. The variability between different reconstructions
increases as the bitrate decreases.

19



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 8: Testing reconstructions produced using G ◦B ◦ E obtained by solving (3) similarly as in
GC [15], along with the original image (green border), for CelebA. There is no variability between
different reconstructions except at 0 bpp.

20



0.000 bpp 0.008 bpp 0.031 bpp

0.125 bpp 0.500 bpp original

Figure 9: Testing reconstructions produced by CAE, for CelebA. The reconstructions become
increasingly blurry as the rate decreases.

21



WAE

WGAN-GP

Wasserstein++

Figure 10: Random samples produced by the trained generator G⋆(Z), with Z ∼ PZ , for LSUN
bedrooms. The samples produced by WGAN-GP and Wasserstein++ are sharper than those generated
by WAE.

22



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 11: Testing reconstructions produced by our DPLC model with WAE G⋆, along with the
original image (green border), for LSUN bedrooms. The reconstructions are blurry at all rates.

23



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 12: Testing reconstructions produced by our DPLC model with WGAN-GP G⋆, along with
the original image (green border), for LSUN bedrooms. The reconstructions are blurry at all rates
except at 0 bpp.

24



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 13: Testing reconstructions produced by our DPLC model with Wasserstein++ G⋆, along
with the original image (green border), for LSUN bedrooms. The variability between different
reconstructions increases as the bitrate decreases. The reconstructions are quite sharp at all rates.

25



0
b

p
p

0
.0

0
8

b
p

p
0

.0
3

1
b

p
p

0
.1

2
5

b
p

p
0

.5
b

p
p

Figure 14: Testing reconstructions produced using G ◦B ◦ E obtained by solving (3) similarly as in
GC [15], along with the original image (green border), for LSUN bedrooms. The method produces a
stochastic decoder at very low rates but suffers from mode collapse.

26



0.000 bpp 0.008 bpp 0.031 bpp

0.125 bpp 0.500 bpp original

Figure 15: Testing reconstructions produced by CAE, for LSUN bedrooms. The reconstructions
become increasingly blurry as the rate decreases.

27


	Proof of Theorem 1
	Hyperparameters and architectures
	The Wasserstein++ algorithm
	Visual examples

