
Appendix

A Additional figures
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Figure A.1: Detection of the dose changes in the DMOS system using the SML method with a normal prior
and the maximal number of change points of 30, and the NOT method.

B Proofs

Let g µ and g µ denote the first and second derivatives of a generic function g µ with respect to
µ respectively, and further define the utility function as

Uk µ

⌧k 1 1

l ⌧k

Yl
¯Y⌧k µ 2.

The following conditions are imposed for the theoretical derivations.

(A1) Assume µ to be in a closed set of points in R.

(A2) Assume ⇡ µ to be a continuous density function with bounded first and second derivatives.

(A3) Assume that Pr Yn T p has a unique maximizer in the neighborhood of T0 p0 .

Lemma 1. Assume that ⌧k is a change point for which the mean of Yl
¯Y⌧k satisfies µk0 � for

� 0, n1 2
k � � , then there is a constant D 0 such that

lim

n
Pr

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2
exp Dnk�

2
1.

1



Proof: By the definition of Uk µ , we can write
⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

exp Uk µ ⇡ µ dµ

exp Uk 0

.

We first define N� µk0 µ : µ µk0 � and denote N c
� µk0 as its compliment, and then

show

lim

n
Pr sup

µ N c
� µk0

Uk µ Uk µk0 Dnk�
2

1.

Note that

Uk µ Uk µk0 nk µ2
k0 µ2 n 1

k µk0 µ

⌧k 1 1

l ⌧k

2 Yl
¯Y⌧k

nk µ2
k0 µ2

2 µk0 µ µk0 Op n
1 2
k µk0 µ �k

nk µ µk0
2 Op n

1 2
k µk0 µ �k

nk�
2 Op n

1 2
k µk0 µ �k

nk�
2
2 nk�

2
2 Op n

1 2
k µk0 µ �k .

As n1 2
k � � , we have nk�

2
2 Op n

1 2
k µk0 µ �k 0 with probability 1, and thus

lim

n
Pr sup

µ N c
� µk0

Uk µ Uk µk0 Dnk�
2

1.

When ⌧k is a change point, let µ 0, because µk0 �, we have

lim

n
Pr

exp Uk 0

exp Uk µk0
exp Dnk�

2
1. (2)

By the Laplace approximation,

exp Uk µ ⇡ µ dµ Op Uk µ 1 2
exp Uk µ ⇡ µ , (3)

where µ is the maximizer of Uk µ log ⇡ µ , and Uk µ Op nj . Let µ be the maximizer of
Uk µ , and then

0 Lk µ log⇡ µ µ

Lk µ µ µ log⇡ µ µ,

where µ is a point on the line segment between µ and µ. As ⇡ µ has two bounded derivatives by
condition (A2), Lk µ Op nj , we have µ µ Op n 1

j . Therefore, (3) can be written as

exp Uk µ ⇡ µ dµ Op Uk µ 1 2
exp Uk µ ⇡ µ

Op Uk µk0
1 2

exp Uk µk0 ⇡ µk0 , (4)
where the last equality holds because µ is the least squares estimator. This implies

exp Uk µk0

exp Uk µ ⇡ µ dµ
Op n

1 2
k ,

which in conjunction with (2) leads to

lim

n
Pr

exp Uk 0

exp Uk µ ⇡ µ dµ
exp Dnk�

2
1.

By condition (A2) and the boundedness of Uk µ , we have

lim

n
Pr

exp Uk µ ⇡ µ dµ

exp Uk 0

exp Dnk� 1,

which completes the proof.
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Lemma 2. Let ⇡ µ ⇡L µ be a local prior, and assume that ⌧j is not a change point, i.e., µj0 0,
then

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2
Op n

1 2
j .

Proof: By the definition of Uj µ , we can write

exp Uj µ ⇡ µ dµ

exp Uj 0

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2
.

Using the same argument as that leading to (4) with µj0 0, we have

exp Uj µ ⇡ µ dµ Op U 0

1 2
exp Uj 0 ⇡ 0 .

As U 0

1 2 Op n
1 2

j , and ⇡ 0 is a bounded density, we have

exp Uj µ ⇡ µ dµ

exp Uj 0

Op n
1 2

j .

Lemma 3. Let

⇡ µ ⇡M µ
µ2v

CM
⇡b µ ,

where CM is a normalizing constant, ⇡b µ with ⇡b 0 0 is the base prior density with 2v finite
moments, and bounded first two derivatives in the neighborhood around 0. Assume that ⌧j is not a
change point, i.e., µj0 0, then

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2
Op n

v 1 2
j .

Proof: We can write
⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ exp Uj µ log⇡ µ dµ.

Let h µ Uj µ log⇡ µ 2vlog µ log ⇡b µ Uj µ , and let µ be the maximizer of
h µ , then we have

2v µ ⇡b µ ⇡b µ Lj µ 0.

If we expand Lj µ around µ, the least squares estimator for µj0, the above equality can be rewritten
as

2v n n 1µ⇡b µ ⇡b µ Lj µ µ µ µ 0,

where µ is a point on the line segment between µ and µ. Therefore,

Op n 1 µ µ µ

µ µ 2 µ µ µ

µ µ µ 2

2 µ2
4.

Along with the fact that µ Op n
1 2

j , we have µ µ Op n
1 2

j , and µ Op n 1 2 . Next,
by the Laplace expansion, we have

exp h µ du Op 2v µ2 Uj µ 1 2
exp 2vlog µ log ⇡b µ Uj µ ,
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and also

n 1Uj µ n 1Uj 0 n 1Uj µ µ

n 1 Uj µ Uj µ Uj µ µ

Op µ µ µ

Op n 1 , (5)

where µ is a point on the line segment between µ and 0. Thus,

Uj µ Uj 0 Op 1 .

As a result,
⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2

exp Uj µ ⇡ µ dµ

exp Uj 0

exp h u du

exp Uj 0

Op 2v µ2 Uj µ 1 2
exp 2vlog µ log ⇡M µ Uj µ Uj 0

Op n
1 2

j µ2v

Op n
1 2 v

j ,

where the last equality holds due to the fact that µ Op n 1 2 . This completes the proof.
Lemma 4. Let

⇡ µ ⇡I µ
s⌫q 2

� q 2s
µ q 1

exp

µ2

⌫

s

.

Assume that ⌧j is not a change point, i.e., µj0 0, then

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2
Op exp n

s s 1
j .

Proof: We first write
⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ c exp Uj µ µ 2s⌫s q 1 log µ dµ,

where c is a constant. Let h µ Uj µ µ 2s q 1 log µ , and assume µ is the maximizer of
h µ , then we have

Uj µ 2sµ 2s 1⌫s q 1 µ 1 Uj µ µ µ 2sµ 2s 1⌫s q 1 µ 1
0,

where µ is a point on the line segment between µ and µ. The above equality yields

njµ
2s 2

1 µ µ
2s⌫s q 1 µ2s

Uj µ nj
, (6)

which implies µ Op n
1 2s 2
j .

From (6), we have nµ2s 1 µ µ Op 1 , which leads to

µ µ Op n
4s 3 2s 2

j . (7)
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Following (30) in [11] and using our notation, we obtain

exp h µ du Op
4s2 2s 2s 2

µ
Uj µ

1 2

µ q 1
exp µ 2s⌫s Uj µ .

Expanding Uj µ around the least squares estimator µ, we have

Uj µ Uj µ 1 2Uj µ µ µ 2

Uj µ op 1

Uj 0 Op 1 ,

where µ is a point on the line segment between µ and µ, the second equality follows (7), and the
last equality follows the same argument as that leading to (5). Therefore, we have

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2

exp Uj µ ⇡ µ dµ

exp Uj 0

exp h u du

exp Uj 0

Op
4s2 2s 2s 2

µ
Uj µ

1 2

µ q 1
exp µ 2s⌫s Uj µ Uj 0

Op exp n
s s 1
j ,

which completes the proof.

Lemma 5. Assume p0 1 and ⌧k is the only true change point. As n1 2
k � � , Pr Mk Yn 1

Op KnanI exp nI�
2 . Hence when nI log n c 0, nI �, we have Pr Mk Yn

p
1.

Proof: First, we can write

Pr Mk Yn 1

Kn

j k

Pr Yn Mj

Pr Yn Mk

1

. (8)

To show Pr Mk Yn 1 0, it is equivalent to showing
Kn

j 1,j k

Pr Yn Mj

Pr Yn Mp
0.

Note that
Pr Yn Mj

Pr Yn Mk
A B,

where

A

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2

and

B

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

.

As shown in [11], A is a Bayes factor whose convergence rate is Op anj . For B, note that the data
in ⌧k, ⌧k 1 are generated from the model with mean µk0 such that µk0 �. Hence, we have

B Op exp nk�
2 ,
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where the last equality holds by Lemma 1 that

lim

n
Pr

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

exp Dnk�
2

1,

where D is a constant. Combining the convergence rates for A and B, we have

AB Op ank exp nk�
2 .

Thus, this leads to

Pr Yn Mj

Pr Yn Mk
AB Op anI exp nI�

2 ,

and
Kn

j 1

Pr Yn Mj

Pr Yn Mk
1 Op KnanI exp nI�

2

Plugging this result into (8), we have

Pr Mk Yn
p
1,

which completes the proof.

Proof of Theorem 1
First, we can write

Mk M
Pr Mk Yn 1

Mj M Pr Yn Mj

Mk M Pr Yn Mk

1

.

Note that

Mj M Pr Yn Mj

Mk M Pr Yn Mk

Mj M Pr Yn Mj

Pr Yn Mk
,

for Mk M. Hence, by the same argument as that leading to Lemma 5, we have

Mj M Pr Yn Mj

Mk M Pr Yn Mk
Op KnanI exp nI�

2 ,

and

Mk M
Pr Mk Yn 1 Op KnanI exp nI�

2 ,

which completes the proof.

Proof of Proposition 1
Following [15], we define x as an nI -flat point so that there is no change-point in x nI , x nI .
Let F be the set of all nI -flat points, then

Pr

t T0 p0

Rt C
⌧ F

R⌧ C

1 Pr

⌧ T0 p0

R⌧ C
⌧ F

R⌧ C

1 Pr max

t T0 p0

Rt C min

⌧ F
R⌧ C

1 Pr max

t T0 p0

Rt C Pr min

⌧ F
R⌧ C .
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For each ⌧ T0 p0 ,

Pr R⌧ C O exp nI�
2 ,

by Lemma 1. Furthermore, for ⌧ F ,

Pr R⌧ C O anI ,

by Lemmas 2–4. Hence,

Pr

t T0 p0

Rt C
⌧ F

R⌧ C 1 O min exp nI�
2 , anI .

By Lemma 3 in [15], for any t T0 p0 we have a ⌧ Hc nI such that

Pr t ⌧ nI , ⌧ nI 1 O min exp nI�
2 , anI .

Proof of Theorem 2
We first show that for a given p, T p is the maximizer of Pr Yn T p . Based on the BMS
procedure, T p is the maximizer of Mk M Pr Mk Yn , where M Mk, ⌧k T p . As we
impose the uniform prior on Mk, T p is the maximizer of

Mk M
Pr Yn Mk (9)

Dn

Mk M

K

j 1,j k

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2
⌧k 1 1

l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

Dn

K

j 1

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2

Mk M

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

where Dn is a constant depending on n. Further note that

Pr Yn T p (10)

⌧j T p

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2

⌧k T p

⌧k 1 1

l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

K

j 1

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2

⌧k T p

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2
.

Comparing (9) and (10), clearly they have the same optimizer, and thus T p is also the maximizer of
(10). Hence, our BMS procedure results in the estimators p and T p that maximize Pr Yn T p .

Next, let E1 be the event that at least one j such that tj ⌧k, ⌧k 1 , and ti ⌧k, ti ⌧k 1 for all i
and ⌧k, ⌧k 1 Hc nI , ti T p that maximizes Pr Yn T p . Following similar arguments as
those in [5], we show that the probability of E1 goes to 0. Suppose that T p is such an estimate.
Consider the first case where tj ⌧k 1 ⌧k 1 ⌧k 1

1 O 1 ; that is, tj is bounded away
from ⌧k. We can choose a set of change points,

T p 1 ⌧1, . . . , ⌧p 1

t1, . . . , ti, ⌧k 1, ti 1, tp .

Then,

Pr Yn T p

Pr Y T p 1

⌧k 2 1
l ⌧k 1

exp Yl
¯Y⌧k 1

2

⌧k 2 1
l ⌧k 1

exp Yl
¯Y⌧k 1 µ 2 ⇡ µ dµ

.
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Because limn supnI � 1 2, there is an N , such that for all n N , tj 1 ⌧k 2, and hence
there is no change point within ⌧k 1, ⌧k 2 . This prevents the situation where there are more than
one change points in between ⌧k and ⌧k 2. Further for n N ,

E Yl
¯Y⌧k 1 ⌧k 1 ⌧k 1

1E

tj

s ⌧k

Yl Ys

⌧k 1

s tj 1

Yl Ys

tj ⌧k 1 ⌧k 1 ⌧k 1

1�.

Therefore, by Lemma 1,

Pr Yn T p

Pr Y T p 1

Op exp nI�
2 .

If tj ⌧k 1 ⌧k 1 ⌧k 1

1 o 1 , we define

T p 1 ⌧1, . . . , ⌧p 1

t1, . . . , ti, ⌧k, ti 1, tp ,

and then

Pr Yn T p

Pr Y T p 1

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l tj

exp Yl
¯Y⌧k

2

⌧k 1 1
l tj

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l tj

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ

⌧k 1 1
l ⌧k

exp Yl
¯Y⌧k

2

⌧k 1 1
l tj

exp Yl
¯Y⌧k

2
,

where the first term is of order Op exp nI�
2 by Lemma 1, and the last two terms are of order

Op 1 because tj ⌧k 1 ⌧k 1 ⌧k 1

1 o 1 . Therefore,

Pr

Pr Yn T p

Pr Y T p 1

1 E1 E
Pr Yn T p

Pr Y T p 1

O exp nI�
2 .

As T p is the maximizer of Pr Yn T p , we have

Pr

Pr Yn T p

Pr Y T p 1

1 1,

because T p is the maximizer of Pr Yn T p and it is unique by condition (A3). By the Bayes
rule, we have

Pr E1 Pr Yn T p

Pr Y T p 1

1 O exp nI�
2 . (11)

Hence, Pr ti ⌧k or ti ⌧k 1 1 O exp nI�
2 . Further note that ⌧k and ⌧k 1 are in the

nI -neighborhood of tj , and thus for any tj , there is a ti such that

Pr tj ti nI , ti nI 1 O exp nI�
2 .

As it holds for any j, we can write

Pr sup

tj T p

inf

tj T0 p0

tj tj n nI n 1 O exp nI�
2 .
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Next we show that for any ti there is a tj in the nI -neighborhood of ti. Define E2 as the event that
there is at least one ti such that there is no tj in the nI -neighborhood of ti. Let T p be such an
estimate that ti is the kth candidate point, and ti, ⌧k 1 and ⌧k 1, ti do not contain tj for all j.
Then, we define a new set of change points by deleting ti,

T p 1 t1, . . . , ti 1, ti 1, tp .

Then,

Pr Yn T p

Pr Y T p 1

⌧k 1 1

l ti
exp Yl

¯Yti
µ 2 ⇡ µ dµ

⌧k 1 1

l ti
exp Yl

¯Yti
2

Op anI

by Lemmas 2–4. Therefore, using the same argument as that leading to (11), we have

Pr E2 Pr Yn T p

Pr Y T p 1

1 O anI .

For any ti, there exists a tj such that

Pr ti tj nI , tj nI 1 O anI .

It holds for any ti, and thus we have

Pr sup

tj T0 p0

inf

tj T p
tj tj n nI n 1 O anI .

Because tj nI , tj nI contains only one estimate by the definition of T p that tj 1 tj �,
we have Pr p p0 1 Op max exp nI�

2 , anI by using the same arguments as those
leading to Theorem 3.3 in [5].
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