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Abstract

Based on non-local prior distributions, we propose a Bayesian model selection
(BMS) procedure for boundary detection in a sequence of data with multiple
systematic mean changes. The BMS method can effectively suppress the non-
boundary spike points with large instantaneous changes. We speed up the algorithm
by reducing the multiple change points to a series of single change point detection
problems. We establish the consistency of the estimated number and locations of
the change points under various prior distributions. Extensive simulation studies
are conducted to compare the BMS with existing methods, and our approach is
illustrated with application to the magnetic resonance imaging guided radiation
therapy data.

1 Introduction

Traditional change point detection algorithms often apply to the situation where the occurrence
frequency of the change points is relatively consistent across the signals. For example, the narrowest-
over-threshold (NOT) algorithm [1] is more suitable when different segments between the change
points have comparable lengths, and the stepwise marginal likelihood (SML) method [5] works better
to identify frequent change points. However, in practice it is often the case that distances between
consecutive change points may vary dramatically, while only those with certain distance gaps are of
interest. For such settings, we develop a computationally efficient Bayesian model selection (BMS)
approach to identifying multiple change points.

The inconsistent gaps between the change points can be observed from the signals generated by
the magnetic resonance imaging guided radiation therapy (MRgRT). When radiations travel in the
magnetic field, the dose can be significantly enhanced near the boundaries between different tissues or
organs inside human bodies. As shown by Figure 1, the Duke Mid-sized Optical-CT System (DMOS)
is developed to identify the dose changes near the region of such boundary artifact. It also exhibits
the profile of dose intensities as the radiation travels through the dosimeter, where the boundaries on
and inside the dosimeter can be distinguished by the notable peaks in the signals. In the experiment,
radiations enter the cylindrical dosimeter from different directions, and a sequence of dose intensities
ordered by their distances to the sources are recorded. Because the dosimeter is circular and there is a
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Figure 1: Reconstructed image of a slice in a cylindrical dosimeter with a cavity in the middle (left) and a
typical line profile through the center of the cavity (right). Radiations enter the dosimeter from the hole on the
left of the cylindrical dosimeter, which rotates 360 degrees so that radiations can enter from different directions.

cavity in the middle, radiations from different directions would hit the boundaries in the dosimeter at
similar distances from their sources.

In the MRgRT data, radiations in certain directions may experience temporary changes at non-
boundary locations, which may result from the abnormal status of the DMOS system rather than the
true dose changes. The temporary change points, appearing in the data sequence as the spike points,
are often mixed up with those on the boundary (i.e., the peak locations in the right panel of Figure
1), which makes the boundary detection extremely challenging. Figures A.1 in Appendix shows the
change points in the MRgRT data identified by the NOT [1] and SML [5] algorithms respectively,
while neither can correctly identify the true boundaries. This motivates us to propose a new approach
to detecting the systematic changes when the segment lengths have dramatic differences.

Our preliminary analysis of the MRgRT data demonstrates that the local control of the discovery is
crucial. To avoid picking the spike points, we enforce a minimal distance between adjacent change
points. Moreover, we adopt a computationally efficient local scan routine and propose a systematic
two-stage procedure to speed up the change point detection. More specifically, the local scan method
first identifies the candidate points with a minimal distance based on the local data, and then optimizes
an utility function to obtain the estimates for the locations and the total number of change points.
Because the change points are defined based on the mean changes between two consecutive segments,
the local data are sufficient to detect the systemic changes [6, 7, 8, 13, 14, 16, 18, 19].

To perserve the positive detection rate of the change points and reduce the false detection rate of the
non-change points, we take a Bayesian marginal likelihood function as the utility, and develop a new
BMS procedure for identifying change points. We show that the selection consistency is achieved
under both the local [2, 3, 4, 17] and non-local priors [11], whereas the convergence rate is faster
under the later. Our BMS procedure is cast in the model selection framework, which is faster than
the dynamic programming in the SML framework. For example, for the MRgRT data, BMS takes
1.3 seconds and SML takes 3.1 seconds when the maximum number of change points is capped at
100. The efficiency of BMS is mainly due to the fact that it reduces the search space dramatically by
selecting a small set of candidate change points. Once the candidate points are selected, BMS only
needs to evaluate two consecutive segments at a time, which greatly facilitates parallel computation.

2 Bayesian multiple change points detection

2.1 Probability model

Suppose there are p0 true change points t1 tp0 among n observations Yn Y1, . . . , Yn .
As a convention, let t0 1 and t p0 1 n 1. Denote �j tj 1 tj and � minj 0,...,p0 �j . We
consider a set of Kn candidate points ⌧1, . . . , ⌧Kn , with ⌧0 1 and ⌧Kn 1 n 1, while selection of
the candidate points is discussed in Section 2.3. Define nj ⌧j 1 ⌧j , and nI minj 0,...,Kn 1 nj ,
nI �. Let H nI ⌧j : j 1, . . . ,Kn, ⌧j 1 ⌧j nI denote the set of candidate change
points, and let T0 p0 tj : j 1, . . . , p0 denote the set of true change points. Not only does the
specification of the candidate points allow BMS to be implemented in a lower dimensional space with
the most influential points, but it also guarantees that there are a sufficient number of non-change
points surrounding the true change points so that the consistency conditions are met. The probability
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model takes the form of
Yl ⌫⌧j ✏l, l ⌧j , ⌧j 1 ,

where the random errors ✏l are independent with mean zero and variance �2
j . Further, we define

� maxj 0,...,p0 �j .

For ease of exposition, we first consider the case where the locations of the candidate change points
are given and T0 p0 H nI . Define ¯Y⌧j n 1

j 1
⌧j 1
l ⌧j 1

Yl, which is the sample average for the
j 1 th segment ⌧j 1, ⌧j , j 1. If the candidate point ⌧k is not a change point, then the points

in ⌧k, ⌧k 1 should have the same mean as those in ⌧k 1, ⌧k ; otherwise there should be a mean
shift between the segments ⌧k, ⌧k 1 and ⌧k 1, ⌧k . Hence, we can formulate the model and prior
distribution for l ⌧1 as follows:

Yl
¯Y⌧k µk ⇠l, l ⌧k, ⌧k 1 ,

µk ⇡ µk , if ⌧k is a change point,
µk 0, with probability 1, if ⌧k is an nI -flat point,

where ⇠l is a mean-zero error term and ⇡ is a prior distribution. The nI -flat point is defined as
a non-change point which is at least nI apart from any change points. We require the nI distance
between the true change points and the flat ones so that there are sufficient neighborhood samples to
achieve the estimation consistency.

Let µk0 be the true value of µk, and we assume µk0 �, where � 0 is the lower bound of µk0,
for the k’s with ⌧k T0 p0 . The prior distribution of µk determines the convergence rate of the
BMS procedure. We explore three types of priors: the local prior [9], the non-local moment prior and
the inverse moment prior [11] as follows:

Local prior: ⇡L µ N 0,!2 ,

Moment prior: ⇡M µ µ2v CM1 2⇡ exp µ2
2 ,

Inverse moment prior: ⇡I µ s⌫q 2
� q 2s µ q 1

exp µ2 ⌫ s ,

where CM is the normalizing constant.

Let Mk represent the model that ⌧k is the sole change point. We define the marginal likelihood with
the Gaussian kernel as

Pr Yn Mk

Kn

j 1,j k

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2
⌧k 1 1

l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ.

The posterior model probability of Mk given Yn is

Pr Mk Yn
Pr Yn Mk Pr Mk
Kn

j 1 Pr Yn Mj Pr Mj

Pr Yn Mk
Kn

j 1 Pr Yn Mj

,

when Mj takes a discrete uniform prior, j 1, . . . ,Kn. It is not necessary for Yn to be normally
distributed to ensure the selection consistency in detecting mean changes, while the Gaussian kernel
is used here because it tends to be large when the difference between the true and the hypothetical
segment means is small. Hence, as n , Pr Mk Yn approaches 1 when ⌧k is a true change point
and the ⌧j’s j k are nI -flat points.

2.2 Detection of change points

We start with the simplest case where there is only one mean shift in the data, i.e., p0 1 is fixed
a priori. We select the candidate point ⌧k corresponding to the largest Pr Mk Yn , i.e., the largest
marginal likelihood Pr Yn Mk . It can be shown that

Pr Mk Yn 1

Kn

j k

Pr Yn Mj

Pr Yn Mk

1

,

where for j k,

Pr Yn Mj

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j µ 2 ⇡ µ dµ

⌧j 1 1
l ⌧j

exp Yl
¯Y⌧j

2
,
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and for j k we replace above ⌧j and ⌧j 1 by ⌧k and ⌧k 1 respectively. As a result, the selection
consistency is determined by the evidence in favor of µk ⇡ µk and µj 0 for j k.

For the case with multiple change points (p0 1), we select the points corresponding to the p0
largest Pr Mk Yn , for which the selection consistency is presented as follows.
Theorem 1. Let M Mk, ⌧k T0 p0 . If it holds that

Pr Yn Mj Op anj , (1)

for ⌧j T0 p0 , anj op 1 , and n
1 2
I � � , then

Mk M
Pr Mk Yn 1 Op KnanI exp nI�

2 .

Hence, as nI log n c 0, nI �, we have

Mk M
Pr Mk Yn

p
1.

The proof of Theorem 1 is delineated in Appendix. The selection consistency depends on the
convergence rate of anI , which is determined by the prior ⇡ . Lemmas 2–4 in Appendix show
that anj n

1 2
j for local prior ⇡L µ ; anj n

v 1 2
j for ⇡M µ and anj exp n

s s 1
j for

⇡I µ . Hence, the selection consistency is achieved at the fastest rate using the non-local inverse
moment prior.

When p0 is unknown, let T p be the set containing p points obtained by the procedure described
above. We define the marginal likelihood given T p as

Pr Yn T p
⌧j T p

⌧j 1 1

l ⌧j

exp Yl
¯Y⌧j

2

⌧k T p

⌧k 1 1

l ⌧k

exp Yl
¯Y⌧k µ 2 ⇡ µ dµ.

We can estimate the locations and the number of change points in two steps: First for any given p, we
obtain T p using the procedure described in the previous section; and second we estimate p0 by
p by maximizing Pr Yn T p with respect to p, which is merely implemented in one dimension.
In contrast, SML [5] simultaneously estimates the locations and the number of change points by
maximizing the marginal likelihood with respect to both T p and p.

2.3 Selection of candidate points

Previous discussions rely upon a critical assumption that the candidate points are specified in advance.
To facilitate the implementation of BMS, we need to find a candidate set Hc nI that is close
to H nI . For the selection consistency of the change points, we require for each tj there is a
⌧k Hc nI , such that Pr tj ⌧k nI 1 Op min exp nI�

2 , anI . Define

Ri

i nI 1
l i exp Yl

¯Yi µ 2 ⇡ µ dµ
i nI 1
l i exp Yl

¯Yi
2

,

where ¯Yi n 1
I

i 1
j i nI

Yj . By the argument similar to that in Lemma 1, Ri goes to infinity when
i is a true change point, and Ri approaches zero in probability when i is an nI -flat point. Hence,
the value of Ri can distinguish a change point from a set of nI -flat points. To further eliminate
the non-change points that are also not nI -flat, we implement the non-maximum suppression that
removes the points which do not yield the largest Ri’s in their nI -neighborhood. Specifically, the
screening procedure for selecting candidate points is described as follows.

Algorithm 1 : Screening
(i) For each i in nI , n nI , compute Ri.

(ii) If Ri max Rj : j i nI , i nI , then i is selected as a candidate point.
(iii) Scan through the entire data sequence, and obtain a set of Kn candidate points Hc nI .
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The screening algorithm is comparable to that in [15], as by the Laplace approximation we have

Ri
Dn

i nI 1
l i exp Yl

¯Yi µ̌ 2 ⇡ µ̌
i nI 1
l i exp Yl

¯Yi
2

1 op 1

Dn exp 2

i nI 1

l i

Yl

i 1

j i nI

Yj µ̌ nI µ̌
2 ⇡ µ̌ 1 op 1 ,

where Dn is a constant of order Op n
1 2

I and µ̌ is the maximizer of i nI 1
l i Yl

¯Yi µ 2

log⇡ µ . The magnitude of the leading term in Ri is strongly associated with n 1
I

i nI 1
l i Yl

i 1
j i nI

Yj , which is the local diagnosis function with h nI in [15].

The screening procedure identifies a candidate set Hc nI that would lead to the consistency result.

Proposition 1. Assume that n1 2
I � � , and for each tj T0 p0 , there is a ⌧ Hc nI , such

that Pr tj ⌧ nI , ⌧ nI 1 O min exp nI�
2 , anI .

In theory, i tj maximizes Ri in the nI -neighborhood of tj asymptotically. By selecting the local
maximal Ri in the screening procedure, Hc nI would cover the nI -neighborhood of T0 p0 as
n . Also the condition n

1 2
I � � indicates that the effect size cannot be too small in order

to find the candidate points around the true change points. After selecting the candidate points, we
perform a refinement step to identify the locations and the total number of change points.

Algorithm 2 : Refinement
Scanning

(i) Compute Pr Yn Mk by scanning over all the candidate points in Hc nI .

(ii) For each p, obtain a set of change points T p corresponding to the p largest Pr Yn Mk ,
k 1, . . . ,Kn.

Optimization

(iii) Select p that maximizes Pr Yn T p .

Theorem 2. Assume that nI log n c 0, n1 2
I � � , lim supn nI � 1 2, and (1)

holds. Let Hc nI be the set of candidate points such that ⌧k 1 ⌧k nI , and for each tj there is
a ⌧k Hc nI , Pr tj ⌧k nI 1 Op min exp nI�

2 , anI . Then,

Pr p p0 1 Op max exp nI�
2 , anI ,

and furthermore,

Pr sup

tj T p

inf

tj T0 p0

tj tj n nI n 1 O exp nI�
2 ,

Pr sup

tj T0 p0

inf

tj T p
tj tj n nI n 1 O anI .

Theorem 2 shows that BMS controls both the over- and under-segmentation errors. The ra-
tionale is that for any T p different from T0 p0 , there is at least a chosen point ⌧
T p whose nI -neighborhood does not contain true change points. Then the likelihood ratio
Pr Yn T p Pr Yn T0 p0 goes to 0 with probability 1, because the ratio contains at least
one of Pr Yn Mj and Pr Yn Mj

1 for ⌧k T0 p0 and ⌧j T0 p0 , which converges to 0 in
probability by Lemma 1 and (1). As the computational time for Pr Yn Mk grows at the speed of
O n for k 1, . . . ,Kn, that for the refinement stage grows with the sample size at the speed of
O nKn .
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3 Simulations

3.1 Data sequence without spikes

To evaluate the performance of the proposed BMS method in the settings without spike points, we
generate data from two different models. Model I takes the form of

Model I : Yi h J xi �✏i,

where h 2.01, 2.51, 1.51, 2.01, 2.51, 2.11, 1.05, 2.16, 1.56, 2.56, 2.11 with p0 11,
the error ✏i N 0, 1 , and � 0.5. We set J xi 1 sgn nxi tj 2, j 1, . . . , p0 ,
where sgn is a sign function, and the xi’s are equally spaced on [0, 1]. The true change points are
tj n, j 1, . . . , p0 0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81 . The errors

are generated from three distributions: N 0, 1 ; t distribution with 5 degrees of freedom t 5 ,
standardized to have variance 1; and the log-normal distribution LN 0, 1 , standardized to have
variance 1. Model II considers heteroscedastic errors across segments,

Model II : Yi h J ti �✏i

1 J ti

j 1

vj ,

where vj , j 1, . . . , 11 1, 0.5, 3, 2 3, 0.5, 3, 2 3, 0.5, 3, 2 3, 0.5 . Other specifications remain
the same as those in model I. The over- and under-segmentation errors are respectively defined as

d Gn Gn sup

b Gn

inf

a Gn

a b , d Gn Gn sup

b Gn

inf

a Gn

a b .

For the BMS procedure, we consider three different priors for ⇡ , corresponding to the local prior,
non-local moment prior and non-local inverse moment prior. Figure 2 presents the relationship
between the maximum of the over- and under-segmentation errors, p p0 and the value of h with
sample size 1000, which indicates h 0.65 leading to the smallest segmentation error. We take the
minimum distance between candidate points nI log n 1.5h, where h 0.5 generally works
well in the simulations.

Furthermore, we assess the performance of BMS using different priors under model I with a normal
error, when p0 is not prespecified. In Figure 3, we present the selection error which is defined as
the maximum of the number of selected change points that are not in T0 p0 and the number of
true change points that are not in T p . The tuning parameters are calibrated to yield the smallest
segmentation error and p p0 on average for each prior. Both the selection error and p p0
decrease as the sample size increases, and the prior ⇡I leads to the best convergence among the
three prior choices.

For a comprehensive comparison with existing methods, we assess BMS under the non-local inverse
moment prior ⇡I with q ⌫ 2 and s 6 against existing methods including PELT [12],
WBS [7], NOT with normal or heavy-tail distributions [1] and SML [5]. Table 1 summarizes
the numerical results under model I and model II with normal, Student’s t, and log-normal error
distributions and their heteroscedastic counterparts. On average, BMS performs the best in selecting
the number of change points and balancing both over- and under-segmentation errors. It is expected
that the performances of WBS, PELT, and SML deteriorate when the errors do not follow a normal
distribution, because they all rely upon parametric model assumptions and thus are not robust to model
misspecifications. In contrast, both BMS and NOT behave well under various error distributions.
Also, NOT and SML perform the best in controlling the over-segmentation errors, while the resulting
estimator p tends to be larger than the true p0. On the other hand, BMS allows for slightly larger
over-segmentation errors in order to maintain p to be more concentrated around p0.

3.2 Data sequence with spikes

We further evaluate the BMS, NOT and SML methods based on the data sequences contaminated
with spike points. Assuming normal noises, we generate 500 sequences and each contains n 1000

points with mean changes of 0.01 and 0.01 at the 400th and 440th observations, respectively. We
set the standard deviation of the noise to be 0.002. We further generate 10 random samples uniformly
in the ranges of 0.07, 0.08 and 0.07, 0.08 , and add them to the original sequence at random
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Figure 2: The maximum segmentation error (left) and p p0 (right) versus h (the tuning parameter
in the minimum distance between candidate points) over 100 simulations with sample size n 1000.
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Figure 3: The selection error (left) and p p0 (right) averaged over 500 simulations under three
different prior distributions: the local prior ⇡L, non-local moment prior ⇡M , and non-local inverse
moment prior ⇡I .

locations to form the spike points. These configurations are chosen to mimic the real data setting. We
implement BMS, NOT, and SML on the simulated samples, and for BMS we select nI 12 which
is the largest integer that is smaller than 0.65 log n 1.5.

Table 2 shows that BMS, resulting in the smallest p p0 on average, is insensitive to the spike
points. Figure 4 illustrates the change points detection results for three simulated data sequences. It is
observed that NOT ignores both the change points with small signal-noise ratios and the spike signals
with small segment lengths, because NOT is more appropriate for settings where the segments are
of comparable lengths. On the other hand, SML is sensitive to extreme values, as it is developed to
handle frequent and irregular change points. It appears that BMS is the most suitable procedure for
this case, because not only does it reinforce the minimal segment length to avoid false identification
of spike signals but it also retains the minimal segment length to detect change points with small
distance gaps.
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