Supplement to: Library Learning for
Neurally-Guided Bayesian Program Induction

Kevin Ellis Lucas Morales Mathias Sablé-Meyer
MIT MIT ENS Paris-Saclay
ellisk@mit.edu lucasem@mit.edu mathsm@mit.edu
Armando Solar-Lezama Joshua B. Tenenbaum
MIT MIT
asolar@csail.mit.edu jbt@mit.edu

1 An Illustration of the three steps of our algorithm

Below we diagram the steps employed by our algorithm. At each step of the algorithm, we have
shaded the observed variables in gray and left the unobserved variables white. Black lines correspond
to a connection from the top-down generative model, while red lines correspond to connections from
the bottom-up recognition model.

98

Compile: Train ¢
training data: cyan (x, p) Compress: Induce (D, 6)

2 Program Representation

We choose to represent programs using A-calculus |Pierce|(2002)). A A-calculus expression is either:

— A primitive, like the number 5 or the function sum.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

— Avariable, like x, y, or z.

— A A-abstraction, which creates a new function. A-abstractions have a variable and a body.
The body is a A-calculus expression. Abstractions are written as Avar.body or in Lisp syntax
as (lambda (var) body).

— An application of a function to an argument. Both the function and the argument are
A-calculus expressions. The application of the function f to the argument x is written as

fxoras (f x).

For example, the function which squares the logarithm of a number is A\z.(square (log z)),
and the identity function f(xz) = x is Az.z. The A-calculus serves as a spartan but expressive
Turing complete program representation, and distills the essential features of functional programming
languages like Lisp.

However, many A-calculus expressions correspond to ill-typed programs, such as the program that
takes the logarithm of the Boolean true (i.e., log true) or which applies the number five to the
identity function (i.e., 5 (Az.x)). We use a well-established typing system for A-calculus called
Hindley-Milner typing |Pierce| (2002), which is used in programming languages like OCaml. The
purpose of the typing system is to ensure that our programs never call a function with a type it
is not expecting (like trying to take the logarithm of true). Hindley-Milner has two important
features: Feature 1: It supports parametric polymorphism, meaning that types can have variables in
them, called type variables. Lowercase Greek letters are conventionally used for type variables. For
example, the type of the identity function is & — «, meaning it takes something of type « and return
something of type a.. A function that returns the first element of a list has the type [o] — «. Type
variables are not the same as variables introduced by A-abstractions. Feature 2: Remarkably, there is
a simple algorithm for automatically inferring the polymorphic Hindley-Milner type of a A-calculus
expression Damas & Milner|(1982). Our generative model over programs performs Hindley-Milner
type inference during sampling: Unify in the generative model uses the machinery of Hindley-Milner
to ensure that the generated programs have valid polymorphic types. A satisfactory exposition of
Hindley-Milner is beyond the scope of this paper, but |Pierce| (2002)) offers a nice overview of lambda
calculus and typing systems like Hindley-Milner.

3 Generative model over programs

Alg. is a procedure for drawing samples from the generative model (D, #). In practice, we enumerate
programs in order of their probability under Alg. [I]rather than sample them.

Algorithm 1 Generative model over programs

function sample(D, 0, &, 7):
Input: DSL (D, #), environment &, type 7
Output: a program whose type unifies with 7
if = a — [then
var <— an unused variable name
body ~ sample(D, 0, {var : a} UE, 3)
return (lambda (var) body)
end if
primitives < {p|p: 7 € DUE
if 7 can unify with yield(7")}
Draw e ~ primitives, w.p. x 6. if e € D
W.p. X ‘Va(ifa‘ﬁes‘ ifee&
Unify 7 with yield(7').
{O‘k}le « args(7')
for k =1to K do
ay ~ sample(D, 0, &, ay,)
end for
return (e a; as - ag)
where:

. yield(8) ifr=a—p8
1d(7) =
yield() { T otherwise.

_ [lol+ares(8) ifr=a—p
args(7) = {H otherwise.

4 Neural Recognition Model Architecture

The neural recognition model regresses from an observation (set of input/output pairs: {(4,,, 05)},, <)
to a |D| 4 1 dimensional vector. Each input/output pair is processed by an identical encoder network;
the outputs of the encoders are average and passed to an MLP with 1 hidden layer, 32 hidden units,
and a ReL.U activation:

q(x) = MLP (Average ({encoder (in, 0”)}n§N)> (1)

For the string editing and list domains, the inputs and outputs are sequences. Our encoder for these
domains is a bidirectional GRU with 64 hidden units that reads each input/output pair; we concatenate
the input and output along with a special delimiter symbol between them. We MaxPool the final
hidden unit activations in the GRU along both passes of the bidirectional GRU.

For symbolic regression, the input/outputs are densely sampled points along the curve of the function.
We rendered these points to a graph, and pass the image of the graph to a convolutional network,
which acts as the encoder.

5 DSL Induction

5.1 Fragment grammars

‘Fragment grammars’ (O’ Donnell| (2015)) is a formalism from computational linguistics developed for
the purpose of modeling the reuse of structure in natural language. Here, we will adapt the fragment

fragments(\z.e) = fragments’(\z.e) U fragments(e)
fragments(f =) = fragments’(f x) U fragments(f) U fragments(z)
fragments(e) = &, if e is a variable or primitive.

fragments’(Az.e) = {Az.€/|¢/ € fragments’(e) } U {v}, v a free variable
fragments’(f =) = {f’ 2’| f" € fragments’(f), 2’ € fragments’(z) } U {v}, v a free variable

fragments’(e) = {e} U {v}, v a free variable, e a variable or primitive

Figure 1: Procedure for extracting possible fragments from a program. To prevent an explosion in the
number of fragments, we also cap the number of free variables in a fragment to 3.

closeFragment(e) = closeFragment(Az.e), if z is a free variable in e
closeFragment(e) = e, if e has no free variables.

Figure 2: Procedure for converting a fragment to a subroutine.

grammar formalism to model the reuse of structure in a formal language (\ calculus), interpreting
reuse of structure as subroutines.

In the original fragment grammar formalism, a fragment grammar contains a probabilistic CFG
called its base grammar; a fragment is a tree drawn from the base grammar, but which can contain
nonterminal symbols. As a motivating example, consider the following base grammar:

S—=(H+SS9)
S —=(xS859)
S —0
S —1

An example expression drawn from this grammar is (+ 1 (x 0 0)). An example fragment drawn
from this grammar (+ 1 (x S S)).

When extending fragment grammars to A-calculus we write nonterminal symbols as free variables, and
use the (current) DSL as our base grammar. For example, if our DSL includes addition, multiplication,
and the numbers zero & one (as in our example base grammar), then a possible A-fragment would be
(+1(xzy)).

In order to use fragments for DSL induction, we need several pieces: (1) a procedure for proposing
fragments from programs found in the frontiers (described in figure[I)); (2) a procedure for evaluating
the likelihood of a program given that a fragment has been added to the DSL (defined in figure3)); and
(3) a procedure for converting a fragment to a subroutine (i.e., a closed, typed A-calculus expression;
described in Figure[2). Putting these procedures together, Algorithm 3]is used to induce a new DSL.

P[p|D, 6] = Pp ¢(p|T, o), where p : T
Ppo(Az.pla — B,E) = Ppo(p|B, [T — o), where T a fresh type variable

Ppglelr,&) = Z Pp o(f,xs|T,&), when e not a A-abstraction
f,xsEparse(e)

Marginalizing out how D produced e

Pholfasin&) = S U tmatch(y’, f) £ 1] %

Z.
flimi—Te—-—TED 7.D.0,&

Marginalize over which fragment produced f, xs

||

H PD,O(xnh—na 5) H PD79(6|T/7 5)
n=1

e, 7' €match(f’, f)

match(Az.b, Az.b") = match(b,d")
match(f z, f’ 2') = match(f, f’) U match(z, ')
match(p, p) = &, p a primitive or variable bound in fragment
match(v, p) = {v — p}, v a variable free in fragment, p not containing free variables bound in fragment

match(e, €’) = L, otherwise.

Zrpog = Z O

fimi—=Tme—-=TEDUE

Normalizing constant for type 7

parse(f) = {f', s + [x] | [, ws € parse(f)} U{[«}

parse(e) = {e, []}, e not an application

Figure 3: Procedure for calculating likelihood of a program after a new fragment has been added to
the DSL. For simplicity we omit typing context and reuse type variables to indicate unification, as is
commonly done in e.g. Prolog.

Algorithm 3 DSL Induction Algorithm

Input: Set of frontiers {F,}
Hyperparameters: Pseudocounts «, regularization parameter A
Output: DSL D, weight vector 6
Define L(D,0) =[], Zpeh P[p|D,0)
Define 0* (D) = arg max, Dir(6|a)) L(D, 0)
Define score(D) = log P[D] + L(D, 0*) — ||0]/o
D < every primitive in {F,}
while true do
N+ {DU{s}|z € X,p € F,, s € fragments(p)}
D' < arg maxp, ¢y score(D’)
if score(D’) < score(D) return {closeFragment(s)|s € D}, 0*(D)
D+ 7D
end while

5.2 Estimating 0

We use an EM algorithm to estimate the continuous parameters of the DSL, e.g. 6. Suppressing
dependencies on D, the EM updates are

6 = argmaxlog P(0) + Z Eq, [logP [p|6]] (2)
0

Qz(p) o Plz[p|P[p|0] 3)

In the M step of EM we will update 6 by instead maximizing a lower bound on log IP[p|f], making
our approach an instance of Generalized EM.

We write c(e, p) to mean the number of times that primitive e was used in program p; ¢(p) =
> eep c(e, p) to mean the total number of primitives used in program p; R(p) to mean the sequence
of types input to sample in Alg. 1 of the main paper. Jensen’s inequality gives a lower bound on the
likelihood:

> Eq, [log P[p|d]] =

Zlog@ Z]E c(e, ps)] Z]E

Z Tpggllog > e

ecD e’ €D
unify(7,7")
_ C (T, pz)]
= C(e)logb. 52 log Y 0
€ et €D
unify(f)
E> c(r,pe
ZZC(e) log 6. — 5logz [— Z 0
€ T e:T' €D
umfy(f-r 0]
=> C(e)logh. — > b
e err’ €D
unify(7,7")

where we have defined

& S Blefe, pa)
Z c(r,pm)]

8= ZE Z (T,p2)

Crucially it was defining 3 that let us use Jensen’s inequality. Recalling from the main paper that
P(0) = Dir(«), we have the following lower bound on M-step objective:

> (C(e) + a)log b — > 6. (4)

€ e:r G'D
unify(7,7")

R(t) £ E

Differentiate with respect to 6., where e : 7, and set to zero to obtain:
% oY 1 funify(r, 7Y R(7) 5)

Cle) + «
>, 1 [unify(7, 7")] R(7")

The above is our estimator for .. Despite the convoluted derivation, the above estimator has an
intuitive interpretation. The quantity C(e) is the expected number of times that we used e. The

0, x (6)

quantity >, 1 [unify(7, 7")] R(7") is the expected number of times that we could have used e. The
hyperparameter « acts as pseudocounts that are added to the number of times that we used each
primitive, and are not added to the number of times that we could have used each primitive.

We are only maximizing a lower bound on the log posterior; when is this lower bound tight? This
lower bound is tight whenever all of the types of the expressions in the DSL are not polymorphic, in
which case our DSL is equivalent to a PCFG and this estimator is equivalent to the inside/outside
algorithm. Polymorphism introduces context-sensitivity to the DSL, and exactly maximizing the
likelihood with respect to # becomes intractable, so for domains with polymorphic types we use this
estimator.

6 Hyperparameters & Implementation Details

We set structure penalty A = 1 (Eq. 5 of the main paper) and smoothness parameter o = 10 (Eq. 6 of
the main paper) for all experiments. For list processing and text editing we used a search timeout
of two hours; because the symbolic regression problems are easier, we used a timeout of only five
minutes for these.

Because the frontiers can become very large in later iterations of the algorithm, we only keep around
the top 10* programs in the frontier F,, as measured by P[z, p|D, 6].

7 Why not the ELBO Bound?

Our lower bound .Z is unconventional, and one might wonder why we do not instead maximize an
ELBO-style bound like in a VAE or in the EM algorithm. Surprisingly, maximizing an ELBO-style
bound leads to a pathological behavior that causes the model to easily become trapped in local optima.

If we were to maximize the ELBO bound to perform inference in our generative model, then,
during DSL induction, we would seek a new (D*, §*) maximizing the following lower bound on the
likelihood (along with an unimportant regularizing term on the DSL):

> Epeq, [log Plp|D*, 6°]] (7
rxeX
Qz(p) £ Plplz, D,] (8)

where (D, 0) is our current estimate of the generative model. These equations fall out of an EM-style
derivation, and one could replace Q.. (p) with the recognition model ¢(p|x), either using importance
sampling (so the expectation in Eq.[7|is taken over ¢ and we reweigh using @),) or by directly using ¢
as our approximate posterior over the program that solves task x.

We do not maximize a bound of this form because it takes an expectation over the previous iteration’s
posterior over programs, so the approximate posterior (), at the next iteration ends up being very
close to previous approximate posterior. Intuitively, we want the DSL induction to be a function only
of the programs that we have found, and not be a function of how the previous generative model
weighed them. In practice, we found that maximizing EM-style bounds, like the ELBO, leads to
a kind of hysteresis effect, where the next generative model too closely matches the previous one,
causing the algorithm to easily become trapped in local optima.

8 List Processing Data Set

Each list processing tasks we created is in described in Tbl[T]

9 Learned DSLs

Here we present representative DSLs learned by our model. DSL primitives discovered by the
algorithm are prefixed with #. Variables are prefixed with $, and we adopt De Bruijn indices to model
bound variables [Pierce| (2002)).

add-k fork € {0..5}

append-index-k for k € {1..5}

append-k fork € {0..5}

bool-identify-geq-k fork € {0..5}

bool-identify-is-mod-k fork € {1..5}

bool-identify-is-prime

bool-identify-k for k € {0..5}

caesar-cipher-k-modulo-n
fork € {0..5} and n € {1..5}

count-head-in-tail

count-k fork € {0..5}

drop-k for k € {0..5}

dup

empty

evens

fibonacci

has-head-in-tail

has-k fork € {0..5}

head

index-head

index-k fork € {1..5}

is-evens

is-mod-k fork € {1..5}

is-odds

is-primes

is-squares

keep-eq-k for k € {0..3}

keep-gt-k for k € {0..3}

keep-mod-head

keep-mod-k fork € {1..5}

keep-primes

keep-squares

kth-lTargest fork € {1..5}
kth-smallest for k € {1..5}
last

len

max

min

modulo-k fork € {1..5}
mult-k fork € {0..5}

odds

pop

pow-k fork € {1..5}
prepend-index-k fork € {1..5}
prepend-k fork € {0..5}
product

range

remove-empty-lists
remove-eq-k for k € {0..3}
remove-gt-k for k € {0..3}
remove-index-k fork € {1..5}
remove-mod-head
remove-mod-k fork € {2..5}
repeat

repeat-k fork € {1..5}
repeat-many
replace-all-with-index-k for k € {1..5}
reverse

rotate-k fork € {1..5}
slice-k-n fork € {1..5} and n € {1..5}
sort

sum

tail

take-k fork € {1..5}

Table 1: Our list processing data set

9.1

#(+
#(A
#(A
#(A
#(A
#(A
#(A
#(A
#(+
#(A
#(A
#(A
#(A
#(A
#(A
#(A
#(A
#(+
#(A
#(A
#(A

#(A
#(+
#(A
#(A
#(A
#(A

#(\
#(\

#(\

#(\

#(\

#(\

#(\

#(\

9.2

#(+
#(A
#(A
#(A
#(A
#(A

#(\

#(\

List processing

1 1)

(cdr (cdr $0)))

(foldr $0 1 (A (A (x $0 $1)))))

(cons (car $0) nil))

(XA (foldr $0 $1 (X (X (cons $1 $0))))))

(X (foldr $0 (is—nil $0) (A (X (if $O $0 (eq? $3 $1)))))))

(map (A (eq? $1 $0))))

(+ $0 (x $0 $0)))

1 #(+ 1 1))

(map (A (gt? $0 $1))))

(foldr $0 nil (A (A (if (is—square $1) (cons $1 $0) $0)))))

(map (A (eq? $0 (length (range $0)))) $0))

(A (map (A (index $0 $1)) (range $1))))

(cdr (#(X (cdr (cdr $0))) $0)))

(map (X (index 1 $1))))

(foldr $0 nil (A (X (cons $1 (cons $1 $0))))))

(X (cons (car $0) $1)))

1 #(+ 1 #+ 1 1))

(map (XA (gt? 1 (mod $0 $1)))))

(A (map (XA (mod (+ $0 $1) $2)))))

(#(XN (X (foldr $0 $1 (X (X (cons $1 %$0)))))) (#(X (X (foldr $0 $1 (A
<~ (X (cons $1 $0)))))) $0 $0) $0))

(A (#(XN (X (foldr $0 $1 (X (X (cons $1 $0)))))) (cons $0 nil) $1)))
#+ 1 #+ 1 1) #+ 1 1))

(map (A (+ #(+ 1 #(+ 1 1)) (+ $1 $0)))))

(map (A (+ $0 $1))))

(A (foldr $0 (is—nil $0) (XA (A (gt? $1 (#(A (x $0 (x $0 $0)))

— $3)))))))

(foldr $0 0 (A (X (+ $0 (#(X (foldr $0 1 (X (A (x $0 $1))))) (range
— $1)))))))

(#(X (cdr (#(X (cdr (cdr $0))) $0))) (cdr $0)))

(#(X\ (foldr $0 nil (A (XA (if (is—square $1) (cons $1 $0) $0)))))

— (map (A (x $0 (+ $0 $0))) $0)))

(A (#(XN (X (foldr $0 $1 (X (X (cons $1 $0)))))) (#(X (cons (car $0)
— nil)) $0) $1)))

(A (length (#(A (#(X (foldr $0 nil (A (A (if (is—square $1) (cons $1
— $0) $0))))) (map (A (x $0 (+ $0 $0))) $0))) (map (X (— $1 $0))

— $1)))))

(A (is—square (#(A (foldr $0 1 (A (A (x $0 $1))))) (#(A (A (map (A
<~ (mod (+ $0 $1) $2))))) (length (#(A (#(XA (A (foldr $0 $1 (A (A

< (cons $1 $0)))))) (#(X (X (foldr $0 $1 (X (X (cons $1 $0)))))) $0
— $0) $0)) $0)) $1 $0)))))

(X (foldr (cdr $0) $1 (X (X (#(X (XA (#(X (X (foldr $0 $1 (X (X (cons
— $1 $0)))))) (#(X (cons (car $0) nil)) $0) $1))) (cdr $0) $0))))))
(is—nil (#(X (#(X (foldr $0 nil (A (X (if (is—square $1) (cons $1

— $0) $0))))) (map (A (x $0 (+ $0 $0))) $0))) (#(AX (A (map (A (mod
— (+ $0 S$1) $2))))) #(+ 1 1) 1 $0))))

(A (gt? (#(X (X (length (#(A (#(X (foldr $0 nil (A (X (if (is—square
< $1) (cons $1 $0) $0))))) (map (A (x $0 (+ $0 $0))) $0))) (map (A
— (= $1 $0)) $1))))) $0 $1) 1)))

Text editing

1)

(A (fold $0 $0 (A (X (if (char—eq? $1 $3) nil (cons $1 $0)))))))

(A (fold $0 $0 (X (A (cdr (if (char—eq? $1 $3) $2 $0)))))))

(A (fold $0 $1 (A (A (cons $1 $0))))))

(X (#(X (X (fold $0 $1 (X (X (cons $1 $0)))))) (cons $0 $1))))

(#(X (A (X (cons (car $0) (cons $1 $2))))) (#(#(X (N (X (cons (car
<~ $0) (cons $1 $2))))) nil) .7 $0) ’.’))

(A (fold $0 $0 (X (X (fold $0 $0 (A (X (if (char—eq? $1 $5) (cdr $2)
— $0)))))))))

(A (map (A (if (char—eq? $1 $0) $2 $0)))))

#A (#(X (X (fold $0 $1 (X (X (cons $1 $0)))))) $0 STRING))

#(\ (map (A (index $0 $1))))

#(A (unfold $0 (X (nil? $0)) (A (car $0)) (A (#(A (X (fold $0 $0 (A (X
< (cdr (if (char—eq? $1 $3) $2 $0))))))) SPACE $0))))

#(#(A (X (X (cons (car $0) (cons $1 $2))))) nil)

9.3 Symbolic regression

#(\ (/. (/. REAL $0) $0))

#(\ (+. $0 REAL))

#(X (#(\ (+. $0 REAL)) (*. $O (#(X\ (#()\ (+. $0 REAL)) (. (#() (#(\ (¥(\
< (+. $0 REAL)) (%. $0 REAL))) (*. (#(\ (+. $0 REAL)) $0) $0))) $0)
— $0))) $0))))

#(A (/. (#(X (/. (/. REAL $0) $0)) $0) $0))

#(A (X (#(/. REAL) (/. (#(X\ (+. $0 REAL)) $0) $1))))

#(\ (#(\ (+. $0 REAL)) (#()\ (#(/. REAL) (#()\ (+. $0 REAL)) $0))) $0)))

#(#(X (A (#(/. REAL) (/. (#(XA (+. $0 REAL)) $0) $1)))) (#(X (/. (#(X (/.
<» (/. REAL $0) $0)) $0) $0)) REAL))

#(ON (/. (#(\ (#() (#()\ (+. $0 REAL)) (*. $0 REAL))) (*. (#(\ (+. $0
<» REAL)) $0) $0))) $0) (#(XA (+. $0 REAL)) $0)))

References

Damas, Luis and Milner, Robin. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
207-212. ACM, 1982.

O’Donnell, Timothy J. Productivity and Reuse in Language: A Theory of Linguistic Computation
and Storage. The MIT Press, 2015.

Pierce, Benjamin C. Types and programming languages. MIT Press, 2002. ISBN 978-0-262-16209-8.

10

	An Illustration of the three steps of our algorithm
	Program Representation
	Generative model over programs
	Neural Recognition Model Architecture
	DSL Induction
	Fragment grammars
	Estimating

	Hyperparameters & Implementation Details
	Why not the ELBO Bound?
	List Processing Data Set
	Learned DSLs
	List processing
	Text editing
	Symbolic regression

