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1 Monotonicity of Induced Cardinality

The monotonicity of f is a straightforward application of the Cauchy eigenvalue interlacing theorem.

Theorem 1. Cauchy interlacing theorem: Consider a symmetric matrixA ∈ Rn×n with eigenvalues
α1 ≤ α2 ≤ . . . ≤ αn, and any principal submatrix B ∈ Rm×m with eigenvalues β1 ≤ β2 ≤ . . . ≤
βm. Then the eigenvalues interlace in the following manner:

αk ≤ βk ≤ αk+n−m for k = 1, 2, . . . ,m . (1)

Theorem 2. f(S) is monotone increasing.

Proof. Given two sets S ⊆ T ⊆ [n], we will show that f(S) ≤ f(T ). Denote the eigenvalues of
LT by α1 ≤ α2 ≤ . . . ≤ α|T |, and the eigenvalues of LS by β1 ≤ β2 ≤ . . . ≤ β|S|. Since LS is a
principal submatrix of LT , the Cauchy interlacing theorem implies that:

αk ≤ βk ≤ αk+|T |−|S| for k = 1, 2, . . . , |S| . (2)

We will combine this fact with the eigenvalue version of the formula for f(S) to get the desired
inequality:

f(S) = |S| −
|S|∑
i=1

1

βi + 1
≤ |S| −

|S|∑
i=1

1

αi+|T |−|S| + 1

≤ |S| −
|S|∑
i=1

1

αi+|T |−|S| + 1
+

|T |−|S|∑
i=1

(
1− 1

αi + 1

)

= |T | −
|S|∑
i=1

1

αi+|T |−|S| + 1
−
|T |−|S|∑
i=1

1

αi + 1

= |T | −
|T |∑
i=1

1

αi + 1
= f(T ) ,

where the first inequality is an application of the interlacing theorem, and the second follows because
the quantity being added is positive (0 ≤ αi since L is a positive semi-definite matrix).
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2 Fractional Subadditivity of Induced Cardinality

Before proving fractional subadditivity, we state two matrix algebra facts that will be useful in
completing the proof. The first follows from the definition of the adjugate matrix, and the second
from the submodularity of log det.

Lemma 2.1. For an invertible matrix A ∈ Rn×n, Tr(A−1) =
∑n
i=1 det(A−i)/ det(A), where

A−i ∈ R(n−1)×(n−1) is the A matrix with its ith row and column removed.

Proof. The adjugate matrix adj(A) is defined as the matrix that satisfies det(A)I = Aadj(A). This
matrix is known to be the transpose of the cofactor matrix of A. More concretely, let Mij denote the
(i, j)-minor of the matrix A ∈ Rn×n (the determinant of the matrix formed by deleting row i and
column j from A). Let Cij = (−1)i+jMij denote the corresponding cofactor. The adjugate matrix
adj(A) equals C>. Plugging C> into the definition of the adjugate: det(A)I = AC>. Multiplying
by A−1 and taking the trace:

det(A) Tr(A−1) =
n∑
i=1

(−1)i+iMii =

n∑
i=1

det(A−i). (3)

Dividing by det(A) yields the desired identity.

Second, from the submodularity of log det, we have the following useful lemma.

Lemma 2.2. For any set Ti ⊆ T and any j ∈ Ti:

det(LTi\j + I)

det(LTi
+ I)

≤
det(LT\j + I)

det(LT + I)
. (4)

Proof. The function g(S) = log det(LS + I) is a well-known submodular function. From the
definition of submodularity, we can say that for any set Ti ⊆ T and any j ∈ Ti, the following
inequality holds:

g(Ti)− g(Ti \ j) ≥ g(T )− g(T \ j). (5)

Writing out the expression for g and combining logs:

log

(
det(LTi + I)

det(LTi\j + I)

)
≥ log

(
det(LT + I)

det(LT\j + I)

)
.

Exponentiating and then taking the inverse yields the desired expression.

We are now ready to prove fractional subadditivity of f(S).

Theorem 3. f(S) is fractionally subadditive.

Proof. Let S, Ti, and αi satisfy the relationship
∑
i:j∈Ti

αi ≥ 1 for all i ∈ S. Then {Ti} must cover
S, in the sense that S ⊆

⋃
i Ti. (If some element s ∈ S were not in any of the Ti, then we would

have
∑
i:s∈Ti

αi = 0.) Hence, by monotonicity (Theorem 2), f(S) ≤ f (
⋃
i Ti). Let T =

⋃
i Ti and
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M = LT . Then we can write:

f(S) ≤ f(T ) = Tr(I − (M + I)−1) (definition of f )

=
∑
j∈T

(
1− det(M−j + I)

det(M + I)

)
(by Lemma 2.1)

≤
∑
j∈T

 ∑
i:j∈Ti

αi

(1− det(M−j + I)

det(M + I)

)
(multiplication by value ≥ 1)

=
∑
i

αi
∑
j∈T

(
1− det(M−j + I)

det(M + I)

)
(switching the order of the summations)

≤
∑
i

αi
∑
j∈T

(
1−

det(LTi\j + I)

det(LTi
+ I)

)
(by Lemma 2.2)

=
∑
i

αi
∑
j∈Ti

(
1−

det(LTi\j + I)

det(LTi
+ I)

)
(dropping zero terms)

=
∑
i

αiTr(I − (LTi
+ I)−1) . (by Lemma 2.1)

Thus, f(S) ≤
∑
i αif(Ti).

3 NP-Hardness of Induced Cardinality

Before showing that f(S) is NP-hard to maximize, we first state a lemma that will be helpful in this
proof.

Lemma 3.1. For a vector λ ∈ Rk, define the function h(λ) =
∑k
i=1

λi

λi+1 . Then λ = 1 is the
unique maximizer of the following optimization problem:

max
λ

h(λ) s.t.
k∑
i=1

λi = k . (6)

Proof. Introducing a Lagrange multiplier α for the equality constraint, we have the following
Lagrangian function:

L(λ, α) = h(λ)− α
(
k − λ>1

)
. (7)

According to the method of Lagrange multipliers, if λ∗ is a maximizer of h for the original constrained
problem, then there exists an α∗ such that (λ∗, α∗) is a stationary point of L. Hence, a maximizer of
the original problem must occur at a point where all of the partial derivatives of L are zero. These
derivatives are:

∂L
∂λi

=
1

(λi + 1)2
− α and

∂L
∂α

= k −
k∑
i=1

λi (8)

For it to be the case that ∂L
∂λi

= 0 for all i, it must be true that ∂L
∂λi

= ∂L
∂λj

for all i, j. This can only
hold if (λi + 1)2 = (λj + 1)2, which is only true when λi = λj . So at any stationary point of L it
must be the case that λ is a uniform vector. Satisfying ∂L

∂α = 0 sets the scale of this vector, requiring
λi = 1 ∀i.

We are now ready to prove the main NP-hardness result.

Theorem 4. MIC is NP-hard.

Proof. Recall the EXACT 3-COVER (X3C) problem: Given a set S and a collection C of size-3
subsets of S, decide if there is a sub-collection C ′ ⊆ C that contains every element of S exactly once.
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We will reduce this to MIC with the following construction. (The DPP kernel construction is
identical to that of Theorem 2.4 in Kulesza [2012].) First, define a |C| × |S| matrix F with entries
Fcs = 1(s ∈ Cc) 1√

3
. Let L = FF>. This is a |C| × |C| positive semi-definite matrix with entries:

Lij =
|Ci ∩ Cj |

3
.

Set k = |S|
3 . We will now show that MIC ≥ k

2 if and only if an exact 3-cover exists.

• If an exact 3-cover exists, then MIC ≥ k
2 : Without loss of generality, let {C1, . . . , Ck} be a

collection of size-3 sets that make up an exact 3-cover, and let Y = {1, . . . , k}. Then, by
construction, for i, j ∈ Y, i 6= j, we have Lij = 0 and Lii = 1; that is, LY is the identity
matrix. From the equation for f in terms of eigenvalues, with λi denoting the eigenvalues of
LY , we have:

f(Y ) =

k∑
i=1

λi
λi + 1

=

k∑
i=1

1

1 + 1
=
k

2
. (9)

• If an exact 3-cover does not exist, then MIC < k
2 : We begin by constructing a relaxation,

RELAXED-MIC. The MIC solution can be no larger than the solution to RELAXED-MIC.
We will then show that RELAXED-MIC has maximum value k

2 , and that any solution to
MIC that also achieves this value must correspond to an exact 3-cover.

First, note that the diagonal of L is all 1’s, so the trace of any size-k principal submatrix is k.
Since the trace of a matrix is also the sum of its eigenvalues, we have that for any size-k set
Y :

Tr(LY ) =

k∑
i=1

λi = k , (10)

where λi are the eigenvalues of LY . Now recall the eigenvalue form of f(S):

f(Y ) =

k∑
i=1

λi
λi + 1

. (11)

If we combine this expression with the constraint on the sum of the eigenvalues, then we get
a relaxation of the MIC problem:

RELAXED-MIC :

max
λ1,...,λk

k∑
i=1

λi
λi + 1

s.t.
k∑
i=1

λi = k . (12)

This problem is identical to MIC, but with fewer constraints, since it does not require that
the λi exactly match the eigenvalues of a size-k submatrix of L. From Lemma 3.1, we know
that the unique maximizer of this relaxed problem is λ1 = . . . = λk = 1. This solution has
value k

2 . Thus, the value achieved by MIC must be ≤ k
2 .

We now argue that MIC only achieves this value when there is a submatrix of L that
corresponds to an exact 3-cover. Since λ = 1 is the unique maximizer of RELAXED-MIC,
no other setting of λ can achieve a value as large as k

2 . Given the construction of the matrix
L, the only size-k submatrix with exactly this set of all-1 eigenvalues is the identity matrix.
But if there exists a size-k submatrix of L that is the identity matrix, then this corresponds
to an exact 3-cover, which contradicts the premise that no exact 3-cover exists.

4 Proof of Uniform Approximation Bound

Corollary 4.1. For all sets S of size k,

f(S)

f̂(S)
≥ 1− mr′(B, k, 3)

(m− 1)k − r′(B, k, 1)− r′(B, k, 2)
, with r′(B, k, `) =

n∑
j=n−k+1

(
λj(B)

m

)`
.

(13)
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Proof. By the Cauchy eigenvalue interlacing theorem, the eigenvalues of BS interlace those of B
such that: λi(B) ≤ λi(BS) ≤ λi+n−k(B). Thus:

Tr(BS) =

k∑
j=1

λj(BS) ≤
k∑
j=1

λj+n−k(B) =

n∑
j=n−k+1

λj(B) . (14)

Hence the trace of BS is upper-bounded by the sum of the top k eigenvalues of B. Since raising a
matrix to a power simply raises its eigenvalues to that power, we also have:

Tr(BiS) ≤
n∑

j=n−k+1

λj(B)i , (15)

and therefore r(BS , `) ≤ r′(B, k, `).
We can now substitute r′(B, k, `) for r(BS , `) in the original theorem, noting that these terms have
positive coefficients in the numerator and negative coefficients in the denominator.
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