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Abstract

Approximating a probability density in a tractable manner is a central task in
Bayesian statistics. Variational Inference (VI) is a popular technique that achieves
tractability by choosing a relatively simple variational approximation. Borrowing
ideas from the classic boosting framework, recent approaches attempt to boost
VI by replacing the selection of a single density with an iteratively constructed
mixture of densities. In order to guarantee convergence, previous works impose
stringent assumptions that require significant effort for practitioners. Specifically,
they require a custom implementation of the greedy step (called the LMO) for every
probabilistic model with respect to an unnatural variational family of truncated
distributions. Our work fixes these issues with novel theoretical and algorithmic
insights. On the theoretical side, we show that boosting VI satisfies a relaxed
smoothness assumption which is sufficient for the convergence of the functional
Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and
propose to maximize the Residual ELBO (RELBO) which replaces the standard
ELBO optimization in VI. These theoretical enhancements allow for black box
implementation of the boosting subroutine. Finally, we present a stopping criterion
drawn from the duality gap in the classic FW analyses and exhaustive experiments
to illustrate the usefulness of our theoretical and algorithmic contributions.

1 Introduction

Approximating probability densities is a core problem in Bayesian statistics, where inference translates
to the computation of a posterior distribution. Posterior distributions depend on the modeling
assumptions and can rarely be computed exactly. Variational Inference (VI) is a technique to
approximate posterior distributions through optimization. It involves choosing a set of tractable
densities, a.k.a. variational family, out of which the final approximation is to be chosen. The
approximation is done by selecting a density in the candidate set that is close to the true posterior in
terms of Kullback-Leibler (KL) divergence [1]. There is an inherent trade-off involved in fixing the
set of tractable densities. Increasing the capacity of the variational family to approximate the posterior
also increases the complexity of the optimization problem. Consider a degenerate case where the
variational family contains just a single density. The optimization problem is trivial and runs in
constant time, but the quality of the solution is poor and stands in no relation to the true posterior.
This contrived example is clearly too restrictive, and in practice, the mean field approximation offers
a good trade-off between expressivity and tractability [2]. However, in many real-world applications,
mean field approximations are lacking in their ability to accurately approximate the posterior.

Imagine a practitioner that, after designing a Bayesian model and using a VI algorithm to approximate
the posterior, finds that the approximation is too poor to be useful. Standard VI does not give the
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practitioner the option to trade additional computational cost for a better approximation. As a result,
there have been several efforts to ramp up the representative capacity of the variational family while
maintaining tractability.

One line of work in this direction involves replacing the simple mean field family by a mixture
of Gaussians. It is known that mixtures of Gaussians can approximate any distribution arbitrarily
closely [18]. Boosting is a practical approach to finding the optimal approximating mixture and
involves adding components to the mixture greedily one at a time [5, 13, 16]. Not only is boosting a
practical solution, it also has well-studied trade-off bounds for number of iterations vs. approximation
quality [13] by virtue of being essentially a variant of the classical Frank-Wolfe (FW) algorithm [8, 13].
Unfortunately, these greedy algorithms require a specialized, restricted variational family to ensure
convergence and therefore a white box implementation of the boosting subroutine. These restrictions
include that (a) each potential component of the mixture has a bounded support i.e., truncated
densities, and (b) the subroutine should not return degenerate distributions. These assumptions
require specialized care during implementation, and therefore, one cannot simply take existing VI
solvers and boost them. This makes boosting VI unattractive for practitioners. In this work, we fix
this issue by proposing a boosting black box VI algorithm that has many practical benefits.

Our work presents several key algorithmic and theoretical contributions, which we summarize below:

• We relax the previously known conditions for guaranteed convergence from smoothness to
bounded curvature. As a consequence, the set of candidate densities no longer needs to be
truncated, thereby easing its implementation and improving on the convergence guarantees.

• We propose a modified form of the ELBO optimization, the Residual ELBO (RELBO),
which guarantees that the selected density is non-degenerate and is suitable for black box
solvers (e.g. black box variational inference [19]).

• We propose a novel stopping criterion using the duality gap from FW, which is applicable to
any boosting VI algorithm.

In addition to these theoretical contributions, we present extensive simulated and real-world empirical
experiments to show the applicability of our proposed algorithmic extensions.

While our work is motivated by applications to VI, our theoretical results have a more general
impact. We essentially analyze the application of the functional FW algorithm to the general task of
minimizing the KL-divergence over a space of probability densities.

1.1 Related work

There is a vast literature on VI. We refer to [1] for a thorough review. Our focus is to use boosting
to increase the complexity of a density, similar to the goal of Normalizing Flows [20], MCMC-VI
hybrid methods [22, 21], or distribution transformations [23]. Our approach is in line with several
previous approaches using mixtures of distributions to improve the expressiveness of the variational
approximation [9, 6] but goes further to draw connections with classic optimization to obtain several
novel theoretical and algorithmic insights.

While boosting has been well studied in other settings [15], it has only recently been applied to the
problem of VI. Related works of [5] and [16] developed the algorithmic framework and conjectured
a possible convergence rate of O(1/T ) but without theoretical analyses. The authors in [5] identify
the need of truncated densities to ensure smoothness of the KL cost function. A more recent
work [13] provides a theoretical base for analyzing the algorithm. They identify the sufficient
conditions for guaranteeing convergence and provide explicit constants to the conjectured O(1/T )
rate. Unfortunately, these sufficient conditions amount to restrictive assumptions about the variational
family and therefore require the practitioner to have white box access to the variational family and
underlying VI algorithm. In this work, we remove these assumptions to allow use of black box VI
methods.

Our analysis is mainly based on the FW algorithm [8], which is a commonly used algorithm for
projection free constrained optimization. The convergence rates and requisite assumptions are
well studied in various settings [12, 11, 14]. Its applications include non-Euclidean spaces, e.g., a
variational objective for approximate marginal inference over the marginal polytope [10].

The rest of the paper is organized as follows. We begin by introducing and formalizing the boosting VI
framework in Section 2. In Section 3, we review and analyze the Functional FW algorithm to greedily
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solve the boosting VI. In Section 4, we first propose RELBO, an alternative of the contemporary
ELBO optimization to implement a black box LMO (linear minimization oracle). Then, we propose
a duality gap based stopping criterion for boosting VI algorithms. Finally, experimental evaluation is
presented in Section 5. We refer the reader to the appendix for all proofs.

Notation. We represent vectors by small letters bold, (e.g. x) and matrices by capital bold, (e.g. X).
For a non-empty subset A of some Hilbert spaceH, let conv(A) denote its convex hull. A is often
called atom set in the literature, and its elements are called atoms. The support of a density function q
is a measurable set denoted by capital letters sans serif i.e., Z. The inner product between two density
functions p, q : Z→ R in L2 is defined as 〈p, q〉 :=

∫
Z
p(z)q(z)dz.

2 Variational inference and boosting

Bayesian inference involves computing the posterior distribution given a model and the data. More
formally, we choose a distribution for our observations x given unobserved latent variables z, called
the likelihood p(x|z), and a prior distribution over the latent variables, p(z). Our goal is to infer
the posterior, p(z|x) [1]. Bayes theorem relates these three distributions by expressing the posterior
as equal to the product of prior and likelihood divided by the normalization constant, p(x). The
posterior is often intractable because the normalization constant p(x) =

∫
Z
p(x|z)p(z)dz requires

integrating over the full latent variable space.

The goal of VI is to find a tractable approximation q(z) of p(z|x). From an optimization viewpoint,
one can think of the posterior as an unknown function p(z|x) : Z→ R+

>0 where Z is a measurable
set. The task of VI is to find the best approximation, in terms of KL divergence, to this unknown
function within a family of tractable distributions Q. Therefore, VI can be written as the following
optimization problem:

min
q(z)∈Q

DKL(q(z)‖p(z|x)). (1)

It should be obvious that the quality of the approximation directly depends on the expressivity of the
family Q. However, as we increase the complexity of Q, the optimization problem (1) also becomes
more complex.

Rather than optimizing the objective (1) which requires access to an unknown function p(z|x) and is
therefore not computable, VI equivalently maximizes instead the so-called Evidence Lower BOund
(ELBO) [1]:

−Eq [log q(z)] + Eq [log p(x, z)] . (2)

A recent line of work [5, 16, 13] aims at replacing Q with conv(Q) thereby expanding the capacity
of the variational approximation to the class of mixtures of the base family Q:

min
q(z)∈conv(Q)

DKL(q(z)||p(x, z)). (3)

The boosting approach to this problem consists of specifying an iterative procedure, in which the
problem (3) is solved via the greedy combination of solutions from simpler surrogate problems.
This approach was first proposed in [5], and its connection to the FW algorithm was studied in [13].
Contrary to the boosting approaches in the deep generative modeling literature initiated by [24],
boosting VI does not enjoy a simple and elegant subproblem as we discuss in Section 3.1. Next, we
show how to tackle (3) from a formal and yet very practical optimization perspective.

3 Functional Frank-Wolfe for boosting variational inference

Taking a step back from the problem (3), we first define the general optimization problem and the
relevant quantities needed for proving the convergence of FW. Then, we present the extension to
boosting black box VI.

We start with the general optimization problem:

min
q∈conv(A)

f(q). (4)
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where A ⊂ H is closed and bounded and f : conv(A)→R is a convex functional with bounded
curvature over its domain. Here the curvature is defined as in [8]:

Cf,A := sup
s∈A, q∈conv(A)

γ∈[0,1]
y=q+γ(s−q)

2

γ2
D(y, q), (5)

where
D(y, q) := f(y)− f(q)− 〈y − q,∇f(q)〉.

It is known that if∇f is Lipschitz continuous with constant L (often referred to as L-smoothness)
over conv(A), then Cf,A ≤ Ldiam(A)2 where diam(A) := maxp,q∈A ||p− q||2 [8].

Algorithm 1 Affine Invariant Frank-Wolfe

1: init q0 ∈ conv(A), S := {q0}, and accuracy δ > 0
2: for t = 0 . . . T
3: Find st := (Approx-)LMOA(∇f(qt))
4: Variant 0: γ = 2

δt+2

5: Variant 1: γ = arg minγ∈[0,1] f((1− γ)qt + γst)

6: qt+1 := (1− γ)qt + γst

7: Variant 2: S = S ∪ st
8: qt+1 = arg minq∈conv(S) f(q)
9: end for

The FW algorithm is depicted in Algo-
rithm 1. Note that Algorithm 2 in [5]
is a variant of Algorithm 1. In each
iteration, the FW algorithm queries a
so-called Linear Minimization Oracle
(LMO) which solves the following in-
ner optimization problem:

LMOA(y) := arg min
s∈A

〈y, s〉, (6)

for a given y ∈ H and A ⊂ H. To
tackle the constrained convex mini-
mization problem in Eq. (4), Frank-

Wolfe iteratively solves a linear constrained problem where, at iteration t, the function f is replaced
by its first-order Taylor approximation around the current iterate qt. It is easy to see that the so-
lution of this problem can be obtained by querying LMO(∇f(qt)). Indeed, the following holds:
arg mins∈conv(A) f(qt) + 〈∇f(qt), s − qt〉 = arg mins∈conv(A)〈∇f(qt), s〉 =: LMO(∇f(qt)).
Depending on A, computing an exact solution of (6) can be hard in practice. This motivates the
approximate LMO which returns an approximate minimizer s̃ of (6) for some accuracy parameter δ
and the current iterate qt such that:

〈y, s̃− qt〉 ≤ δmin
s∈A
〈y, s− qt〉 (7)

We discuss a simple algorithm to implement the LMO in Section 4. Finally, we find that Algorithm 1
is known to converge sublinearly to the minimizer q? of (4) with the following rate:
Theorem 1 ([8]). Let A ⊂ H be a closed and bounded set and let f : H→R be a convex function
with bounded curvature Cf,A over A. Then, the Affine Invariant FW algorithm (Algorithm 1)
converges for t ≥ 0 as

f(qt)− f(q?) ≤
2
(

1
δCf,A + ε0

)
δt+ 2

where ε0 := f(q0)− f(q?) is the initial error in objective, and δ ∈ (0, 1] is the accuracy parameter
of the approximate LMO.

Discussion. Theorem 1 has several implications for boosting VI. First, the LMO problem does not
need to be solved exactly in order to guarantee convergence. Second, Theorem 1 guarantees that
Algorithm 1 converges to the best approximation in conv(A) which, depending on the expressivity of
the base family, could even contain the full posterior. Furthermore, the theorem gives a convergence
rate which states that, in order to achieve an error of ε, we need to perform O( 1

ε ) iterations.

Similar discussions are also presented by [13]. The crucial question, which they leave unaddressed,
is whether under their assumptions there exists a variational family of densities which (a) is expres-
sive enough to well-approximate the posterior; (b) satisfies the conditions required to guarantee
convergence; and (c) allows for efficient implementation of the LMO.

3.1 Curvature of boosting variational inference

In order to boost VI using FW in practice, we need to ensure that the assumptions are not violated.
Assume that A ⊂ Q is the set of probability density functions with compact parameter space as well
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as bounded infinity norm and L2 norm. These assumptions on the search space are easily justified
since it is reasonable to assume that the posterior is not degenerate (bounded infinity norm) and has
modes that are not arbitrarily far away from each other (compactness). Under these assumptions, the
optimization domain is closed and bounded. It is simple to show that the solution of the LMO problem
over conv(A) is an element of A. Therefore, A is closed. The troublesome condition that needs to
be satisfied for the convergence of FW is smoothness. Indeed, the work of [5] already recognized
that the boosting literature typically require a smooth objective and showed that densities bounded
away from zero are sufficient. [13] showed that the necessary condition to achieve smoothness is that
the approximation be not arbitrarily far from the optimum. They argue that while this is a practical
assumption, the general theory would require truncated densities. We relax this assumption. As per
Theorem 1, a bounded curvature is actually sufficient to guarantee convergence. This condition is
weaker than smoothness, which was assumed by [13, 5]. For the KL divergence, the following holds.
Theorem 2. Cf,A is bounded for the KL divergence if the parameter space of the densities in A is
bounded.

The proof is provided in Appendix A.

Discussion. Surprisingly, a bounded curvature for the DKL can be obtained as long as:

sup
s∈A, q∈conv(A)

γ∈[0,1]
y=q+γ(s−q)

2

γ2
DKL(y‖q)

is bounded. The proof sketch proceeds as follows. For any pair s and q, we need to check that
2
γ2D

KL(y‖q) is bounded as a function of γ ∈ [0, 1]. The two limit points, DKL(s‖q) for γ = 1

and ‖s − q‖22 for γ = 0, are both bounded for any choice of s and q. Hence, the Cf,A is bounded
as it is a continuous function of γ in [0, 1] with bounded function values at the extreme points.
DKL(s‖q) is bounded because the parameter space is bounded. ‖s− q‖22 is bounded by the triangle
inequality and bounded L2 norm of the elements of A. This result is particularly relevant, as it
makes the complicated truncation described in [13] unnecessary without any additional assumption.
Indeed, while a bounded parameter space was already assumed in [13] and is a practical assumption,
truncation is tedious to implement. Note that [5] considers full densities as an approximation of the
truncated one. They also argue that the theoretically grounded family of distributions for boosting
should contain truncated densities. Avoiding truncation has another very important consequence for
the optimization. Indeed, [13] proves convergence of boosting VI only to a truncated version of the
posterior. Therefore, Theorem 8 in [13] contains a term that does not decrease when the number of
iteration increases. While this term could be small, as it contains the error of the approximation on
the tails, it introduces a crucial hyperparameter in the algorithm i.e., where to truncate. Instead, we
here show that under much weaker assumptions on the set A, it is possible to converge to the true
posterior.

4 The residual ELBO: implementing a black box LMO

Note that the LMO is a constrained linear problem in a function space. A complicated heuristic
is developed in [5] to deal with the fact that the unconstrained linear problem they consider has a
degenerate solution. The authors of [13] propose to use projected stochastic gradient descent on the
parameters of s. The problem with this is that, to the best of our knowledge, the convergence of
projected stochastic gradient descent is not yet understood in this setting. To guarantee convergence
of the FW procedure, it is crucial to make sure that the solution of the LMO is not a degenerate
distribution. This translates to a constraint on the infinity norm of s. Such a constraint is hardly
practical. Indeed, one must be able to compute the maximum value of s as a function of its parameters
which depends on the particular choice of A. In contrast, the entropy is a general term that can be
approximated via sampling and therefore allows for black box computation. We relate infinity norm
and entropy in the following lemma.
Lemma 3. A density with bounded infinity norm has entropy bounded from below. The converse is
true for many of the distributions which are commonly used in VI (for example Gaussian, Cauchy
and Laplace).

The proof is provided in Appendix A.

5



In general, bounded entropy does not always imply bounded infinity norm. While this is precisely the
statement we need, a simple verification is sufficient to show that it holds in most cases of interest.
We assume that A is a family for which bounded entropy implies bounded infinity norm. Therefore,
we can constrain the optimization problem with the entropy instead of the infinity norm. We call Ā
the family A without the infinity norm constraint. At every iteration, we need to solve:

arg min
s∈Ā

H(s)≥−M

〈
s, log

(
qt

p

)〉

Note that this is simply the LMO from Equation (6) with y = ∇qDKL(qt‖p) = log qt

p but with an
additional constraint on the entropy. This constraint on the entropy is crucial since otherwise the
solution of the LMO would be a degenerate distribution as the authors of [5] have also argued.

We now replace this problem with its regularized form using Lagrange multipliers and solve for s
given a fixed value of λ:

arg min
s∈Ā

〈
s, log

(
qt

p

)〉
+ λ (−H(s)−M) = arg min

s∈Ā

〈
s, log

(
qt

p

)〉
+ 〈s, log sλ〉 (8)

= arg min
s∈Ā

〈
s, log

(
sλ

p
qt

)〉

= arg min
s∈Ā

〈
s, log

 s

λ

√
p
qt

〉 .
Therefore, the regularized LMO problem is equivalent to the following minimization problem:

arg min
s∈Ā

DKL(s‖ 1

Z
λ

√
p

qt
),

where Z is the normalization constant of λ

√
p
qt . From this optimization problem, we can write what

we call the Residual Evidence Lower Bound (RELBO) as:

RELBO(s, λ) := Es[log p]− λEs[log s]− Es[log qt]. (9)

Discussion. Let us now analyze the RELBO and compare it with the ELBO in standard VI [1]. First,
note that we introduce the hyperparameter λ which controls the weight of the entropy. In order to
obtain the true LMO solution, one would need to maximize the LHS of Equation (8) for λ and solve
the saddle point problem. In light of the fact that an approximate solution is sufficient for convergence,
we consider the regularized problem as a simple heuristic. One can then fix an arbitrary value for
λ or decrease it when t increases. The latter amounts to allowing increasingly sharp densities as
optimization proceeds. The other important difference between ELBO and RELBO is the residual
term which is expressed through Es[log p]− Es[log qt]. Maximizing this term amounts to looking
for a density with low cross entropy with the joint p and high cross entropy with the current iterate
qt. In other words, the next component st needs to be as close as possible to the target p but also
sufficiently different from the current approximation qt. Indeed, st should capture the aspects of the
posterior that the current mixture could not approximate yet.

Failure Modes. Using a black box VI as an implementation for the LMO represents an attractive
practical solution. Indeed, one could just run VI once and, if the result is not good enough, run it
again on the residual without changing the structure of the implementation. Unfortunately, there are
two failure modes that should be discussed. First, if the target posterior is a perfectly symmetric
multimodal distribution, then the residual is also symmetric and the algorithm may get stuck. A
simple solution to this problem is to run the black box VI for fewer iterations, breaking the symmetry
of the residual. The second problem arises in scenarios where the posterior distribution can be
approximated well by a single element of Q. In such cases, most of the residual will be on the tails.
The algorithm will then fit the tails and in the following iterations re-learn a distribution close to q0.
As a consequence, it is important to identify good solutions before investing additional computational
effort by adding more components to the mixture. Note that the ELBO cannot be used for this
purpose, as its value at the maximum is unknown.
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Stopping criterion. We propose a stopping criterion for boosting VI which allows us to identify
when a reasonably good approximation is reached and save computational effort. To this end, we
rephrase the notion of duality gap [8, 7] in the context of boosting VI, which gives a surprisingly
simple stopping criterion for the algorithm.

Lemma 4. The duality gap g(q) := maxs∈conv(A)〈q − s, log q
p 〉 computed at some iterate q ∈

conv(A) is an upper bound on the primal error DKL(q‖p)−DKL(q?‖p).

The proof is provided in Appendix A.

Note that the arg maxs∈conv(A)〈q − s, log q
p 〉 is precisely the LMO solution to the problem (6).

Therefore, with an exact LMO, one obtains a certificate on the primal error for free, without knowing
the value of DKL(q?‖p). It is possible to show that a convergence rate similar to Theorem 1 also
holds for the duality gap [8]. If the oracle is inexact, the estimate of the duality gap g̃(q) satisfies that
1
δ g̃(q) ≥ g(q), as a consequence of (7).

5 Experimental evaluation

Notably, our VI algorithm is black box in the sense that it leaves the definition of the model and the
choice of variational family up to the user. Therefore, we are able to reuse the same boosting black
box VI solver to run all our experiments, and more generally, any probabilistic model and choice of
variational family. We chose to implement our algorithm as an extension to the Edward probabilistic
programming framework [25] thereby enabling users to apply boosting VI to any probabilistic model
and variational family which are definable in Edward. In Appendix B, we show a code sample of our
implementation of Bayesian logistic regression.

For comparisons to baseline VI, we use Edward’s built-in black box VI (BBVI) algorithm without
modification. We run these baseline VI experiments for 10,000 iterations which is orders of magnitude
more than what is required for convergence. Unless otherwise noted, we use Gaussians as our base
family. Note that FW with fixed step size is not monotonic and so in the experiments in which
we use a fixed step size, it is expected that the last iteration is not optimal. We use the training
log-likelihood to select the best iteration and we used the duality gap as a diagnostic tool in the
implementation to understand the impact of λ. We found that λ = 1√

t+1
worked well in all

the experiments. Code to reproduce the experiments is available at: https://github.com/
ratschlab/boosting-bbvi.

5.1 Synthetic data
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fixed
line search
fully corrective
BBVI

Figure 1: Comparison between BBVI and three
variants of our boosting BBVI method on a mixture
of Gaussians example.

First, we use synthetic data to visualize the ap-
proximation of our algorithm of a bimodal poste-
rior. In particular, we consider a mixture of two
Gaussians with parameters µ = (−1,+1), σ =
(0.5, 0.5), and mixing weights π = (0.4, 0.6).

We performed experiments with all three vari-
ants of FW described in Algorithm 1. For the
fully corrective variant, we used FW to solve
the subproblem of finding the optimal weights
for the current atom set. We observe that un-
like BBVI, all three variants are able to fit both
modes of the bimodal target distribution. The
fully corrective version gives the best fit. Un-
fortunately, this improved solution comes at a
computational cost — solving the line search
and fully corrective subproblems is dramatically
slower than the fixed step size variant. In the experiments that follow we were able to improve upon
the initial VI solution using the simple fixed step size. We believe this is the most interesting variant
for practitioners as it does not require any additional implementation other than the VI subroutine.
Our synthetic data results are summarized in Figure 1.
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Table 1: Comparison of boosting BBVI on the CHEMREACT dataset. We observe that using the
Laplace distribution as the base family, our method outperforms BBVI using either Laplace or
Gaussian distributions as the variational family. In addition, boosting BBVI has lower variance across
repetitions.

Train LL Test AUROC

Boosting BBVI (Laplace) -.677 ± 0.002 0.794 ± 0.005
BBVI Edward (Laplace) -0.681 ± 0.003 0.781 ± 0.012
BBVI Edward (Gaussian) -0.671 ± 0.002 0.790 ± 0.009
Line Search Boosting VI ([5]) -2.808 0.6377
Fixed Step Boosting VI ([13]) -3.045 0.6193
Norm Corrective Boosting VI ([13]) -2.725 0.6440

Table 2: Comparison of boosting BBVI on EICU COLLABORATIVE RESEARCH dataset. We observe
that our method outperforms BBVI with the Laplace distribution. In addition, boosting BBVI has
lower variance across repetitions.

Train LL Test AUROC

Boosting BBVI (Laplace) -0.195 ± 0.007 0.844 ± 0.006
BBVI Edward (Laplace) -0.200 ± 0.032 0.838 ± 0.016

Table 3: Matrix factorization results for latent dimension D = 3, 5, 10 on the CBCL FACE dataset.
We observe that our method outperforms the baseline BBVI method on mean-squared error (MSE).

BBVI MSE Boosting BBVI MSE BBVI Test LL Boosting BBVI Test LL

D=3 0.0184 ± 0.001 0.0139 ± 0.44e-04 -0.9363 ± 0.6e-3 -0.9354 ± 0.3e-3
D=5 0.0187 ± 0.001 0.0137 ± 0.53e-04 -0.9391 ± 0.6e-3 -0.9393 ± .4e-3
D=10 0.0188 ± 0.001 0.0135 ± 0.52e-04 -0.9468 ± 0.3e-3 -0.9492 ± .001

5.2 Bayesian logistic regression on two real-world datasets

In this experiment, we consider two real-world binary-classification tasks: predicting the reactivity
of a chemical and predicting mortality in the intensive case unit (ICU). For both tasks we use the
Bayesian logistic regression model. This allows us to compare to previous work in [13]. Bayesian
logistic regression is a conditional prediction model with prior p(w) = N (0, 1) on the weights and
conditional likelihood p(y|X) = Bernoulli(p = sigmoid(X>w)). This model is commonly used
as an example of a simple model which does not have a closed form posterior. [1]

We use the CHEMREACT dataset which contains 26,733 chemicals, each with 100 features. For this
experiment, we ran our algorithm for 35 iterations and found that iteration 17 had the best performance.
We observe that running merely one single well-tuned iteration of BBVI as implemented in the Edward
framework using Gaussian as the variational class outperforms 10 iterations of boosting VI in [13].
While BBVI already has good performance in terms of AUROC, we are able to improve it further by
using the fixed step size variant of FW and the Laplace distributions as the base family. In addition,
our solution is more stable, namely it has lower standard deviation across replications. Results are
summarized in Table 1.

For the mortality prediction task, we used a preprocessed dataset created by the authors of [3] from the
EICU COLLABORATIVE RESEARCH database [4]. The preprocessing included selecting patient stays
between 1 and 30 days, removing patients with missing values, and selecting a subset of clinically
relevant features. The final dataset contains 71,366 patient stays and 70 relevant features ranging
from age and gender to lab test results. We performed a 70-30% train-test split. We ran our algorithm
for 29 iterations and again found that iteration 17 had the best performance. We observed that our
method improves upon the AUROC of Edward’s baseline VI solution and is also more stable. Results
are summarized in Table 2.

5.3 Bayesian matrix factorization

Bayesian Matrix Factorization [17] is a more complex model defined in terms of two latent variables,
U and V for some choice of the latent dimension D. In the base distribution, each entry of the
matrices U and V are independent Gaussians. To sample from Rt, we sample U, V from the
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boosted posterior (U,V)t and then sample from N (U>V, I). Thus, Rt ∼ N (Ut>Vt, I) where
(U,V)t ∼

∑t
i α

isi(U,V) and si(U,V) is the t-th iterate returned by the LMO.

We use the CBCL FACE1 dataset which is composed of 2,492 images of 361 pixels each, arranged
into a matrix. Using a 50% mask for the train-test split, we performed matrix completion on this
data using the above model. We compared our boosting BBVI to BBVI for three choices of the
latent dimension D = 3, 5, 10 and observe improvements across all three in mean-squared error. For
held-out test log-likelihood, we observe an improved performance for D = 3. Similar to the results
for Bayesian linear regression, we observe that the variance across replications is also smaller for our
method. Surprisingly, increasing D does not have a significant effect on either of the metrics which
may indicate that a relatively inexpressive model (D = 3) already contains a good approximation.
Results are summarized in Table 3.

6 Conclusion

We have presented a refined yet practical theoretical analysis for the boosting variational inference
paradigm. Our approach incorporates black box VI solvers into a general gradient boosting framework
based on the Frank-Wolfe algorithm. Furthermore, we introduced a subroutine which is finally
attractive to practitioners as it does not require any additional overhead beyond running a general
black box VI solver multiple times. This is an important step forward in adding boosting VI to the
standard toolbox of Bayesian inference.
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A Proof of the Main Results

Lemma’ 3. A density with bounded infinity norm has entropy bounded from below.

Proof. Assume the infinity norm of a density s is bounded from above by a constant M . This implies
that s(x) ≤M ∀ x. Therefore:

−H(s) ≤ |H(s)|

≤
∫
X

|s(x)| · |log (s(x))| dx

≤
∫
X

|s(x)| · |log (M)| dx

=

∫
X

s(x) · |log (M)| dx

= |log (M)|
Therefore H(s) ≥ − |log (M)| which concludes the proof.

Theorem’ 2. Cf,A is bounded for the KL divergence if the parameters space of the densities in A is
bounded.

Proof.

D(y, q) = DKL(y)−DKL(q)− 〈y − q,∇DKL(q)〉

= 〈y, log
y

p
〉 − 〈q, log

q

p
〉 − 〈y − q, log

q

p
〉

= 〈y, log
y

p
〉 − 〈y, log

q

p
〉

= 〈y, log
y

q
〉

= DKL(y‖q)
In order to show that Cf,A is bounded we then need to show that:

sup
s∈A, q∈conv(A)

γ∈[0,1]
y=q+γ(s−q)

2

γ2
DKL(y‖q)

is bounded. For a fixed s and q we how that 2
γ2D

KL(y‖q) is continuous. Since the parameter space
is bounded DKL(y‖q) is always bounded for any γ ≥ ε > 0 and so is the Cf,A, therefore the Cf,A
is continuous for γ ∈ (0, 1]. We only need to show that it also holds for γ = 0 in order to use the
result that a continuous function on a bounded domain is bounded. When γ → 0 we have that both
γ2 and DKL(y‖q)→ 0. Therefore we use L’Hospital Rule (H) and obtain:

lim
γ→0

2

γ2
DKL(y‖q) H= lim

γ→0

1

γ

∫
X

(s− q) log

(
y

q

)
lim
γ→0

2

γ2
DKL(y‖q) H= lim

γ→0

1

γ

∫
X

(s− q) log

(
y

q

)
where for the derivative of the DKL we used the functional chain rule. Again both numerator and
denominators in the limit go to zero when γ → 0, so we use L’Hospital Rule again and obtain:

lim
γ→0

1

γ

∫
X

(s− q) log

(
y

q

)
H
= lim
γ→0

∫
X

(s− q)2 q

y

=

∫
X

lim
γ→0

(s− q)2 q

y

=

∫
X

(s− q)2
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which is bounded under the assumption of bounded parameters space and bounded infinity norm.
Indeed: ∫

X

(s− q)2 ≤ 4 max
s∈conv(A)

∫
X

s2

Which is bounded under the assumption of bounded L2 norm of the densities in A by triangle
inequality.

Lemma’ 4. The duality gap g(q) := maxs∈conv(A)〈q − s, log q
p 〉 computed at some iterate q ∈

conv(A) is an upper bound on the primal error DKL(q‖p)−DKL(q?‖p).

Proof. log q
p is the gradient of the DKL(q‖p) computed at some q ∈ conv(Q). Therefore, the dual

function ([7, Section 2.2]) of the DKL is:

w(q) := min
s∈conv(A)

DKL(q‖p) + 〈s− q, log
q

p
〉.

By definition, the gradient is a linear approximation to a function lying below its graph at any point.
Therefore, we have that for any q, y ∈ conv(A):

w(q) = min
s∈conv(A)

DKL(q‖p) + 〈s− q, log
q

p
〉 ≤ DKL(q‖p) + 〈y − q, log

q

p
〉 ≤ DKL(y‖p).

The duality gap at some point q is the defined as the difference between the values of the primal and
dual problems:

g(q) := DKL(q‖p)− w(q) = max
s∈conv(A)

〈q − s, log
q

p
〉. (10)

Note that the duality gap is a bound on the primal error as:

g(q) = max
s∈conv(A)

〈q − s, log
q

p
〉 ≥ 〈q − q?, log

q

p
〉 ≥ DKL(q‖p)−DKL(q?‖p), (11)

where the first inequality comes from the fact that the optimum q? ∈ conv(A) and the second from
the convexity of the KL divergence w.r.t. q.
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B Code Example

Here we include a Python example of how a practitioner would use our method to do Bayesian logistic
regression. Just as in the Edward framework, the user defines their probabilistic model in terms of
the prior w, the input data X, and the likelihood of y. Then, qt is initialized. This is ultimately the
variational approximation to the posterior and what is returned by our algorithm. Finally, for each
iteration t, we create a new variable sw to be optimized by the LMO and then run the black box
LMO solver. The user need only specify the model and the base family. The optimization is left up
to the black box RELBO solver.

1 import tensorflow as tf
2 import edward as ed
3 from edward.models import Laplace
4 import relbo # our method: boosting BBVI
5
6 # Bayesian logistic regression model
7 w = Normal(loc=tf.zeros(D), scale=1.0 * tf.ones(D)) # Gaussian prior on w
8 X = tf.placeholder(tf.float32, [N, D])
9 y = Bernoulli(logits=ed.dot(X, w))

10
11 # initialize the mixture which represents the latest iterate, qt.
12 qt = Mixture(Laplace)
13
14 # run boosting BBVI ‘n_iterations‘ times
15 # note that at iteration 0, qt is empty, and ‘relbo.inference‘ is performing regular BBVI.
16 for t in range(n_iterations):
17 # Create a new s to be optimized in this iteration
18 loc = tf.get_variable(initializer=tf.random_normal(dims))
19 scale = tf.nn.softplus(tf.get_variable(initializer=tf.random_normal(dims)))
20 sw = Laplace(loc=loc, scale=scale)
21
22 # Run the LMO. Pass in previous iterates to compute RELBO term
23 inference = relbo.KLqp({w: sw}, fw_iterates=qt, data={X: Xtrain, y: ytrain})
24 tf.global_variables_initializer().run()
25 inference.run()
26
27 update_iterates(qt, sw, t)
28
29 return qt
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