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Abstract

Policy optimization is an effective reinforcement learning approach to solve contin-
uous control tasks. Recent achievements have shown that alternating online and
offline optimization is a successful choice for efficient trajectory reuse. However,
deciding when to stop optimizing and collect new trajectories is non-trivial, as it
requires to account for the variance of the objective function estimate. In this paper,
we propose a novel, model-free, policy search algorithm, POIS, applicable in both
action-based and parameter-based settings. We first derive a high-confidence bound
for importance sampling estimation; then we define a surrogate objective function,
which is optimized offline whenever a new batch of trajectories is collected. Finally,
the algorithm is tested on a selection of continuous control tasks, with both linear
and deep policies, and compared with state-of-the-art policy optimization methods.

1 Introduction

In recent years, policy search methods [10] have proved to be valuable Reinforcement Learning
(RL) [50] approaches thanks to their successful achievements in continuous control tasks [e.g.,
23, 42, 44, 43], robotic locomotion [e.g., 53, 20] and partially observable environments [e.g., 28].
These algorithms can be roughly classified into two categories: action-based methods [51, 34] and
parameter-based methods [45]. The former, usually known as policy gradient (PG) methods, perform
a search in a parametric policy space by following the gradient of the utility function estimated
by means of a batch of trajectories collected from the environment [50]. In contrast, in parameter-
based methods, the search is carried out directly in the space of parameters by exploiting global
optimizers [e.g., 41, 16, 48, 52] or following a proper gradient direction like in Policy Gradients with
Parameter-based Exploration (PGPE) [45, 63, 46]. A major question in policy search methods is:
how should we use a batch of trajectories in order to exploit its information in the most efficient
way? On one hand, on-policy methods leverage on the batch to perform a single gradient step, after
which new trajectories are collected with the updated policy. Online PG methods are likely the most
widespread policy search approaches: starting from the traditional algorithms based on stochastic
policy gradient [51], like REINFORCE [64] and G(PO)MDP [4], moving toward more modern
methods, such as Trust Region Policy Optimization (TRPO) [42]. These methods, however, rarely
exploit the available trajectories in an efficient way, since each batch is thrown away after just one
gradient update. On the other hand, off-policy methods maintain a behavioral policy, used to explore
the environment and to collect samples, and a target policy which is optimized. The concept of off-
policy learning is rooted in value-based RL [62, 30, 27] and it was first adapted to PG in [9], using an
actor-critic architecture. The approach has been extended to Deterministic Policy Gradient (DPG) [47],
which allows optimizing deterministic policies while keeping a stochastic policy for exploration.
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More recently, an efficient version of DPG coupled with a deep neural network to represent the policy
has been proposed, named Deep Deterministic Policy Gradient (DDPG) [23]. In the parameter-based
framework, even though the original formulation [45] introduces an online algorithm, an extension has
been proposed to efficiently reuse the trajectories in an offline scenario [67]. Furthermore, PGPE-like
approaches allow overcoming several limitations of classical PG, like the need for a stochastic policy
and the high variance of the gradient estimates.1

While on-policy algorithms are, by nature, online, as they need to be fed with fresh samples whenever
the policy is updated, off-policy methods can take advantage of mixing online and offline optimization.
This can be done by alternately sampling trajectories and performing optimization epochs with the
collected data. A prime example of this alternating procedure is Proximal Policy Optimization
(PPO) [44], that has displayed remarkable performance on continuous control tasks. Off-line op-
timization, however, introduces further sources of approximation, as the gradient w.r.t. the target
policy needs to be estimated (off-policy) with samples collected with a behavioral policy. A common
choice is to adopt an importance sampling (IS) [29, 17] estimator in which each sample is reweighted
proportionally to the likelihood of being generated by the target policy. However, directly optimizing
this utility function is impractical since it displays a wide variance most of the times [29]. Intuitively,
the variance increases proportionally to the distance between the behavioral and the target policy;
thus, the estimate is reliable as long as the two policies are close enough. Preventing uncontrolled
updates in the space of policy parameters is at the core of the natural gradient approaches [1] applied
effectively both on PG methods [18, 33, 63] and on PGPE methods [26]. More recently, this idea
has been captured (albeit indirectly) by TRPO, which optimizes via (approximate) natural gradient a
surrogate objective function, derived from safe RL [18, 35], subject to a constraint on the Kullback-
Leibler divergence between the behavioral and target policy.2 Similarly, PPO performs a truncation
of the importance weights to discourage the optimization process from going too far. Although TRPO
and PPO, together with DDPG, represent the state-of-the-art policy optimization methods in RL for
continuous control, they do not explicitly encode in their objective function the uncertainty injected
by the importance sampling procedure. A more theoretically grounded analysis has been provided for
policy selection [11], model-free [56] and model-based [54] policy evaluation (also accounting for
samples collected with multiple behavioral policies), and combined with options [15]. Subsequently,
in [55] these methods have been extended for policy improvement, deriving a suitable concentration
inequality for the case of truncated importance weights. Unfortunately, these methods are hardly
scalable to complex control tasks. A more detailed review of the state-of-the-art policy optimization
algorithms is reported in Appendix A.

In this paper, we propose a novel, model-free, actor-only, policy optimization algorithm, named
Policy Optimization via Importance Sampling (POIS) that mixes online and offline optimization to
efficiently exploit the information contained in the collected trajectories. POIS explicitly accounts for
the uncertainty introduced by the importance sampling by optimizing a surrogate objective function.
The latter captures the trade-off between the estimated performance improvement and the variance
injected by the importance sampling. The main contributions of this paper are theoretical, algorithmic
and experimental. After revising some notions about importance sampling (Section 3), we propose a
concentration inequality, of independent interest, for high-confidence “off-distribution” optimization
of objective functions estimated via importance sampling (Section 4). Then we show how this bound
can be customized into a surrogate objective function in order to either search in the space of policies
(Action-based POIS) or to search in the space of parameters (Parameter-bases POIS). The resulting
algorithm (in both the action-based and the parameter-based flavor) collects, at each iteration, a set of
trajectories. These are used to perform offline optimization of the surrogate objective via gradient
ascent (Section 5), after which a new batch of trajectories is collected using the optimized policy.
Finally, we provide an experimental evaluation with both linear policies and deep neural policies
to illustrate the advantages and limitations of our approach compared to state-of-the-art algorithms
(Section 6) on classical control tasks [12, 57]. The proofs for all Theorems and Lemmas can be found
in Appendix B. The implementation of POIS can be found at https://github.com/T3p/pois.

1Other solutions to these problems have been proposed in the action-based literature, like the aforementioned
DPG algorithm, the gradient baselines [34] and the actor-critic architectures [21].

2Note that this regularization term appears in the performance improvement bound, which contains exact
quantities only. Thus, it does not really account for the uncertainty derived from the importance sampling.
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2 Preliminaries

A discrete-time Markov Decision Process (MDP) [37] is defined as a tupleM = (S,A, P,R, γ,D)
where S is the state space, A is the action space, P (·|s, a) is a Markovian transition model that
assigns for each state-action pair (s, a) the probability of reaching the next state s′, γ ∈ [0, 1] is
the discount factor, R(s, a) ∈ [−Rmax, Rmax] assigns the expected reward for performing action
a in state s and D is the distribution of the initial state. The behavior of an agent is described by
a policy π(·|s) that assigns for each state s the probability of performing action a. A trajectory
τ ∈ T is a sequence of state-action pairs τ = (sτ,0, aτ,0, . . . , sτ,H−1, aτ,H−1, sτ,H), where H is the
actual trajectory horizon. The performance of an agent is evaluated in terms of the expected return,
i.e., the expected discounted sum of the rewards collected along the trajectory: Eτ [R(τ)], where
R(τ) =

∑H−1
t=0 γtR(sτ,t, aτ,t) is the trajectory return.

We focus our attention to the case in which the policy belongs to a parametric policy space ΠΘ =
{πθ : θ ∈ Θ ⊆ Rp}. In parameter-based approaches, the agent is equipped with a hyperpolicy ν
used to sample the policy parameters at the beginning of each episode. The hyperpolicy belongs itself
to a parametric hyperpolicy space NP = {νρ : ρ ∈ P ⊆ Rr}. The expected return can be expressed,
in the parameter-based case, as a double expectation: one over the policy parameter space Θ and one
over the trajectory space T :

JD(ρ) =

∫
Θ

∫
T
νρ(θ)p(τ |θ)R(τ) dτ dθ, (1)

where p(τ |θ) = D(s0)
∏H−1
t=0 πθ(at|st)P (st+1|st, at) is the trajectory density function. The goal

of a parameter-based learning agent is to determine the hyperparameters ρ∗ so as to maximize
JD(ρ). If νρ is stochastic and differentiable, the hyperparameters can be learned according to
the gradient ascent update: ρ′ = ρ + α∇ρJD(ρ), where α > 0 is the step size and ∇ρJD(ρ) =∫

Θ

∫
T νρ(θ)p(τ |θ)∇ρ log νρ(θ)R(τ) dτ dθ. Since the stochasticity of the hyperpolicy is a sufficient

source of exploration, deterministic action policies of the kind πθ(a|s) = δ(a− uθ(s)) are typically
considered, where δ is the Dirac delta function and uθ is a deterministic mapping from S to A. In
the action-based case, on the contrary, the hyperpolicy νρ is a deterministic distribution νρ(θ) =
δ(θ− g(ρ)), where g(ρ) is a deterministic mapping from P to Θ. For this reason, the dependence on
ρ is typically not represented and the expected return expression simplifies into a single expectation
over the trajectory space T :

JD(θ) =

∫
T
p(τ |θ)R(τ) dτ. (2)

An action-based learning agent aims to find the policy parameters θ∗ that maximize JD(θ). In
this case, we need to enforce exploration by means of the stochasticity of πθ. For stochastic and
differentiable policies, learning can be performed via gradient ascent: θ′ = θ + α∇θJD(θ), where
∇θJD(θ) =

∫
T p(τ |θ)∇θ log p(τ |θ)R(τ) dτ .

3 Evaluation via Importance Sampling

In off-policy evaluation [56, 54], we aim to estimate the performance of a target policy πT (or
hyperpolicy νT ) given samples collected with a behavioral policy πB (or hyperpolicy νB). More
generally, we face the problem of estimating the expected value of a deterministic bounded function
f (‖f‖∞ < +∞) of random variable x taking values in X under a target distribution P , after having
collected samples from a behavioral distribution Q. The importance sampling estimator (IS) [7, 29]
corrects the distribution with the importance weights (or Radon–Nikodym derivative or likelihood
ratio) wP/Q(x) = p(x)/q(x):

µ̂P/Q =
1

N

N∑
i=1

p(xi)

q(xi)
f(xi) =

1

N

N∑
i=1

wP/Q(xi)f(xi), (3)

where x = (x1, x2, . . . , xN )T is sampled from Q and we assume q(x) > 0 whenever f(x)p(x) 6= 0.
This estimator is unbiased (Ex∼Q[µ̂P/Q] = Ex∼P [f(x)]) but it may exhibit an undesirable behavior
due to the variability of the importance weights, showing, in some cases, infinite variance. Intuitively,
the magnitude of the importance weights provides an indication of how much the probability measures
P and Q are dissimilar. This notion can be formalized by the Rényi divergence [40, 59], an
information-theoretic dissimilarity index between probability measures.
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Rényi divergence Let P and Q be two probability measures on a measurable space (X ,F) such
that P � Q (P is absolutely continuous w.r.t. Q) and Q is σ-finite. Let P and Q admit p and q as
Lebesgue probability density functions (p.d.f.), respectively. The α-Rényi divergence is defined as:

Dα(P‖Q) =
1

α− 1
log

∫
X

(
dP

dQ

)α
dQ =

1

α− 1
log

∫
X
q(x)

(
p(x)

q(x)

)α
dx, (4)

where dP/ dQ is the Radon–Nikodym derivative of P w.r.t. Q and α ∈ [0,∞]. Some remark-
able cases are: α = 1 when D1(P‖Q) = DKL(P‖Q) and α = ∞ yielding D∞(P‖Q) =
log ess supX dP/ dQ. Importing the notation from [8], we indicate the exponentiated α-Rényi
divergence as dα(P‖Q) = exp (Dα(P‖Q)). With little abuse of notation, we will replace Dα(P‖Q)
with Dα(p‖q) whenever possible within the context.

The Rényi divergence provides a convenient expression for the moments of the importance
weights: Ex∼Q

[
wP/Q(x)α

]
= dα(P‖Q). Moreover, Varx∼Q

[
wP/Q(x)

]
= d2(P‖Q) − 1 and

ess supx∼Q wP/Q(x) = d∞(P‖Q) [8]. To mitigate the variance problem of the IS estimator, we can
resort to the self-normalized importance sampling estimator (SN) [7]:

µ̃P/Q =

∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)
=

N∑
i=1

w̃P/Q(xi)f(xi), (5)

where w̃P/Q(x) = wP/Q(x)/
∑N
i=1 wP/Q(xi) is the self-normalized importance weight. Differently

from µ̂P/Q, µ̃P/Q is biased but consistent [29] and it typically displays a more desirable behavior
because of its smaller variance.3 Given the realization x1, x2, . . . , xN we can interpret the SN
estimator as the expected value of f under an approximation of the distribution P made by N deltas,
i.e., p̃(x) =

∑N
i=1 w̃P/Q(x)δ(x − xi). The problem of assessing the quality of the SN estimator

has been extensively studied by the simulation community, producing several diagnostic indexes to
indicate when the weights might display problematic behavior [29]. The effective sample size (ESS)
was introduced in [22] as the number of samples drawn from P so that the variance of the Monte
Carlo estimator µ̃P/P is approximately equal to the variance of the SN estimator µ̃P/Q computed
with N samples. Here we report the original definition and its most common estimate:

ESS(P‖Q) =
N

Varx∼Q
[
wP/Q(x)

]
+ 1

=
N

d2(P‖Q)
, ÊSS(P‖Q) =

1∑N
i=1 w̃P/Q(xi)2

. (6)

The ESS has an interesting interpretation: if d2(P‖Q) = 1, i.e., P = Q almost everywhere, then
ESS = N since we are performing Monte Carlo estimation. Otherwise, the ESS decreases as the
dissimilarity between the two distributions increases. In the literature, other ESS-like diagnostics
have been proposed that also account for the nature of f [24].

4 Optimization via Importance Sampling

The off-policy optimization problem [55] can be formulated as finding the best target policy πT (or
hyperpolicy νT ), i.e., the one maximizing the expected return, having access to a set of samples
collected with a behavioral policy πB (or hyperpolicy νB). In a more abstract sense, we aim to
determine the target distribution P that maximizes Ex∼P [f(x)] having samples collected from the
fixed behavioral distribution Q. In this section, we analyze the problem of defining a proper objective
function for this purpose. Directly optimizing the estimator µ̂P/Q or µ̃P/Q is, in most of the cases,
unsuccessful. With enough freedom in choosing P , the optimal solution would assign as much
probability mass as possible to the maximum value among f(xi). Clearly, in this scenario, the
estimator is unreliable and displays a large variance. For this reason, we adopt a risk-averse approach
and we decide to optimize a statistical lower bound of the expected value Ex∼P [f(x)] that holds with
high confidence. We start by analyzing the behavior of the IS estimator and we provide the following
result that bounds the variance of µ̂P/Q in terms of the Renyi divergence.

Lemma 4.1. Let P and Q be two probability measures on the measurable space (X ,F) such that
P � Q. Let x = (x1, x2, . . . , xN )T i.i.d. random variables sampled from Q and f : X → R be a

3Note that
∣∣µ̃P/Q∣∣ ≤ ‖f‖∞. Therefore, its variance is always finite.
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bounded function (‖f‖∞ < +∞). Then, for any N > 0, the variance of the IS estimator µ̂P/Q can
be upper bounded as:

Var
x∼Q

[
µ̂P/Q

]
≤ 1

N
‖f‖2∞d2 (P‖Q) . (7)

When P = Q almost everywhere, we get Varx∼Q
[
µ̂Q/Q

]
≤ 1

N ‖f‖
2
∞, a well-known bound on the

variance of a Monte Carlo estimator. Recalling the definition of ESS (6) we can rewrite the previous
bound as: Varx∼Q

[
µ̂P/Q

]
≤ ‖f‖2∞

ESS(P‖Q) , i.e., the variance scales with ESS instead of N . While
µ̂P/Q can have unbounded variance even if f is bounded, the SN estimator µ̃P/Q is always bounded
by ‖f‖∞ and therefore it always has a finite variance. Since the normalization term makes all the
samples w̃P/Q(xi)f(xi) interdependent, an exact analysis of its bias and variance is more challenging.
Several works adopted approximate methods to provide an expression for the variance [17]. We
propose an analysis of bias and variance of the SN estimator in Appendix D.

4.1 Concentration Inequality

Finding a suitable concentration inequality for off-policy learning was studied in [56] for offline policy
evaluation and subsequently in [55] for optimization. On one hand, fully empirical concentration
inequalities, like Student-T, besides the asymptotic approximation, are not suitable in this case since
the empirical variance needs to be estimated with importance sampling as well injecting further
uncertainty [29]. On the other hand, several distribution-free inequalities like Hoeffding require
knowing the maximum of the estimator, which might not exist (d∞(P‖Q) =∞) for the IS estimator.
Constraining d∞(P‖Q) to be finite often introduces unacceptable limitations. For instance, in the
case of univariate Gaussian distributions, it prevents a step that selects a target variance larger than the
behavioral one from being performed (see Appendix C).4 Even Bernstein inequalities [5], are hardly
applicable since, for instance, in the case of univariate Gaussian distributions, the importance weights
display a fat tail behavior (see Appendix C). We believe that a reasonable trade-off is to require the
variance of the importance weights to be finite, that is equivalent to require d2(P‖Q) < ∞, i.e.,
σP < 2σQ for univariate Gaussians. For this reason, we resort to Chebyshev-like inequalities and we
propose the following concentration bound derived from Cantelli’s inequality and customized for the
IS estimator.
Theorem 4.1. Let P and Q be two probability measures on the measurable space (X ,F) such that
P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN be i.i.d. random variables sampled from Q, and
f : X → R be a bounded function (‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with
probability at least 1− δ it holds that:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

wP/Q(xi)f(xi)− ‖f‖∞

√
(1− δ)d2(P‖Q)

δN
. (8)

The bound highlights the interesting trade-off between the estimated performance and the uncertainty
introduced by changing the distribution. The latter enters in the bound as the 2-Rényi divergence
between the target distribution P and the behavioral distribution Q. Intuitively, we should trust
the estimator µ̂P/Q as long as P is not too far from Q. For the SN estimator, accounting for the
bias, we are able to obtain a bound (reported in Appendix D), with a similar dependence on P as
in Theorem 4.1, albeit with different constants. Renaming all constants involved in the bound of
Theorem 4.1 as λ = ‖f‖∞

√
(1− δ)/δ, we get a surrogate objective function. The optimization can

be carried out in different ways. The following section shows why using the natural gradient could be
a successful choice in case P and Q can be expressed as parametric differentiable distributions.

4.2 Importance Sampling and Natural Gradient

We can look at a parametric distribution Pω , having pω as a density function, as a point on a probability
manifold with coordinates ω ∈ Ω. If pω is differentiable, the Fisher Information Matrix (FIM) [39, 2]
is defined as: F(ω) =

∫
X pω(x)∇ω log pω(x)∇ω log pω(x)T dx. This matrix is, up to a scale, an

4Although the variance tends to be reduced in the learning process, there might be cases in which it needs to
be increased (e.g., suppose we start with a behavioral policy with small variance, it might be beneficial increasing
the variance to enforce exploration).
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Algorithm 1 Action-based POIS

Initialize θ00 arbitrarily
for j = 0, 1, 2, ..., until convergence do

Collect N trajectories with π
θ
j
0

for k = 0, 1, 2, ..., until convergence do
Compute G(θjk),∇

θ
j
k
L(θjk/θ

j
0) and αk

θjk+1 = θjk + αkG(θjk)−1∇
θ
j
k
L(θjk/θ

j
0)

end for
θj+1
0 = θjk

end for

Algorithm 2 Parameter-based POIS

Initialize ρ0
0 arbitrarily

for j = 0, 1, 2, ..., until convergence do
Sample N policy parameters θji from ν

ρ
j
0

Collect a trajectory with each π
θ
j
i

for k = 0, 1, 2, ..., until convergence do
Compute G(ρjk),∇

ρ
j
k
L(ρjk/ρ

j
0) and αk

ρjk+1 = ρjk + αkG(ρjk)−1∇
ρ
j
k
L(ρjk/ρ

j
0)

end for
ρj+1
0 = ρjk

end for

invariant metric [1] on parameter space Ω, i.e., κ(ω′ − ω)TF(ω)(ω′ − ω) is independent on the
specific parameterization and provides a second order approximation of the distance between pω and
pω′ on the probability manifold up to a scale factor κ ∈ R. Given a loss function L(ω), we define
the natural gradient [1, 19] as ∇̃ωL(ω) = F−1(ω)∇ωL(ω), which represents the steepest ascent
direction in the probability manifold. Thanks to the invariance property, there is a tight connection
between the geometry induced by the Rényi divergence and the Fisher information metric [3].

Theorem 4.2. Let pω be a p.d.f. differentiable w.r.t. ω ∈ Ω. Then, it holds that, for the Rényi
divergence: Dα(pω′‖pω) = α

2 (ω′ − ω)
T F(ω) (ω′ − ω)+o(‖ω′−ω‖22), and for the exponentiated

Rényi divergence: dα(pω′‖pω) = 1 + α
2 (ω′ − ω)

T F(ω) (ω′ − ω) + o(‖ω′ − ω‖22).

This result provides an approximate expression for the variance of the importance weights, as
Varx∼pω

[
wω′/ω(x)

]
= d2(pω′‖pω) − 1 ' α

2 (ω′ − ω)
T F(ω) (ω′ − ω). It also justifies the use

of natural gradients in off-distribution optimization, since a step in natural gradient direction has a
controllable effect on the variance of the importance weights.

5 Policy Optimization via Importance Sampling

In this section, we discuss how to customize the bound provided in Theorem 4.1 for policy optimiza-
tion, developing a novel model-free actor-only policy search algorithm, named Policy Optimization
via Importance Sampling (POIS). We propose two versions of POIS: Action-based POIS (A-POIS),
which is based on a policy gradient approach, and Parameter-based POIS (P-POIS), which adopts
the PGPE framework. A more detailed description of the implementation aspects is reported in
Appendix E.

5.1 Action-based POIS

In Action-based POIS (A-POIS) we search for a policy that maximizes the performance index JD(θ)
within a parametric space ΠΘ = {πθ : θ ∈ Θ ⊆ Rp} of stochastic differentiable policies. In
this context, the behavioral (resp. target) distribution Q (resp. P ) becomes the distribution over
trajectories p(·|θ) (resp. p(·|θ′)) induced by the behavioral policy πθ (resp. target policy πθ′ ) and f
is the trajectory return R(τ) which is uniformly bounded as |R(τ)| ≤ Rmax

1−γH
1−γ .5 The surrogate

loss function cannot be directly optimized via gradient ascent since computing dα
(
p(·|θ′)‖p(·|θ)

)
requires the approximation of an integral over the trajectory space and, for stochastic environments,
to know the transition model P , which is unknown in a model-free setting. Simple bounds to this
quantity, like dα

(
p(·|θ′)‖p(·|θ)

)
≤ sups∈S dα (πθ′(·|s)‖πθ(·|s))H , besides being hard to compute

due to the presence of the supremum, are extremely conservative since the Rényi divergence is
raised to the horizon H . We suggest the replacement of the Rényi divergence with an estimate
d̂2

(
p(·|θ′)‖p(·|θ)

)
= 1

N

∑N
i=1

∏H−1
t=0 d2 (πθ′(·|sτi,t)‖πθ(·|sτi,t)) defined only in terms of the pol-

icy Rényi divergence (see Appendix E.2 for details). Thus, we obtain the following surrogate

5When γ → 1 the bound becomes HRmax.
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objective:

LA−POIS
λ (θ′/θ) =

1

N

N∑
i=1

wθ′/θ(τi)R(τi)− λ

√
d̂2

(
p(·|θ′)‖p(·|θ)

)
N

, (9)

where wθ′/θ(τi) = p(τi|θ′)
p(τi|θ) =

∏H−1
t=0

πθ′ (aτi,t|sτi,t)
πθ(aτi,t|sτi,t)

. We consider the case in which πθ(·|s) is a
Gaussian distribution over actions whose mean depends on the state and whose covariance is state-
independent and diagonal: N (uµ(s),diag(σ2)), where θ = (µ,σ). The learning process mixes
online and offline optimization. At each online iteration j, a dataset of N trajectories is collected
by executing in the environment the current policy πθj0 . These trajectories are used to optimize the

surrogate loss function LA−POIS
λ . At each offline iteration k, the parameters are updated via gradient

ascent: θjk+1 = θjk + αkG(θjk)−1∇θjkL(θjk/θ
j
0), where αk > 0 is the step size which is chosen via

line search (see Appendix E.1) and G(θjk) is a positive semi-definite matrix (e.g., F(θjk), the FIM,
for natural gradient)6. The pseudo-code of POIS is reported in Algorithm 1.

5.2 Parameter-based POIS

In the Parameter-based POIS (P-POIS) we again consider a parametrized policy space ΠΘ =
{πθ : θ ∈ Θ ⊆ Rp}, but πθ needs not be differentiable. The policy parameters θ are sampled
at the beginning of each episode from a parametric hyperpolicy νρ selected in a parametric space
NP = {νρ : ρ ∈ P ⊆ Rr}. The goal is to learn the hyperparameters ρ so as to maximize JD(ρ).
In this setting, the distributions Q and P of Section 4 correspond to the behavioral νρ and target
νρ′ hyperpolicies, while f remains the trajectory return R(τ). The importance weights [67] must
take into account all sources of randomness, derived from sampling a policy parameter θ and a
trajectory τ : wρ′/ρ(θ) =

νρ′ (θ)p(τ |θ)

νρ(θ)p(τ |θ) =
νρ′ (θ)

νρ(θ) . In practice, a Gaussian hyperpolicy νρ with diagonal
covariance matrix is often used, i.e., N (µ,diag(σ2)) with ρ = (µ,σ). The policy is assumed to
be deterministic: πθ(a|s) = δ(a− uθ(s)), where uθ is a deterministic function of the state s [e.g.,
46, 14]. A first advantage over the action-based setting is that the distribution of the importance
weights is entirely known, as it is the ratio of two Gaussians and the Rényi divergence d2(νρ′‖νρ)
can be computed exactly [6] (see Appendix C). This leads to the following surrogate objective:

LP−POIS
λ (ρ′/ρ) =

1

N

N∑
i=1

wρ′/ρ(θi)R(τi)− λ
√
d2 (νρ′‖νρ)

N
, (10)

where each trajectory τi is obtained by running an episode with action policy πθi , and the cor-
responding policy parameters θi are sampled independently from hyperpolicy νρ, at the be-
ginning of each episode. The hyperpolicy parameters are then updated offline as ρjk+1 =

ρjk + αkG(ρjk)−1∇ρjkL(ρjk/ρ
j
0) (see Algorithm 2 for the complete pseudo-code). A further ad-

vantage w.r.t. the action-based case is that the FIM F(ρ) can be computed exactly, and it is diagonal
in the case of a Gaussian hyperpolicy with diagonal covariance matrix, turning a problematic inversion
into a trivial division (the FIM is block-diagonal in the more general case of a Gaussian hyperpolicy,
as observed in [26]). This makes natural gradient much more enticing for P-POIS.

6 Experimental Evaluation

In this section, we present the experimental evaluation of POIS in its two flavors (action-based and
parameter-based). We first provide a set of empirical comparisons on classical continuous control
tasks with linearly parametrized policies; we then show how POIS can be also adopted for learning
deep neural policies. In all experiments, for the A-POIS we used the IS estimator, while for P-POIS
we employed the SN estimator. All experimental details are provided in Appendix F.

6.1 Linear Policies

Linear parametrized Gaussian policies proved their ability to scale on complex control tasks [38]. In
this section, we compare the learning performance of A-POIS and P-POIS against TRPO [42] and

6The FIM needs to be estimated via importance sampling as well, as shown in Appendix E.3.
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Task A-POIS P-POIS TRPO PPO

(a) 0.4 0.4 0.1 0.01
(b) 0.1 0.1 0.1 1
(c) 0.7 0.2 1 1
(d) 0.9 1 0.01 1
(e) 0.9 0.8 0.01 0.01
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Figure 1: Average return as a function of the number of trajectories for A-POIS, P-POIS and TRPO
with linear policy (20 runs, 95% c.i.). The table reports the best hyperparameters found (δ for POIS
and the step size for TRPO and PPO).

PPO [44] on classical continuous control benchmarks [12]. In Figure 1, we can see that both versions
of POIS are able to significantly outperform both TRPO and PPO in the Cartpole environments,
especially the P-POIS. In the Inverted Double Pendulum environment the learning curve of P-POIS
is remarkable while A-POIS displays a behavior comparable to PPO. In the Acrobot task, P-POIS
displays a better performance w.r.t. TRPO and PPO, but A-POIS does not keep up. In Mountain Car,
we see yet another behavior: the learning curves of TRPO, PPO and P-POIS are almost one-shot (even
if PPO shows a small instability), while A-POIS fails to display such a fast convergence. Finally, in
the Inverted Pendulum environment, TRPO and PPO outperform both versions of POIS. This example
highlights a limitation of our approach. Since POIS performs an importance sampling procedure at
trajectory level, it cannot assign credit to good actions in bad trajectories. On the contrary, weighting
each sample, TRPO and PPO are able also to exploit good trajectory segments. In principle, this
problem can be mitigated in POIS by resorting to per-decision importance sampling [36], in which
the weight is assigned to individual rewards instead of trajectory returns. Overall, POIS displays
a performance comparable with TRPO and PPO across the tasks. In particular, P-POIS displays a
better performance w.r.t. A-POIS. However, this ordering is not maintained when moving to more
complex policy architectures, as shown in the next section.

In Figure 2 we show, for several metrics, the behavior of A-POIS when changing the δ parameter
in the Cartpole environment. We can see that when δ is small (e.g., 0.2), the Effective Sample Size
(ESS) remains large and, consequently, the variance of the importance weights (Var[w]) is small.
This means that the penalization term in the objective function discourages the optimization process
from selecting policies which are far from the behavioral policy. As a consequence, the displayed
behavior is very conservative, preventing the policy from reaching the optimum. On the contrary,
when δ approaches 1, the ESS is smaller and the variance of the weights tends to increase significantly.
Again, the performance remains suboptimal as the penalization term in the objective function is too
light. The best behavior is obtained with an intermediate value of δ, specifically 0.4.

6.2 Deep Neural Policies

In this section, we adopt a deep neural network (3 layers: 100, 50, 25 neurons each) to represent
the policy. The experiment setup is fully compatible with the classical benchmark [12]. While
A-POIS can be directly applied to deep neural networks, P-POIS exhibits some critical issues. A
highly dimensional hyperpolicy (like a Gaussian from which the weights of an MLP policy are
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Figure 2: Average return, Effective Sample Size (ESS) and variance of the importance weights
(Var[w]) as a function of the number of trajectories for A-POIS for different values of the parameter
δ in the Cartpole environment (20 runs, 95% c.i.).

Table 1: Performance of POIS compated with [12] on deep neural policies (5 runs, 95% c.i.). In bold,
the performances that are not statistically significantly different from the best algorithm in each task.

Cart-Pole Double Inverted
Algorithm Balancing Mountain Car Pendulum Swimmer

REINFORCE 4693.7± 14.0 −67.1± 1.0 4116.5± 65.2 92.3± 0.1
TRPO 4869.8± 37.6 −61.7± 0.9 4412.4± 50.4 96.0± 0.2
DDPG 4634.4± 87.6 −288.4± 170.3 2863.4± 154.0 85.8± 1.8
A-POIS 4842.8± 13.0 −63.7± 0.5 4232.1± 189.5 88.7± 0.55
CEM 4815.4± 4.8 −66.0± 2.4 2566.2± 178.9 68.8± 2.4
P-POIS 4428.1± 138.6 −78.9± 2.5 3161.4± 959.2 76.8± 1.6

sampled) can make d2(νρ′‖νρ) extremely sensitive to small parameter changes, leading to over-
conservative updates.7 A first practical variant comes from the insight that d2(νρ′‖νρ)/N is the
inverse of the effective sample size, as reported in Equation 6. We can obtain a less conservative
(although approximate) surrogate function by replacing it with 1/ÊSS(νρ′‖νρ). Another trick is to
model the hyperpolicy as a set of independent Gaussians, each defined over a disjoint subspace of Θ
(implementation details are provided in Appendix E.5). In Table 1, we augmented the results provided
in [12] with the performance of POIS for the considered tasks. We can see that A-POIS is able
to reach an overall behavior comparable with the best of the action-based algorithms, approaching
TRPO and beating DDPG. Similarly, P-POIS exhibits a performance similar to CEM [52], the best
performing among the parameter-based methods. The complete results are reported in Appendix F.

7 Discussion and Conclusions

In this paper, we presented a new actor-only policy optimization algorithm, POIS, which alternates
online and offline optimization in order to efficiently exploit the collected trajectories, and can be
used in combination with action-based and parameter-based exploration. In contrast to the state-of-
the-art algorithms, POIS has a strong theoretical grounding, since its surrogate objective function
derives from a statistical bound on the estimated performance, that is able to capture the uncertainty
induced by importance sampling. The experimental evaluation showed that POIS, in both its versions
(action-based and parameter-based), is able to achieve a performance comparable with TRPO, PPO
and other classical algorithms on continuous control tasks. Natural extensions of POIS could focus
on employing per-decision importance sampling, adaptive batch size, and trajectory reuse. Future
work also includes scaling POIS to high-dimensional tasks and highly-stochastic environments. We
believe that this work represents a valuable starting point for a deeper understanding of modern policy
optimization and for the development of effective and scalable policy search methods.

7This curse of dimensionality, related to dim(θ), has some similarities with the dependence of the Rényi
divergence on the actual horizon H in the action-based case.
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Index of the Appendix

In the following, we briefly recap the contents of the Appendix.

– Appendix A shows a more detailed comparison of POIS with the policy-search algorithms. Table 2
summarizes some features of the considered methods.

– Appendix B reports all proofs and derivations.
– Appendix C provides an analysis of the distribution of the importance weights in the case of

univariate Gaussian behavioral and target distributions.
– Appendix D shows some bounds on bias and variance for the self-normalized importance sampling

estimator and provides a high confidence bound.
– Appendix E illustrates some implementation details of POIS, in particular line search algorithms,

estimation of the Rényi divergence, computation of the FIM and practical versions of P-POIS.
– Appendix F provides the hyperparameters used in the experiments and further results.

A Related Works

Policy optimization algorithms can be classified according to different dimensions (Table 2). It is by
now established, in the policy-based RL community, that effective algorithms, either on-policy or
off-policy, should account for the variance of the gradient estimate. Early attempts, in the class of
action-based algorithms, are the usage of a baseline to reduce the estimated gradient variance without
introducing bias [4, 34]. A similar rationale is at the basis of actor-critic architectures [21, 51, 33],
in which an estimate of the value function is used to reduce uncertainty. Baselines are typically
constant (REINFORCE), time-dependent (G(PO)MDP) or state-dependent (actor-critic), but these
approaches have been recently extended to account for action-dependent baselines [58, 65]. Even
though parameter-based algorithms are, by nature, affected by smaller variance w.r.t. action-based
ones, similar baselines can be derived [66]. A first dichotomy in the class of policy-based algorithms
comes when considering the minimal unit used to compute the gradient. Episode-based (or episodic)
approaches [e.g., 64, 4] perform the gradient estimation by averaging the gradients of each episode
which need to have a finite horizon. On the contrary, step-based approaches [e.g., 42, 44, 23], derived
from the Policy Gradient Theorem [51], can estimate the gradient by averaging over timesteps. The
latter requires a function approximator (a critic) to estimate the Q-function, or directly the advantage
function [43]. When coming to the on/off-policy dichotomy, the previous distinction has a relevant
impact. Indeed, episode-based approaches need to perform importance sampling on trajectories, thus
the importance weights are the products of policy ratios for all executed actions within a trajectory,
whereas step-based algorithms need just to weight each sample with the corresponding policy ratio.
The latter case helps to keep the value of the importance weights close to one, but the need to have
a critic prevents from a complete analysis of the uncertainty since the bias/variance injected by the
critic is hard to compute [21]. Moreover, in the off-policy scenario, it is necessary to control some
notion of dissimilarity between the behavioral and target policy, as the variance increases when
moving too far. This is the case of TRPO [42], where the regularization constraint based on the
Kullback-Leibler divergence helps controlling the importance weights but originates from an exact
bound on the performance improvement. Intuitively, the same rationale applies to the truncation of
the importance weights, employed by PPO, that avoids performing too large steps in the policy space.
Nevertheless, the step size in TRPO and the truncation range ε in PPO are just hyperparameters and
have a limited statistical meaning. On the contrary, other actor-critic architectures have been proposed
including also experience replay methods, like [61] in which the importance weights are truncated,
but the method is able to account for the injected bias. The authors propose to keep a running mean
of the best policies seen so far to avoid a hard constraint on the policy dissimilarity. Differently
from these methods, POIS directly models the uncertainty due to the importance sampling procedure.
The bound in Theorem 4.1 introduces the unique hyperparameter δ which has a precise statistical
meaning as confidence level. The optimal value of δ (like the step size in TRPO and ε in PPO) is
task-dependent and might vary during the learning procedure. Furthermore, POIS is an episode-based
approach in which the importance weights account for the whole trajectory at once; this might prevent
from assigning credit to valuable subtrajectories (like in the case of Inverted Pendulum, see Figure 1).
A possible solution is to resort to per-decision importance sampling [36].
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Ê τ
∼
θ

[R
(τ

)]
N

o
ep

is
od

e-
ba

se
d

T
R

PO
[4

2]
ac

tio
n-

ba
se

d
on

-p
ol

ic
y

m
a
x
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Ê t
∼
θ

[R
(s
t
,a
t
)]

s.
t.
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B Proofs and Derivations

Lemma 4.1. Let P and Q be two probability measures on the measurable space (X ,F) such that
P � Q. Let x = (x1, x2, . . . , xN )T i.i.d. random variables sampled from Q and f : X → R be a
bounded function (‖f‖∞ < +∞). Then, for any N > 0, the variance of the IS estimator µ̂P/Q can
be upper bounded as:

Var
x∼Q

[
µ̂P/Q

]
≤ 1

N
‖f‖2∞d2 (P‖Q) . (7)

Proof. From the fact that xi are i.i.d. we can write:

Var
x∼Q

[
µ̂P/Q

]
≤ 1

N
Var
x1∼Q

[
p(x1)

q(x1)
f(x1)

]
≤ 1

N
E

x1∼Q

[(
p(x1)

q(x1)
f(x1)

)2
]

≤ 1

N
‖f‖2∞ E

x1∼Q

[(
p(x1)

q(x1)

)2
]

=
1

N
‖f‖2∞d2 (P‖Q) .

Theorem 4.1. Let P and Q be two probability measures on the measurable space (X ,F) such that
P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN be i.i.d. random variables sampled from Q, and
f : X → R be a bounded function (‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with
probability at least 1− δ it holds that:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

wP/Q(xi)f(xi)− ‖f‖∞

√
(1− δ)d2(P‖Q)

δN
. (8)

Proof. We start from Cantelli’s inequality applied on the random variable µ̂P/Q = 1
N

∑N
i=1 wP/Q(xi)f(xi):

Pr
(
µ̂P/Q − E

x∼P
[f(x)] ≥ λ

)
≤ 1

1 + λ2

Varx∼Q[µ̂P/Q]

. (11)

By calling δ = 1

1+ λ2

Varx∼Q[µ̂P/Q]
and considering the complementary event, we get that with probability at least

1− δ we have:

E
x∼P

[f(x)] ≥ µ̂P/Q −
√

1− δ
δ

Var
x∼Q

[
µ̂P/Q

]
. (12)

By replacing the variance with the bound in Theorem 4.1 we get the result.

Theorem 4.2. Let pω be a p.d.f. differentiable w.r.t. ω ∈ Ω. Then, it holds that, for the Rényi
divergence: Dα(pω′‖pω) = α

2 (ω′ − ω)
T F(ω) (ω′ − ω)+o(‖ω′−ω‖22), and for the exponentiated

Rényi divergence: dα(pω′‖pω) = 1 + α
2 (ω′ − ω)

T F(ω) (ω′ − ω) + o(‖ω′ − ω‖22).

Proof. We need to compute the second-order Taylor expansion of the α-Rényi divergence. We start considering
the term:

I(ω′) =

∫
X

(
pω′(x)

pω(x)

)α
pω(x) dx =

∫
X
pω′(x)αpω(x)1−α dx. (13)

The gradient is given by:

∇ω′I(ω′) =

∫
X
∇ω′pω′(x)αpω(x)1−α dx = α

∫
X
pω′(x)α−1pω(x)1−α∇ω′pω′(x) dx.

Thus,∇ω′I(ω′)|ω′=ω = 0. We now compute the Hessian:

Hω′I(ω′) = ∇ω′∇Tω′I(ω′) = α∇ω′
∫
X
pω′(x)α−1pω(x)1−α∇Tω′pω′(x) dx

= α

∫
X

(
(α− 1)pω′(x)α−2pω(x)1−α∇ω′pω′(x)∇Tω′pω′(x) + pω′(x)α−1pω(x)1−αHω′pω′(x)

)
dx.

Evaluating the Hessian in ω we have:

Hω′I(ω′)|ω′=ω = α(α− 1)

∫
X
pω(x)−1∇ωpω(x)∇Tωpω(x) dx
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= α(α− 1)

∫
X
pω(x)∇ω log pω(x)∇Tω log pω(x) dx = α(α− 1)F(ω).

Now, Dα(pω′‖pω) = 1
α−1

log I(ω′). Thus:

∇ω′Dα(pω′‖pω)|ω′=ω =
1

α− 1

∇ω′I(ω′)

I(ω′)

∣∣∣∣
ω′=ω

= 0,

Hω′Dα(pω′‖pω)|ω′=ω =
1

α− 1

I(ω′)Hω′I(ω′) +∇ω′I(ω′)∇Tω′I(ω′)

(I(ω′))2

∣∣∣∣
ω′=ω

=
1

α− 1
Hω′I(ω′)|ω′=ω = αF(ω),

having observed that I(ω) = 1. For what concerns the dα(pω′‖pω), we have:
∇ω′dα(pω′‖pω)|ω′=ω = ∇ω′ exp (Dα(pω′‖pω))|ω′=ω

= exp (Dα(pω′‖pω))∇ω′Dα(pω′‖pω)|ω′=ω = 0,

Hω′dα(pω′‖pω)|ω′=ω = Hω′ exp (Dα(pω′‖pω))|ω′=ω

= exp (Dα(pω′‖pω))
(
Hω′Dα(pω′‖pω) +∇ω′Dα(pω′‖pω)∇Tω′Dα(pω′‖pω)

)
|ω′=ω

= αF(ω).

C Analysis of the IS estimator

In this Appendix, we analyze the behavior of the importance weights when the behavioral and target
distributions are Gaussians. We start providing a closed-form expression for the Rényi divergence
between multivariate Gaussian distributions [6]. Let P ∼ N (µP ,ΣP ) and Q ∼ N (µQ,ΣQ) and
α ∈ [0,∞]:

Dα(P‖Q) =
α

2
(µP − µQ)TΣ−1

α (µP − µQ)− 1

2(α− 1)
log

det(Σα)

det(ΣP )1−α det(ΣQ)α
, (14)

where Σα = αΣQ + (1− α)ΣP under the assumption that Σα is positive-definite.

From now on, we will focus on univariate Gaussian distributions and we provide a closed-form
expression for the importance weights and their probability density function fw. We consider
Q ∼ N (µQ, σ

2
Q) as behavioral distribution and P ∼ N (µP , σ

2
P ) as target distribution. We assume

that σ2
Q, σ

2
P > 0 and we consider the two cases: unequal variances and equal variances. For brevity,

we will indicate with w(x) the weight wP/Q(x).

C.1 Unequal variances

When σ2
Q 6= σ2

P , the expression of the importance weights is given by:

w(x) =
σQ
σP

exp

(
1

2

(µP − µQ)2

σ2
Q − σ2

P

)
exp

−1

2

σ2
Q − σ2

P

σ2
Qσ

2
P

(
x−

σ2
QµP − σ2

PµQ

σ2
Q − σ2

P

)2
, (15)

for x ∼ Q. Let us first notice two distinct situations: if σ2
Q − σ2

P > 0 the weight w(x) is upper

bounded by A =
σQ
σP

exp
(

1
2

(µP−µQ)2

σ2
Q−σ2

P

)
, whereas if σ2

Q − σ2
P < 0, w(x) is unbounded but it admits

a minimum of value A. Let us investigate the probability density function.
Proposition C.1. Let Q ∼ N (µQ, σ

2
Q) be the behavioral distribution and P ∼ N (µP , σ

2
P ) be the

target distribution, with σ2
Q 6= σ2

P . The probability density function of w(x) = p(x)/q(x) is given
by:

fw(y) =


σ

y
√
π log A

y

exp
(
− 1

2µ
2
) (

y
A

)σ2

cosh
(
µσ
√

2 log A
y

)
, if σ2

Q > σ2
P , y ∈ [0, A],

σ

y
√
π log y

A

exp
(
− 1

2µ
2
) (

A
y

)σ2

cosh
(
µσ
√

2 log y
A

)
, if σ2

Q < σ2
P , y ∈ [A,∞),

where µ =
σQ

σ2
Q−σ2

P
(µP − µQ) and σ2 =

σ2
P

|σ2
Q−σ2

P |
.
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Proof. We look at w(x) as a function of random variable x ∼ Q. We introduce the following symbols:

m =
σ2
QµP − σ2

PµQ

σ2
Q − σ2

P

, τ =
σ2
Q − σ2

P

σ2
Qσ

2
P

.

Let us start computing the c.d.f.:

Fw(y) = Pr (w(x) ≤ y) = Pr

(
A exp

(
−1

2
τ(x−m)2

)
≤ y
)

= Pr
(
τ(x−m)2 ≥ −2 log

y

A

)
.

We distinguish the two cases according to the sign of τ and we observe that x = µQ + σQz where z ∼ N (0, 1):

τ > 0:

Fw(y) = Pr

(
(x−m)2 ≥ 2

τ
log

A

y

)
= Pr

(
x ≤ m−

√
2

τ
log

A

y

)
+ Pr

(
x ≥ m+

√
2

τ
log

A

y

)
= Pr

(
z ≤ m− µQ

σQ
−
√

2

τσ2
Q

log
A

y

)
+ Pr

(
z ≥ m− µQ

σQ
+

√
2

τσ2
Q

log
A

y

)
.

We call µ =
m−µQ
σQ

=
σQ

σ2
Q
−σ2

P
(µP − µQ) and σ2 = 1

τσ2
Q

=
σ2
P

σ2
Q
−σ2

P
, thus we have:

Fw(y) = Pr

(
z ≤ µ−

√
2σ2 log

A

y

)
+ Pr

(
z ≥ µ+

√
2σ2 log

A

y

)
= Φ

(
µ−

√
2σ2 log

A

y

)
+ 1− Φ

(
µ+

√
2σ2 log

A

y

)
,

where Φ is the c.d.f. of a normal standard distribution. By taking the derivative w.r.t. y we get the p.d.f.:

fw(y) =
∂Fw(y)

∂y
= −
√

2σ2 1

2
√

log A
y

y

A

−A
y2

(
φ

(
µ−

√
2σ2 log

A

y

)
+ φ

(
µ+

√
2σ2 log

A

y

))

=

√
2σ

2y
√

log A
y

(
φ

(
µ−

√
2σ2 log

A

y

)
+ φ

(
µ+

√
2σ2 log

A

y

))

=

√
2σ

2y
√

log A
y

1√
2π

(
exp

(
−1

2

(
µ−

√
2σ2 log

A

y

)2
)

+ exp

(
−1

2

(
µ+

√
2σ2 log

A

y

)2
))

=
σ

y
√
π log A

y

exp

(
−1

2
µ2

)
exp

(
−σ2 log

A

y

) exp
(
µσ
√

2 log A
y

)
+ exp

(
−µσ

√
2 log A

y

)
2

=
σ

y
√
π log A

y

exp

(
−1

2
µ2

)( y
A

)σ2

cosh

(
µσ

√
2 log

A

y

)
,

where φ is the p.d.f. of a normal standard distribution.

τ < 0: The derivation takes similar steps, all it takes is to call σ2 = − 1
τσ2
Q

=
σ2
P

σ2
P
−σ2

Q
, then the c.d.f.

becomes:

Fw(y) = Φ

(
µ+

√
2σ2 log

y

A

)
− Φ

(
µ−

√
2σ2 log

y

A

)
,

and the p.d.f. is:

fw(x) =
σ

y
√
π log y

A

exp

(
−1

2
µ2

)(
A

y

)σ2

cosh

(
µσ

√
2 log

y

A

)
.

To unify the two cases we set σ2 =
σ2
P

|σ2
Q
−σ2

P |
.

It is interesting to investigate the properties of the tail of the distribution when w is unbounded.
Indeed, we discover that the distribution displays a fat-tail behavior.
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Proposition C.2. If σ2
P > σ2

Q then there exists c > 0 and y0 > 0 such that for any y ≥ y0, the p.d.f.

fw can be lower bounded as fw(y) ≥ cy−1−σ2

(log y)−
1
2 .

Proof. Let us call z = y/A and let a > 0 be a constant, then it holds that for sufficiently large y we have:

fw(y) ≥ az−1−σ2

(log z)−1/2 exp
(√

log z
)√2µσ

. (16)

To get the result, we observe that for z > 1 we have exp
(√

log z
)
≥ 1. Now, by replacing z with y/A we just

need to change the constant a into c > 0.

As a consequence, the α-th moment of w(x) does not exist for α − 1 − σ2 ≥ −1 =⇒ α ≥
σ2 =

σ2
P

σ2
P−σ2

Q
, this prevents from using Bernstein-like inequalities for bounding in probability the

importance weights. The non-existence of finite moments is confirmed by the α-Rényi divergence.
Indeed, the α-Rényi divergence is defined when σ2

α = ασ2
Q + (1− α)σ2

P > 0, i.e., α < σ2
P

σ2
P−σ2

Q
.

C.2 Equal variances

If σ2
Q = σ2

P = σ2, the importance weights have the following expression:

w(x) = exp

(
µP − µQ

σ2

(
x− µP + µQ

2

))
, (17)

for x ∼ Q. The weight w(x) is clearly unbounded and has 0 as infimum value. Let us investigate its
probability density function.

Proposition C.3. Let Q ∼ N (µQ, σ
2) be the behavioral distribution and P ∼ N (µP , σ

2) be the
target distribution. The probability density function of w(x) = q(x)/p(x) is given by:

fw(y) =
|σ̃|√
2πy

3
2

exp

(
−1

2

(
µ̃2 + σ̃2 (log y)

2
))

, (18)

where µ̃ =
µP−µQ

2σ and σ̃ = σ
µP−µQ .

Proof. We start computing the c.d.f.:

Fw(y) = Pr
(

exp
{µP − µQ

σ2

(
x− µP + µQ

2

)}
≤ y
)

= Pr
(µP − µQ

σ2

(
x− µP + µQ

2

)
≤ log y

)
.

First, we consider the case µP − µQ > 0 and observe that x = µQ + σz, where z ∼ N (0, 1):

Fw(y) = Pr

(
x ≤ µP + µQ

2
+

σ2

µP − µQ
log y

)
= Pr

(
z ≤ µP − µQ

2σ
+

σ

µP − µQ
log y

)
.

We call µ̃ =
µP−µQ

2σ
and σ̃ = σ

µP−µQ
and we have:

Fw(y) = Pr (z ≤ µ̃+ σ̃ log y) = Φ (µ̃+ σ̃ log y) .

We take the derivative in order to get the density function:

fw(y) =
∂Fw(y)

∂y
=
σ̃

y

1√
2π

exp

(
−1

2
(µ̃+ σ̃ log y)2

)
=

σ̃√
2πyµ̃σ̃+1

exp

(
−1

2

(
µ̃2 + σ̃2 (log y)2

))
.

For the case µP − µQ < 0 the derivation is symmetric and the p.d.f. differs only by a minus sign. We account
for this fact by considering |σ̃| in the final formula.

In the case of equal variances, the tail behavior is different.

Proposition C.4. If σ2
P = σ2

Q then for any α > 0 there exist c > 0 and y0 > 0 such that for any
y ≥ y0, the p.d.f. can be upper bounded as fw(y) ≤ cy−α.
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Figure 3: Probability density function of the importance weights when the behavioral distribution
is N (0, 1) and the mean is changed keeping the variance equal to 1 (a) or the variance is changed
keeping the target mean equal to 1 (b).

Proof. Condensing all the constants in c, the p.d.f. can be written as:

fw(y) = cy−3/2 exp
(
(log y)2

)− σ̃2
2 . (19)

For any α > 0, let us solve the following inequality:

y3/2 exp
(
(log y)2

) σ̃2
2 ≥ yα =⇒ y ≥ exp

(
2

σ̃2

(
α− 3

2

))
. (20)

Thus, for y ≥ exp
(

2
σ̃2

(
α− 3

2

))
we have that fw(y) ≤ cy−α.

This is sufficient to ensure the existence of the moments of any order, indeed the corresponding
Rényi divergence is: α(µP−µQ)2

2σ2 . By the way, the distribution of w(x) remains subexponential, as

exp
(

(log y)
2
)− σ̃22 ≥ e−ηy for sufficiently large y.

Figure 3 reports the p.d.f. of the importance weights for different values of mean and variance of the
target distribution.

D Analysis of the SN Estimator

In this Appendix, we provide some results regarding bias and variance of the self-normalized
importance sampling estimator. Let us start with the following result, derived from [8], that bounds
the expected squared difference between non-self-normalized weight w(x) and self-normalized
weight w̃(x).
Lemma D.1. Let P and Q be two probability measures on the measurable space (X ,F) such that
P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN i.i.d. random variables sampled from Q. Then,
for N > 0 and for any i = 1, 2, . . . , N it holds that:

E
x∼Q

[(
w̃P/Q(xi)−

wP/Q(xi)

N

)2
]
≤ d2(P‖Q)− 1

N
. (21)

Proof. The result derives from simple algebraic manipulations and from the fact that Varx∼Q
[
wP/Q(x)

]
=

d2(P‖Q)− 1.

E
x∼Q

[(
w̃P/Q(xi)−

wP/Q(xi)

N

)2
]

= E
x∼Q

( wP/Q(xi)∑N
j=1 wP/Q(xj)

)2(
1−

∑N
j=1 wP/Q(xj)

N

)2


≤ E
x∼Q

(1−
∑N
j=1 wP/Q(xj)

N

)2
 = Var

x∼Q

[∑N
j=1 wP/Q(xj)

N

]

20



=
1

N
Var
x1∼Q

[
wP/Q(x1)

]
=
d2(P‖Q)− 1

N
.

A similar argument can be used to derive a bound on the bias of the SN estimator.
Proposition D.1. Let P and Q be two probability measures on the measurable space (X ,F) such
that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN i.i.d. random variables sampled from Q and
f : X → R be a bounded function (‖f‖∞ <∞). Then, the bias of the SN estimator can be bounded
as: ∣∣∣∣ E

x∼Q

[
µ̃P/Q − E

x∼P
[f(x)]

]∣∣∣∣ ≤ ‖f‖∞min

{
2,

√
d2(P‖Q)− 1

N

}
. (22)

Proof. Since it holds that |µ̃P/Q| ≤ ‖f‖∞ the bias cannot be larger than 2‖f‖∞. We now derive a bound for
the bias that vanishes as N →∞. We exploit the fact that the IS estimator is unbiased, i.e., Ex∼Q

[
µ̂P/Q

]
=

Ex∼P [f(x)].∣∣∣∣ E
x∼Q

[
µ̃P/Q − E

x∼P
[f(x)]

] ∣∣∣∣ =

∣∣∣∣ E
x∼Q

[
µ̃P/Q − E

x∼Q

[
µ̂P/Q

]]∣∣∣∣ =

∣∣∣∣ E
x∼Q

[
µ̃P/Q − µ̂P/Q

]∣∣∣∣
≤ E

x∼Q

[∣∣µ̃P/Q − µ̂P/Q∣∣] =

= E
x∼Q

[∣∣∣∣∣
∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)
−
∑N
i=1 wP/Q(xi)f(xi)

N

∣∣∣∣∣
]

= E
x∼Q

[∣∣∣∣∣
∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

∣∣∣∣∣
∣∣∣∣∣1−

∑N
i=1 wP/Q(xi)

N

∣∣∣∣∣
]

(23)

≤ E
x∼Q

[(∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

)2] 1
2

E
x∼Q

[(
1−

∑N
i=1 wP/Q(xi)

N

)2] 1
2

(24)

≤ ‖f‖∞

√
d2(P‖Q)− 1

N
, (25)

where (24) follows from (23) by applying Cauchy-Schwartz inequality and (25) is obtained by observing that(∑N
i=1 wP/Q(xi)f(xi)∑N
i=1 wP/Q(xi)

)2

≤ ‖f‖2∞.

Bounding the variance of the SN estimator is non-trivial since the the normalization term makes
all the samples interdependent. Exploiting the boundedness of µ̃P/Q we can derive trivial bounds
like: Varx∼Q

[
µ̃P/Q

]
≤ ‖f‖2∞. However, this bound does not shrink with the number of samples N .

Several approximations of the variance have been proposed, like the following derived using the delta
method [60, 29]:

Var
x∼Q

[
µ̃P/Q

]
=

1

N
E

x1∼Q

[
w2
P/Q(x1)

(
f(x1)− E

x∼P
[f(x)]

)2
]

+ o(N−2). (26)

We will not use the approximate expression for the variance, but we will directly bound the Mean
Squared Error (MSE) of the SN estimator, which is the sum of the variance and the bias squared.
Proposition D.2. Let P and Q be two probability measures on the measurable space (X ,F) such
that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN i.i.d. random variables sampled from Q
and f : X → R be a bounded function (‖f‖∞ < +∞). Then, the MSE of the SN estimator can be
bounded as:

MSEx∼Q
[
µ̃P/Q

]
≤ 2‖f‖2∞min

{
2,

2d2(P‖Q)− 1

N

}
. (27)

Proof. First, recall that µ̃P/Q is bounded by ‖f‖∞ thus its MSE cannot be larger than 4‖f‖2∞. The idea of the
proof is to sum and subtract the IS estimator µ̂P/Q:

MSEx∼Q
[
µ̃P/Q

]
= E

x∼Q

[(
µ̃P/Q − E

x∼P
[f(x)]

)2]
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= E
x∼Q

[(
µ̃P/Q − E

x∼P
[f(x)]± µ̂P/Q

)2]
(28)

≤ 2 E
x∼Q

[(
µ̃P/Q − µ̂P/Q

)2]
+ 2 E

x∼Q

[(
µ̂P/Q − E

x∼P
[f(x)]

)2]
(29)

≤ 2 E
x∼Q

[(∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

)2(
1−

∑N
i=1 wP/Q(xi)

N

)2]
+ 2 Var

x∼Q

[
µ̂P/Q

]
(30)

≤ 2‖f‖2∞ E
x∼Q

[(
1−

∑N
i=1 wP/Q(xi)

N

)2]
+ 2 Var

x∼Q

[
µ̂P/Q

]
(31)

≤ 2‖f‖2∞ Var
x∼Q

[∑N
i=1 wP/Q(xi)

N

]
+ 2 Var

x∼Q

[
µ̂P/Q

]
(32)

≤ 2‖f‖2∞
d2(P‖Q)− 1

N
+ 2‖f‖2∞

d2(P‖Q)

N
= 2‖f‖2∞

2d2(P‖Q)− 1

N
, (33)

where line (29) follows from line (28) by applying the inequality (a+ b)2 ≤ 2(a2 + b2), (31) follows from (30)

by observing that
(∑N

i=1 wP/Q(xi)f(xi)∑N
i=1 wP/Q(xi)

)2

≤ ‖f‖2∞.

We can use this result to provide a high confidence bound for the SN estimator.
Proposition D.3. Let P and Q be two probability measures on the measurable space (X ,F) such
that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN i.i.d. random variables sampled from Q
and f : X → R be a bounded function (‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with
probability at least 1− δ:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

w̃P/Q(xi)f(xi)− 2‖f‖∞min

{
1,

√
d2(P‖Q)(4− 3δ)

δN

}
.

Proof. The result is obtained by applying Cantelli’s inequality and accounting for the bias. Consider the random
variable µ̃P/Q = 1

N

∑N
i=1 w̃P/Q(xi)f(xi) and let λ̃ = λ−

∣∣Ex∼P [f(x)]− Ex∼P
[
µ̃P/Q

]∣∣:
Pr
(
µ̃P/Q − E

x∼P
[f(x)] ≥ λ

)
= Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ+ E

x∼P
[f(x)]− E

x∼P

[
µ̃P/Q

])
≤ Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ−

∣∣∣ E
x∼P

[f(x)]− E
x∼P

[
µ̃P/Q

]∣∣∣)
= Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ̃

)
.

Now we apply Cantelli’s inequality:

Pr
(
µ̃P/Q − E

x∼P
[f(x)] ≥ λ

)
≤ Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ̃

)
≤ 1

1 + λ̃2

Varx∼Q[µ̃P/Q]

=
1

1 +
(λ−|Ex∼P [f(x)]−Ex∼P [µ̃P/Q]|)2

Varx∼Q[µ̃P/Q]

. (34)

By calling δ = 1

1+
(λ−|Ex∼P [f(x)]−Ex∼P [µ̃P/Q]|)2

Varx∼Q[µ̃P/Q]

and considering the complementary event, we get that with

probability at least 1− δ we have:

E
x∼P

[f(x)] ≥ µ̃P/Q −
∣∣∣ E
x∼P

[f(x)]− E
x∼P

[
µ̃P/Q

]∣∣∣−√1− δ
δ

Var
x∼Q

[
µ̃P/Q

]
(35)

Then we bound the bias term
∣∣Ex∼P [f(x)]− Ex∼P

[
µ̃P/Q

]∣∣ with equation (22) and the variance term with the
MSE in equation (27). With some simple algebraic manipulation we have:

E
x∼P

[f(x)] ≥ µ̃P/Q − ‖f‖∞

√
d2(P‖Q)− 1

N
− ‖f‖∞

√
1− δ
δ

2(2d2(P‖Q)− 1)

N

≥ µ̃P/Q − ‖f‖∞

√
d2(P‖Q)

N
− ‖f‖∞

√
1− δ
δ

4d2(P‖Q)

N
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= µ̃P/Q − ‖f‖∞

√
d2(P‖Q)

N

(
1 + 2

√
1− δ
δ

)

≥ µ̃P/Q − 2‖f‖∞

√
d2(P‖Q)

N

√
1 +

4(1− δ)
δ

≥ µ̃P/Q − 2‖f‖∞

√
d2(P‖Q)(4− 3δ)

δN
,

where the last line follows from the fact that
√
a+
√
b ≤ 2

√
a+ b for any a, b ≥ 0. Finally, recalling that the

range of the SN estimator is 2‖f‖∞ we get the result.

It is worth noting that, apart for the constants, the bound has the same dependence on d2 as in
Theorem 4.1. Thus, by suitably redefining the hyperparameter λ we can optimize the same surrogate
objective function for both IS and SN estimators.

E Implementation details

In this Appendix, we provide some aspects about our implementation of POIS.

E.1 Line Search

At each offline iteration k the parameter update is performed in the direction of
G(θjk)−1∇θjkL(θjk/θ

j
0) with a step size αk determined in order to maximize the improvement.

For brevity we will remove subscripts and dependence on θj0 from the involved quantities. The
rationale behind our line search is the following. Suppose that our objective function L(θ), restricted
to the gradient direction G−1(θ)∇θL(θ), represents a concave parabola in the Riemann manifold
having G(θ) as Riemann metric tensor. Suppose we know a point θ0, the Riemann gradient in that
point G(θ0)−1∇θL(θ0) and another point: θl = θ0 + αlG(θ0)−1∇θL(θ0). For both points we
know the value of the loss function: L0 = L(θ0) and Ll = L(θl) and indicate with ∆Ll = Ll − L0

the objective function improvement. Having this information we can compute the vertex of that
parabola, which is its global maximum. Let us call l(α) = L

(
θ0 + αG−1(θ0)∇θL(θ0)

)
− L(θ0),

being a parabola it can be expressed as l(α) = aα2 + bα+ c. Clearly, c = 0 by definition of l(α); a
and b can be determined by enforcing the conditions:

b =
∂l

∂α

∣∣∣∣
α=0

=
∂

∂α
L
(
θ0 + αG−1(θ0)∇θL(θ0)

)
− L(θ0)|α=0 =

= ∇θL(θ0)TG−1(θ0)∇θL(θ0) =

= ‖∇θL(θ0)‖2G−1(θ0),

l(αl) = aα2
l + bαl = aα2

l + ‖∇θL(θ0)‖2G−1(θ0)αl = ∆Ll =⇒

=⇒ a =
∆Ll − ‖∇θL(θ0)‖2G−1(θ0)αl

α2
l

.

Therefore, the parabola has the form:

l(α) =
∆Ll − ‖∇θL(θ0)‖2G−1(θ0)αl

α2
l

α2 + ‖∇θL(θ0)‖2G−1(θ0)α. (36)

Clearly, the parabola is concave only if ∆Ll < ‖∇θL(θ0)‖2G−1(θ0)αl. The vertex is located at:

αl+1 =
‖∇θL(θ0)‖2G−1(θ0)α

2
l

2
(
‖∇θL(θ0)‖2G−1(θ0)αl −∆Ll

) . (37)

To simplify the expression, like in [25] we define αl = εl/‖∇θL(θ0)‖2G−1(θ0). Thus, we get:

εl+1 =
ε2l

2(εl −∆Ll)
. (38)
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Of course, we need also to manage the case in which the parabola is convex, i.e., ∆Ll ≥
‖∇θL(θ0)‖2G−1(θ0)αl. Since our objective function is not really a parabola we reinterpret the
two cases: i) ∆Ll > ‖∇θL(θ0)‖2G−1(θ0)αl, the function is sublinear and in this case we use (38) to
determine the new step size αl+1 = εl+1/‖∇θL(θ0)‖2G−1(θ0); ii) ∆Ll ≥ ‖∇θL(θ0)‖2G−1(θ0)αl, the
function is superlinear, in this case we increase the step size multiplying by η > 1, i.e., αl+1 = ηαl.
Finally the update rule becomes:

εl+1 =

{
ηεl if ∆Ll > εl(2η−1)

2η
ε2l

2(εl−∆Ll) otherwise
. (39)

The procedure is iterated until a maximum number of attempts is reached (say 30) or the objective
function improvement is too small (say 1e-4). The pseudocode of the line search is reported in
Algorithm 3.

Algorithm 3 Parabolic Line Search
Input: tol∆L = 1e− 4, Mls = 30, L0

Output : α∗

α0 = 0
ε1 = 1
∆Lk−1 = −∞
for l = 1, 2, . . . ,Mls do

αl = εl/‖∇θL(θ0)‖2G−1(θ0)

θl = αlG−1(θ0)∇θL(θ0)
∆Ll = Ll − L0

if ∆Ll < ∆Ll−1 + tol∆L then
return αl−1

end if

εl+1 =

{
ηεl if ∆Ll > εl(1−2η)

2η
ε2l

2(εl−∆Ll) otherwise
end for

E.2 Estimation of the Rényi divergence

In A-POIS, the Rényi divergence needs to be computed between the behavioral p(·|θ) and target
p(·|θ′) distributions on trajectories. This is likely impractical as it requires to integrate over the
trajectory space. Moreover, for stochastic environments it cannot be computed unless we know the
transition model P . The following result provides an exact, although loose, bound to this quantity in
the case of finite-horizon tasks.

Proposition E.1. Let p(·|θ) and p(·|θ′) be the behavioral and target trajectory probability density
functions. Let H <∞ be the task-horizon. Then, it holds that:

dα
(
p(·|θ′)‖p(·|θ)

)
≤
(

sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))
)H

.

Proof. We prove the proposition by induction on the horizon H . We define dα,H as the α-Rényi divergence at
horizon H . For H = 1 we have:

dα,1
(
p(·|θ′)‖p(·|θ)

)
=

∫
S
D(s0)

∫
A
πθ(a0|s0)

(
πθ′(a0|s0)

πθ(a0|s0)

)α ∫
S
P (s1|s0, a0) ds1 da0 ds0

=

∫
S
D(s0)

∫
A
πθ(a0|s0)

(
πθ′(a0|s0)

πθ(a0|s0)

)α
da0 ds0

≤
∫
S
D(s0) ds0 sup

s∈S

∫
A
πθ(a0|s)

(
πθ′(a0|s)
πθ(a0|s)

)α
da0

≤ sup
s∈S

dα (πθ′(·|s)‖πθ(·|s)) ,
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where the last but one passage follows from Holder’s inequality. Suppose that the proposition holds for any
H ′ < H , let us prove the proposition for H .

dα,H
(
p(·|θ′)‖p(·|θ)

)
=

∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

×
∫
A
πθ(aH−1|sH−1)

(
πθ′(aH−1|sH−1)

πθ(aH−1|sH−1)

)α ∫
S
P (sH |sH−1, aH−1) ds0 . . . dsH−1

× daH−2 dsH−1 daH−1 dsH

=

∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

×
∫
A
πθ(aH−1|sH−1)

(
πθ′(aH−1|sH−1)

πθ(aH−1|sH−1)

)α
ds0 . . . dsH−1 daH−2 dsH−1 daH−1

≤
∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

× ds0 . . . dsH−1 daH−2 dsH−1 × sup
s∈S

∫
A
πθ(aH−1|s)

(
πθ′(aH−1|s)
πθ(aH−1|s)

)α
daH−1

≤ dα,H−1

(
p(·|θ′)‖p(·|θ)

)
sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))

≤
(

sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))
)H

,

where we applied Holder’s inequality again and the last passage is obtained for the inductive hypothesis.

The proposed bound, however, is typically ultraconservative, thus we propose two alternative estima-
tors of the α-Rényi divergence. The first estimator is obtained by simply rephrasing the definition (4)
into a sample-based version:

d̂α (P‖Q) =
1

N

N∑
i=1

(
p(xi)

q(xi)

)α
=

1

N

N∑
i=1

wαP/Q(xi), (40)

where xi ∼ Q. This estimator is clearly unbiased and applies to any pair of probability distributions.
However, in A-POIS P and Q are distributions over trajectories, their densities are expressed as
products, thus the α-Rényi divergence becomes:

dα
(
p(·|θ′)‖p(·|θ)

)
=

∫
T
p(·|θ)(τ)

(
p(τ |θ′)
p(τ |θ)

)α
dτ =

=

∫
T
D(sτ,0)

H−1∏
t=0

P (sτ,t+1|sτ,t, aτ,t)
H−1∏
t=0

πθ(aτ,t|sτ,t)
(
πθ′(aτ,t|sτ,t)
πθ(aτ,t|sτ,t)

)α
dτ.

Since both πθ and πθ′ are known we are able to compute exactly for each state dα (πθ′(·|s)‖πθ(·|s))
with no need to sample the action a. Therefore, we suggest to estimate the Rényi divergence between
two trajectory distributions as:

d̂α
(
p(·|θ′)‖p(·|θ)

)
=

1

N

N∑
i=1

H−1∏
t=0

dα (πθ′(·|sτi,t)‖πθ(·|sτi,t)) . (41)

E.3 Computation of the Fisher Matrix

In A-POIS the Fisher Information Matrix needs to be estimated off-policy from samples. We can use,
for this purpose, the IS estimator:

F̂(θ′/θ) =
1

N

N∑
i=1

wθ′/θ(τi)

(
H−1∑
t=0

∇θ′ log πθ′(aτi,t|sτi,t)

)T (H−1∑
t=0

∇θ′ log πθ′(aτi,t|sτi,t)

)
.

The SN estimator is obtained by replacing wθ′/θ(τi) with w̃θ′/θ(τi). Those estimators become very
unreliable when θ′ is far from θ, making them difficult to use in practice. On the contrary, in P-POIS
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in presence of Gaussian hyperpolicies the FIM can be computed exactly [49]. If the hyperpolicy has
diagonal covariance matrix, i.e., νµ,σ = N (µ,diag(σ2)), the FIM is also diagonal:

F(µ,σ) =

(
diag(1/σ2) 0

0 2I

)
,

where I is a properly-sized identity matrix.

E.4 Practical surrogate objective functions

In practice, the Rényi divergence term d2 in the surrogate objective functions presented so far,
either exact in P-POIS or approximate in A-POIS, tends to be overly-conservative. To mitigate this
problem, by observing that d2(P‖Q)/N = 1/ESS(P‖Q) from equation (6) we can replace the
whole quantity with an estimator like ÊSS(P‖Q), as presented in equation (6). This leads to the
following approximated surrogate objective functions:

L̃A−POIS
λ (θ′/θ) =

1

N

N∑
i=1

wθ′/θ(τi)R(τi)−
λ√

ÊSS
(
p(·|θ′)‖p(·|θ)

) ,
L̃P−POIS
λ (ρ′/ρ) =

1

N

N∑
i=1

wρ′/ρ(θi)R(τi)−
λ√

ÊSS (νρ′‖νρ)
.

Moreover, in all the experiments, we use the empirical maximum reward in place of the true Rmax.

E.5 Practical P-POIS for Deep Neural Policies (N-POIS)

As mentioned in Section 6.2, P-POIS applied to deep neural policies suffers from a curse of dimen-
sionality due to the high number of (scalar) parameters (which are ∼ 103 for the network used in
the experiments). The corresponding hyperpolicy is a multi-variate Gaussian (diagonal covariance)
with a very high dimensionality. As a result, the Rényi divergence, used as a penalty, is extremely
sensitive even to small perturbations, causing an overly-conservative behavior. First, we give up
the exact Rényi computation and use the practical surrogate objective function L̃P−POIS

λ proposed
in Appendix E.4. This, however, is not enough. The importance weights, being the products of
thousands of probability densities, can easily become zero, preventing any learning. Hence, we
decide to group the policy parameters in smaller blocks, and independently learn the corresponding
hyperparameters. In general, we can define a family of M orthogonal policy-parameter subspaces
{Θm ≤ Θ}Mm=1, where V ≤W reads “V is a subspace of W ”. For each Θm, we consider a multi-
variate diagonal-covariance Gaussian with Θm as support, obtaining a corresponding hyperparameter
subspace Pm ≤ P . Then, for each Pm, we compute a separate surrogate objective (where we employ
self-normalized importance weights):

L̃N−POIS
λ (ρ′m/ρm) =

1

N

N∑
i=1

w̃ρ′m/ρm(θim)R(τi)−
λ√

ÊSS
(
νρ′m‖νρm

) ,
where ρm,ρ

′
m ∈ Pm,θm ∈ Θm. Each objective is independently optimized via natural gradient

ascent, where the step size is found via a line search as usual. It remains to define a meaningful
grouping for the policy parameters, i.e., for the weights of the deep neural policy. We choose to
group them by network unit, or neuron (counting output units but not input units). More precisely, let
denote a network unit as a function:

Ui(x|θm) = g(xTθm),

where x is the vector of the inputs to the unit (including a 1 that multiplies the bias parameter) and
g(·) is an activation function. To each unit Um we associate a block Θm such that θm ∈ Θm. In
more connectivist-friendly terms, we group connections by the neuron they go into. For the network
we used in the experiments, this reduces the order of the multivariate Gaussian hyperpolicies from
∼ 103 to ∼ 102. We call this practical variant of our algorithm Neuron-Based POIS (N-POIS).
Although some design choices seem rather arbitrary, and independently optimizing hyperparameter
blocks clearly neglects some potentially meaningful interactions, the practical results of N-POIS
are promising, as reported in Section 6.2. Figure 4 is an ablation study showing the performance of
P-POIS variants on Cartpole. Only using both the tricks discussed in this section, we are able to solve
the task (this experiment is on 50 iterations only).

26



0 0.5 1 1.5 2 2.5

×104

0

2000

4000

trajectories

a
v
e
ra

g
e
re
tu

rn

P-POIS with ESS estimator P-POIS with exact Renyi

N-POIS with exact Renyi N-POIS with ESS estimator

Figure 4: Ablation study for N-POIS (5 runs, 95% c.i.).

F Experiments Details

In this Appendix, we report the hyperparameter values used in the experimental evaluation and some
additional plots and experiments. We adopted different criteria to decide the batch size: for linear
policies at each iteration 100 episodes are collected regardless of their length, whereas for deep neural
policies, in order to be fully comparable with [12], 50000 timesteps are collected at each iteration
regardless of the resulting number of episodes (the last episode is cut so that the number of timesteps
sums up exactly to 50000). Clearly, this difference is relevant only for episodic tasks.

F.1 Linear policies

In the following we report the hyperparameters shared by all tasks and algorithms for the experiments
with linear policies:

• Policy architecture: Normal distribution N (uM(s), e2Ω), where the mean uM(s) = Ms is
a linear function in the state variables with no bias, and the variance is state-independent
and parametrized as e2Ω, with diagonal Ω.

• Number of runs: 20 (95% c.i.)

• seeds: 10, 109, 904, 160, 570, 662, 963, 100, 746, 236, 247, 689, 153, 947, 307, 42, 950,
315, 545, 178

• Policy initialization: mean parameters sampled from N (0, 0.012), variance initialized to 1

• Task horizon: 500

• Number of iterations: 500

• Maximum number of line search attempts (POIS only): 30

• Maximum number of offline iterations (POIS only): 10

• Episodes per iteration: 100

• Importance weight estimator (POIS only): IS for A-POIS, SN for P-POIS

• Natural gradient (POIS only): No for A-POIS, Yes for P-POIS

Table 3 reports the hyperparameters that have been tuned specifically for each task selecting the best
combination based on the runs corresponding to the first 5 seeds.
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Table 3: Task-specific hyperparameters for the experiments with linear policy. δ is the significance
level for POIS while δ is the step-size for TRPO and PPO. In bold, the best hyperparameters found.

Environment A-POIS (δ) P-POIS (δ)

Cart-Pole Balancing 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Inverted Pendulum 0.8, 0.9, 0.99, 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Mountain Car 0.8, 0.9, 0.99, 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Acrobot 0.1, 0.3, 0.5, 0.7, 0.9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Double Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1

Environment TRPO (δ) PPO (δ)

Cart-Pole Balancing 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1 , 1
Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Mountain Car 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Acrobot 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Double Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1

F.2 Deep neural policies

In the following we report the hyperparameters shared by all tasks and algorithms for the experiments
with deep neural policies:

• Policy architecture: Normal distribution N (uM(s), e2Ω), where the mean uM(s) is a 3-
layers MLP (100, 50, 25) with bias (activation functions: tanh for hidden-layers, linear for
output layer), the variance is state-independent and parametrized as e2Ω with diagonal Ω.

• Number of runs: 5 (95% c.i.)
• seeds: 10, 109, 904, 160, 570
• Policy initialization: uniform Xavier initialization [13], variance initialized to 1
• Task horizon: 500
• Number of iterations: 500
• Maximum number of line search attempts (POIS only): 30
• Maximum number of offline iterations (POIS only): 20
• Timesteps per iteration: 50000
• Importance weight estimator (POIS only): IS for A-POIS, SN for P-POIS
• Natural gradient (POIS only): No for A-POIS, Yes for P-POIS

Table 4 reports the hyperparameters that have been tuned specifically for each task selecting the best
combination based on the runs corresponding to the 5 seeds.

Table 4: Task-specific hyperparameters for the experiments with deep neural policies. δ is the
significance level for POIS. In bold, the best hyperparameters found.

Environment A-POIS (δ) P-POIS (δ)

Cart-Pole Balancing 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8
Mountain Car 0.9, 0.99, 0.999 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Double Inverted Pendulum 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8
Swimmer 0.9, 0.99, 0.999 0.4, 0.5, 0.6, 0.7, 0.8

F.3 Full experimental results

In this section, we report the complete set of results we obtained by testing the two versions of POIS.

In Figure 5 we report additional plots w.r.t. Figure 2 for A-POIS when changing the δ parameter in the
Cartpole environment. It is worth noting that the value of δ has also an effect on the speed with which
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the variance of the policy approaches zero. Indeed, smaller policy variances induce a larger Rényi
divergence and thus with a higher penalization (small δ) reducing the policy variance is discouraged.
Moreover, we can see the values of the bound before and after the optimization. Clearly, the higher
the value of δ, the higher the value of the bound after the optimization process, as the penalization
term is weaker. It is interesting to notice that when δ = 1 the bound after the optimization reaches
values that are impossible to reach for any policy and this is a consequence of the high uncertainty in
the importance sampling estimator.
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Figure 5: Standard Deviation of the policy (σ), value of the bound before and after the optimization
as a function of the number of trajectories for A-POIS in the Cartpole environment for different
values of δ (5 runs, 95% c.i.).

We report the comparative table taken from [12] containing all the benchmarked algorithms and the
two versions of POIS (Table 5).

Table 5: Cumulative return compared with [12] on deep neural policies (5 runs, 95% c.i.). In bold,
the performances that are not statistically significantly different from the best algorithm in each task.

Cart-Pole Double Inverted
Algorithm Balancing Mountain Car Pendulum Swimmer

Random 77.1± 0.0 −415.4± 0.0 149.7± 0.1 −1.7± 0.1
REINFORCE 4693.7± 14.0 −67.1± 1.0 4116.5± 65.2 92.3± 0.1
TNPG 3986.4± 748.9 −66.5± 4.5 4455.4± 37.6 96.0± 0.2
RWR 4861.5± 12.3 −79.4± 1.1 3614.8± 368.1 60.7± 5.5
REPS 565.6± 137.6 −275.6± 166.3 446.7± 114.8 3.8± 3.3
TRPO 4869.8± 37.6 −61.7± 0.9 4412.4± 50.4 96.0± 0.2
DDPG 4634.4± 87.6 −288.4± 170.3 2863.4± 154.0 85.8± 1.8
A-POIS 4842.8± 13.0 −63.7± 0.5 4232.1± 189.5 88.7± 0.55
CEM 4815.4± 4.8 −66.0± 2.4 2566.2± 178.9 68.8± 2.4
CMA-ES 2440.4± 568.3 −85.0± 7.7 1576.1± 51.3 64.9± 1.4
P-POIS 4428.1± 138.6 −78.9± 2.5 3161.4± 959.2 76.8± 1.6

In the following (Figure 6) we show the learning curves of POIS in its two versions for the experiments
with deep neural policies.
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Figure 6: Average return as a function of the number of trajectories for A-POIS, P-POIS with deep
neural policies (5 runs, 95% c.i.).
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